1 Type Soundness for System F

How do the new polymorphic constructs of System F—namely, type abstraction $(\Lambda \alpha. e)$ and type application $(e[\tau])$—affect the proof of type soundness? In particular, are there any new lemmas you will need? If so, state them and explain where they are needed in the proof. You do not need to show any new cases in the proof.

2 Infix Traversal of Church Trees

Consider the following SML code:

```sml
datatype \alpha tree = Empty | Node of \alpha * \alpha tree * \alpha tree

fun infix (T : \alpha tree) : \alpha list =
  case T of Empty => nil
  | Node(n,left,right) => (infix left) @ [n] @ (infix right)
```

(Here, @ is the SML append function on lists.) Show how to Church-encode the type $\alpha tree$ and the function `infix` in System F. Your solution may make reference to the nil and cons values defined in class but should not make use of product types (primitive or Church-encoded).

3 An Alternative Version of Existential Unpack

Suppose we extend System F with primitive existentials, with the following small-step evaluation rules:

- **Types**
 \[\sigma, \tau ::= \cdots | \exists \alpha. \tau \]

- **Terms**
 \[e, f ::= \cdots | \text{pack} [\sigma, e] \text{ as } \exists \alpha. \tau \mid \text{let } [\alpha, x] = \text{unpack } e \text{ in } e' \]

- **Values**
 \[v, w ::= \cdots | \text{pack} [\sigma, v] \text{ as } \exists \alpha. \tau \]

\[\frac{e \rightsquigarrow e'}{\text{pack} [\sigma, e] \text{ as } \exists \alpha. \tau \rightsquigarrow \text{pack} [\sigma, e'] \text{ as } \exists \alpha. \tau} \]

\[\frac{e \rightsquigarrow e'}{\text{let } [\alpha, x] = \text{unpack } e \text{ in } f \rightsquigarrow \text{let } [\alpha, x] = \text{unpack } e' \text{ in } f} \]

\[\text{let } [\alpha, x] = \text{unpack} (\text{pack} [\sigma, v] \text{ as } \exists \alpha. \tau) \text{ in } e \rightsquigarrow [\sigma/\alpha][v/x]e \]
The standard typing rules for existentials are as follows:

$$
\frac{\Delta \vdash \sigma \text{ type } \Delta; \Gamma \vdash e : [\sigma/\alpha]\tau}{\Delta; \Gamma \vdash \text{pack } [\sigma, e] \text{ as } \exists \alpha. \tau \text{ as } \exists \alpha. \tau}
$$

$$
\frac{\Delta; \Gamma \vdash e : \exists \alpha. \tau \quad \Delta, \alpha; \Gamma, x : \tau \vdash e' : \tau' \quad \alpha \not\in \text{FV}(\tau')}{
\Delta; \Gamma \vdash \text{let } [\alpha, x] = \text{unpack } e \text{ in } e' : \tau'}
$$

Notice the rule for unpack requires that the result type $$\tau'$$ not mention $$\alpha$$. Suppose we were to change the unpack rule to

$$
\frac{\Delta; \Gamma \vdash e : \exists \alpha. \tau \quad \Delta, \alpha; \Gamma, x : \tau \vdash e' : \tau'}{
\Delta; \Gamma \vdash \text{let } [\alpha, x] = \text{unpack } e \text{ in } e' : \exists \alpha. \tau'}
$$

and suppose further that we were to treat $$\tau$$ and $$\exists \alpha. \tau$$ as interchangeable type expressions in the case that $$\alpha \not\in \text{FV}(\tau)$$. This second rule has the advantage of avoiding the side condition $$\alpha \not\in \text{FV}(\tau')$$.

(a). Can you mimic the new rule using the original static semantics for unpack? That is, if under the original semantics $$\Delta; \Gamma \vdash e : \exists \alpha. \tau$$ and $$\Delta, \alpha; \Gamma, x : \tau \vdash e' : \tau'$$ and $$\alpha \not\in \text{FV}(\tau')$$, can you construct a term $$e''$$ such that $$\Delta; \Gamma \vdash e'' : \exists \alpha. \tau'$$, also under the original semantics?

(b). How about vice versa? That is, if under the new semantics $$\Delta; \Gamma \vdash e : \exists \alpha. \tau$$ and $$\Delta, \alpha; \Gamma, x : \tau \vdash e' : \tau'$$ and $$\alpha \not\in \text{FV}(\tau')$$, can you construct a term $$e''$$ such that $$\Delta; \Gamma \vdash e'' : \tau'$$, also under the new semantics?

(c). Is the new version of the static semantics type-safe? If so, prove it by showing the new cases of the type soundness proof. If not, give a counterexample to type safety.

4 Using Girard’s J to Implement Recursion

For this problem, we are working in System F with full call-by-name $$\beta$$-reduction, extended with Girard’s 0 and J operators. Recall the semantics of Girard’s J operator:

$$
\frac{}{\Delta; \Gamma \vdash \text{J} : \forall \alpha. \forall \beta. \alpha \to \beta}
$$

$$
\frac{\sigma = \tau}{\text{J}[\sigma][\tau](e) \leadsto e}
$$

$$
\frac{\sigma \neq \tau \quad \sigma \text{ and } \tau \text{ are closed}}{\text{J}[\sigma][\tau](e) \leadsto 0[\tau]}
$$

Let us say that a closed term $$Y$$ “encodes the fixed-point combinator at type $$\tau$$” if: (1) $$Y$$ has type $$(\tau \to \tau) \to \tau$$, and (2) for any closed term $$f$$ of type $$\tau \to \tau$$, there exists a term $$e$$ such that $$Y(f) \leadsto e$$ and $$e \leadsto f(e)$$.

Your task is to use Girard’s J operator to define a closed term $$\text{fix}$$ such that for all closed types $$\tau$$, it is the case that $$\text{fix}[\tau]$$ encodes the fixed-point combinator at type $$\tau$$.

Hint: $$Y = \lambda f. (\lambda x. f(x))((\lambda x. f(x)) \lambda x. f(x))$$ is the fixed-point combinator in the classical untyped $$\lambda$$-calculus. At least in my solution to this problem, the untyped erasure of my $$\text{fix}$$ is precisely the classical $$Y$$ combinator.