1 Announcements

Please turn in your exercises. Remember that you have your first homework due next Tuesday (October 3).

2 Introduction

Operational semantics models execution of programs. Instead of real machine instructions we use *abstract machines*. An abstract machine consists of some state and an evaluation relation that enables transitions between states. The state of an abstract machine often consists of some kind of stack, perhaps some representation of memory, and an expression to be evaluated. The transition function maps the state to another state by evaluating the expressions.

The idea is to model execution without going into the details of a real machine. The reason for staying at a higher level is to enable studying the mathematical properties of such systems.

A language researcher often spends a lot of time studying the semantics of his or her language. Typically, research starts with some language and some initial semantics. Then, the language and semantics evolves as the soundness and safety properties are studied. This evolution process is usually where a lot of the time goes. The researcher often understand the problem fully during this process. After the language and its semantics reaches a stable state, the
abstract machine can be implemented on a real machine. The big bonus is that, assuming that the implementation is correct with respect to the abstract machine, then the system is safe and sound.

In the rest of this lecture, we will talk about an example language and give different semantics for it.

3 Big Step Semantics

Consider the abstract syntax for our little language for arithmetic expressions.

\[
t ::= 0 | \text{true} | \text{false} | \text{isZero } t | \text{succ } t | \text{pred } t | \text{if } t \text{ then } t \text{ else } t
\]

From now on, whenever we write a term, visualize in your mind the AST (Abstract Syntax Tree) of that term.

Question: Draw the abstract syntax trees for the following terms.

1. \text{isZero pred 0}

2. \text{if isZero 0 then succ pred 0 else pred succ 0}.

Note that this language is not ambiguous. We therefore do not need any parenthesis or other disambiguation techniques.

To present an evaluation semantics, the first step is to define what the results, or *values*, of evaluation consists of.

Question: What are the values?

true

1. ?

false

2. ?

3. natural numbers?

4. integers?
3.1 A big-step semantics with natural numbers

We can define values as follows:

\[
\begin{align*}
n &::= 0 \mid \text{succ } n \\
v &::= \text{true} \mid \text{false} \mid n \\
t &::= v \mid \\
&\quad \text{isZero } t \mid \text{succ } t \mid \text{pred } t \\
&\quad \text{if } t \text{ then } t \text{ else } t
\end{align*}
\]

Some example numbers are 0, \text{succ } 0, \text{succ succ succ } 0. This representation of numbers can be thought as the basic unary representation for numbers (e.g., \text{succ succ succ } 0 = 3).

Question: Refine the definition of the language.

\[
\begin{align*}
n &::= 0 \mid \text{succ } n \\
v &::= \text{true} \mid \text{false} \mid n \\
t &::= v \mid \\
&\quad \text{isZero } t \mid \text{succ } t \mid \text{pred } t \\
&\quad \text{if } t \text{ then } t \text{ else } t
\end{align*}
\]

We are now ready to give the semantics. We will define an evaluation relation, denoted \Downarrow, using inference rules.

\[
\begin{align*}
\text{true} &\Downarrow \text{true} & \text{false} &\Downarrow \text{false} \\
\text{if } t_1 \text{ then } t_2 \text{ else } t_3 &\Downarrow v_3 \\
\text{succ } n &\Downarrow \text{succ } n \\
\text{pred } t &\Downarrow 0 & \text{pred } t &\Downarrow n \\
\text{isZero } t &\Downarrow \text{true} & \text{isZero } t &\Downarrow \text{false}
\end{align*}
\]
The high level idea is to consider each possible term and specify the desired behavior of the evaluation. For example, to evaluate an if statement, we need to know what branch to take. So we evaluate the conditional. Based on the outcome, we evaluate the appropriate branch and return the resulting value.

Although the language is simple, the evaluation rules may have already become quite confusing. So let’s play with the semantics a bit to get a sense of what is going on.

Question: Evaluate pred succ pred 0.

Solution:

Question: Evaluate $\text{pred succ pred pred 0}$.

Solution:

Question: Evaluate $\text{if isZero pred succ pred 0 then true else false}$

Solution:

These are called *derivation trees.*
Exercise: Evaluate if isZero pred succ pred 0 then true else false
Answer: ...

Question: Prove that any term indeed evaluates to a proper value.
Solution:

Question: We used induction on evaluation. What exactly do we mean by this? Can we state this idea more precisely?
Solution:

3.2 A semantics with integers

In the previous section, we gave a semantics for this language, where we only returned natural numbers. A more intuitive semantics would actually involve integers (i.e., include negative numbers). Let’s try formulate an operational semantics for our language where the result can also be integers.

Question: How can we specify negative numbers?
\[
\begin{align*}
\text{pn} &::= 0 \mid \text{succ } \text{pn} \\
\text{nn} &::= 0 \mid \text{pred } \text{nn} \\
v &::= \text{true} \mid \text{false} \mid \text{nn} \mid \text{pn} \\
\text{t} &::= v \mid \\
&\quad \text{isZero } t \mid \text{succ } t \mid \text{pred } t \mid \\
&\quad \text{if } t \text{ then } t \text{ else } t
\end{align*}
\]

Question: Let's extend the semantics according to these values.

\[
\begin{array}{c|c|c}
\text{v} \Downarrow v \\
\hline
\text{ if } t_1 \text{ then } t_2 \text{ else } t_3 \Downarrow v_3 & \text{ if } t_1 \text{ then } t_2 \text{ else } t_3 \Downarrow v_3 \\
\hline
\text{ isZero } t \Downarrow \text{true} & \text{ isZero } t \Downarrow \text{false} & \text{ isZero } t \Downarrow \text{false}
\end{array}
\]

Question: Prove that an evaluation indeed returns a proper value.

Solution:

Question: Evaluate \(\text{pred succ pred 0} \).

Solution:

\[
\begin{array}{c|c|c|c}
\text{pred 0} \Downarrow \text{pred 0} & \text{succ pred 0} \Downarrow 0 & \text{pred succ pred 0} \Downarrow \text{pred 0}
\end{array}
\]

6
Question: Evaluate \(\text{pred succ pred pred } 0 \).

Solution:

\[
\begin{align*}
\text{pred } 0 & \downarrow \text{pred } 0 \\
\text{pred pred } 0 & \downarrow \text{pred pred } 0 \\
\text{succ pred pred } 0 & \downarrow \text{pred pred } 0 \\
\text{pred succ pred pred } 0 & \downarrow \text{pred pred } 0
\end{align*}
\]

4 Small Step Semantics

Big-step semantics leads to a natural and intuitive specifications. Proving type safety properties using big-step semantics, however, is possible only indirectly. When type safety is an important concern, it is often preferable to give a small stem semantics. In this class, we will therefore prefer the small-step semantics.

At a high level, the big step semantics can be viewed as a top-down approach, whereas the small-step semantics is bottom-up.

4.1 A Language of Booleans

As an example, consider the following simple language of booleans obtained by throwing away the arithmetic operations from our running example.

\[
v ::= \text{true} \mid \text{false}
\]

\[
t ::= v \mid \text{if } t \text{ then } t \text{ else } t
\]

Here is a small-step semantics for this language.

\[
\begin{align*}
\text{if true then } t_2 \text{ else } t_3 & \to t_2 \\
\text{if false then } t_2 \text{ else } t_3 & \to t_3 \\
 t_1 & \to t'_1 \\
\text{if } t_1 \text{ then } t_2 \text{ else } t_2 & \to \text{if } t'_1 \text{ then } t_2 \text{ else } t_2
\end{align*}
\]

The evaluation relation \(\to \) represent a step of evaluation. We will read \(t \to t' \), as \(t \) steps (or evaluates) to \(t' \). The evaluation relation describes how the machine makes transitions from one state to another, or how it computes.

Unlike the big step semantics there is no rule for values. The idea is that an evaluation halts at a value.

The evaluation rules for the \textit{if} statements takes one of three forms. If the value of the conditional is known, then the machine continues evaluating the appropriate branch. If the conditional is not yet a value, then the machine makes progress on evaluating the conditional. Note that there is a choice to be made here. The machine can also reduce any of the branches to a value first and then evaluate the conditional. Or the semantics can be non-deterministic, and can take a step in the direction of any of the terms arbitrarily.

Question: Give the derivation tree for the following derivations.
1. if true then if false then false else true else true → true.

2. if if false then false else true then if true then false else false else true → false.

When giving the small-step semantics, there is often a choice as to what terms the evaluation must reduce first. Although this may seem like a minor point, it has very important implications. To enforce a consistent application of choices, we often rely on an evaluation strategy that specifies which choices must be made.

For example, the expression if true then if false then false else true else true can be evaluated in two ways.

1. Take the then branch.

 if true then if false then false else true else true → if false then false else true

2. Evaluate the then branch.

 if true then if false then false else true else true → if true then true else true

The semantics that we presented will perform the first evaluation step. It is possible to give a semantics that will do the second.

We say \(t \rightarrow t' \) is derivable if and only if there is a derivation tree for \(t \rightarrow t' \).

Let’s now prove some properties of the semantics to get a sense of how inductive proofs on single-step semantics work.
4.2 Normal Forms

We say that a term t is in *normal form* if no evaluation rule applies to that term. For example, all values are in normal form because, by definition, no reduction rules apply to a value.

In a sound language, all values that are in normal form are also values.

Question: Show, for our language of booleans, that if t is in normal form, then it is a value.

Solution: By structural induction on terms. We only have to consider non-value terms. If $t = \text{if } \text{true} \text{ then } t_2 \text{ else } t_3$, then it is clearly not a value; the case when the conditional is false is symmetric. Suppose now that $t = \text{if } t_1 \text{ then } t_2 \text{ else } t_3$, where t_1 is not a value. But then by induction hypothesis t_1 is not in normal form, and there is some t_1' such that $t_1 \rightarrow t_1'$. Thus, t is not in normal form.

4.3 Stuck Terms

A closed term is *stuck* if it is in normal form but it is not a value.

In other words, no evaluation rules apply to a stuck term, yet, the term is not reduced a value. These are terms that "confuses" the operational semantics. Stuck terms correspond to run-time errors such as segmentation faults. Civilized languages do not have stuck terms.

4.4 Multi-Step Evaluation

The *multi-step evaluation* relation \rightarrow^* is the reflexive and transitive closure of \rightarrow.

Question: If $t \rightarrow^* u$ and $t \rightarrow^* u'$ and u and u' are both normal forms, then $u = u'$. **Answer:** Follows directly by the determinacy of evaluation.