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Abstract

We consider the problem of partitioning a graph into k components of roughly equal size
while minimizing the capacity of the edges between different components of the cut. In particular
we require that for a parameter ν ≥ 1, no component contains more than ν · n

k of the graph
vertices.

For k = 2 and ν = 1 this problem is equivalent to the well known Minimum Bisection
Problem for which an approximation algorithm with a polylogarithmic approximation guarantee
has been presented in [FK02]. For arbitrary k and ν ≥ 2 a bicriteria approximation ratio of
O(logn) was obtained by [ENRS99] using the spreading metrics technique.

We present a bicriteria approximation algorithm that for any constant ν > 1 runs in polyno-
mial time and guarantees an approximation ratio of O(log1.5 n) (for a precise statement of the
main result see Theorem 6). For ν = 1 and k ≥ 3 we show that no polynomial time approximation
algorithm can guarantee a finite approximation ratio unless P = NP.

1 Introduction

The problem of partitioning graphs into equal sized components while minimizing the number of
edges between different components is extremely important in parallel computing. For example,
parallelizing many applications involves the problem of assigning data or processes evenly to
processors, while minimizing the communication.

This issue can be posed as the following graph partitioning problem. Given a graph G = (V,E),
where nodes represent data or tasks and edges represent communication, the goal is to divide V into
equal sized parts V1, . . . ,Vk while minimizing the capacity of edges cut. Here k denotes the number
of processors of the parallel machine on which the application is to be executed. Apart from this
example, graph partitioning algorithms also play an important role in areas such as VLSI layout,
sparse linear system solving and circuit testing and simulation.

The above graph partitioning problem is already NP-complete for the case k = 2, which is also
called the Minimum Bisection problem. Due to the importance of the problem many effort has
been made to develop efficient heuristics (see [KL70, FM82]) and approximation algorithms (see
[FKN00, FK02]).

If k is not constant the problem is hard to approximate within any finite factor as we will show
in Theorem 1. Therefore the following version of the problem with relaxed balance constraint was
introduced. In the (k,ν)-balanced partitioning problem the task is to partition the graph into k pieces
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of size at most ν
n
k , while minimizing the capacity of edges between different partitions. However,

the performance of a partitioning algorithm is compared to the optimum algorithm that has to create
partitions of equal size and is thus more restricted. This modeling approach is sometimes called
bicriteria-approximation, resource-augmentation, or pseudo-approximation in the literature.

Previous work about the (k,ν)-balanced partitioning problem only focuses on the case ν ≥ 2. In
this case it is possible to get an approximation ratio of O(logn) as shown by Even et al. [ENRS99].

In this work we consider the (k,1 + ε)-balanced partitioning problem for arbitrary constants
ε . We show that we can get a polylogarithmic approximation w.r.t. the capacity of edges between
different partitions. Furthermore, we show that it is not possible to obtain even a finite approximation
factor for the case ε = 0. The latter result is in some sense the justification for looking at bicriteria
approximation algorithms instead of true approximation algorithms.

1.1 Related Work

The first heuristics for minimum bisection were given by Kernighan and Lin [KL70] and subsequently
improved in terms of running time by Fiduccia and Mattheyses [FM82].

If the balance requirement of the minimum bisection problem is relaxed, one gets the well known
graph separator problem. Since the seminal paper of Lipton and Tarjan [LT79] on graph separators in
planar graphs, this subject has been intensively studied. For a comprehensive survey of major results
in the area the reader is refered to the book “Graph separators with applications” by Rosenberg and
Heath [RH01].

The first non-trivial approximation algorithm for minimum bisection is due to Saran and Vazi-
rani [SV95] who obtained an approximation ratio of n/2. Subsequently the ratio was improved by
Feige et al. [FKN00] to O(

√
n ·polylog(n)). In their seminal paper Feige and Krauthgamer were able

to improve the ratio to O(log2 n) ([FK02]). An important part of their algorithm is the computation
of the so called amortized cuts. They show that an approximation algorithm for sparsest cut can be
transformed into an approximation algorithm for amortized cuts. Recently, Arora, Rao and Vazirani
[ARV04] gave an improved approximation for sparsest cut with an approximation ratio of O(

√
logn).

Combining the Feige-Krauthgamer algorithm with this algorithm gives an O(log1.5 n) approximation
to Minimum Bisection.

For some special graph classes better bounds are known. For example for planar graphs the
algorithm by Feige and Krauthgamer achieves an approximation ratio of O(logn). In dense graphs
(graphs of minimum degree Ω(n)) Arora et al. [AKK95] gave a PTAS.

Some of the above algorithms can be extended to larger values of k. The algorithm by Saran
and Vazirani gives an upper bound of k−1

k n for the (k,1)-balanced partitioning problem. Feige
and Krauthgamer extend their algorithm to give an approximation ratio of O(log2 n) for general k
(O(log1.5 n) when using the result of [ARV04]). Note however that this algorithm requires a running
time that is exponential in k.

The relaxed version of the k partitioning problem for general graphs was considered by Leighton
et al. [LMT90] and Simon and Teng [ST97]. Their solutions are based on recursive partitioning
the graph with approximate separators, yielding an approximation factor of O(logn logk). Even et
al. [ENRS00] have used the spreading metrics technique to improve this to O(logn log logn) and
later ([ENRS99]) to O(logn). In the latter paper it is also shown that any (k,ν)-balanced partitioning
problem with ν > 2 can be reduced to a (k′,ν ′)-balanced partitioning problem with k′ ≤ k and ν ′ ≤ 2,
i.e., that it is only necessary to analyze the problem for small values of ν .



The above solutions for the (k,2)-balanced partitioning problem cannot be easily extended to
(k,1 + ε)-balanced partitioning problems with ε < 1. The reason is that the above solutions rely
mainly on partitioning the graph into pieces of size less than n/k, while cutting as few edges, as
possible. Obviously, an optimal algorithm for the (k,1)-balanced partitioning problem has to partition
the graph into pieces of size at most n/k as well.

From this it can be deduced that their algorithm cuts only a small factor more edges than the
optimal (k,1)-balanced partitioning. Since pieces of size less than n/k can be packed into k partitions
such that no partition receives more than 2n/k nodes, they get a good solution to the (k,2)-balanced
partitioning problem.

However, if we require that the balance-constraint is relaxed by less than a factor of 2, we have to
carefully choose the piece-sizes into which the graph is cut since we have to be able to pack these
pieces into k partitions of size at most ν

n
k . Therefore it is necessary to combine the graph partitioning

algorithm with an algorithm for scheduling the resulting pieces into partitions of small size.

1.2 Basic Notations and Definitions

Throughout this paper G = (V,E) denotes the input graph and n = |V | denotes the number of nodes
of G. We call P a partitioning of G into ` parts if it consists of a collection of ` disjoint subsets
V1, . . . ,V` that cover V , i.e. V = V1∪̇ · · · ∪̇V`. We use cost(P) to denote the capacity of edges cut by
the partitioning, i.e. edges between different subsets Vi. We call the subsets Vi, partitions of G to
distinguish them from other subsets of V that are not necessarily part of a partitioning.

We investigate the (k,1 + ε)-balanced partitioning problem, that is the problem of finding a
minimum cost partitioning of G into k parts such that each part contains at least (1+ ε)n

k nodes.
We seek a bicriteria approximation algorithm for this problem; we compare the cost of an

approximation algorithm to the cost of the optimum (k,1)-balanced partitioning algorithm that has to
output parts of exactly equal size and is thus more restricted. We call the result of the latter algorithm
the optimum (k,1)-balanced partitioning and denote it with OPTk.

Throughout the paper we assume that the unbalance factor ε is smaller than 1. This does not
simplify the problem because the results of [ENRS99] show that an instance with ε > 1 can be
reduced to a problem instance with ε ≤ 1.

2 Hardness Results for Balanced Partitioning

It is already well known that the (2,1)-partitioning problem, in other words the Minimum Bisection
problem, is NP-complete (see [GJ79]). As mentioned previously, Krauthgamer and Feige gave an
efficient approximation algorithm for the Minimum Bisection problem (see [FK02]). We show in
the following Theorem 1 that the general problem of partitioning a graph into k equal parts cannot
be solved in polynomial time if k is not constant. Furthermore the theorem shows that it is not even
possible to derive a finite approximation factor for the general problem where k is not a constant. This
is the main motivation for analyzing bicriteria approximation algorithms for this case, i.e. algorithms
that are allowed to violate the balance constraint of the partitions.

Theorem 1 For k ≥ 3 the (k,1)-balanced partitioning problem has no polynomial time approxima-
tion algorithm with finite approximation factor unless P=NP.



Proof. We use a reduction from the 3-Partition problem defined as follows. We are given n = 3k
integers a1,a2, . . . ,an and a threshold S such that S

4 < ai < S
2 and

n

∑
i=1

ai = kS.

The task is to decide if the numbers can be partitioned into triples such that each triple adds up to S.
This problem is strongly NP-complete (see [GJ79]), i.e. it is already NP-complete if all number are
bounded by some polynomial in the length of the input.

The reduction is as follows. Assume that we have an approximation for (k,1)-balanced partition
with finite approximation factor, and further we are given an instance of 3-Partition in which all
numbers (i.e. the integers ai and the threshold S) are polynomially bounded. We can use the (k,1)-
balanced partition algorithm to solve the 3-Partition instance in the following way.

We construct a graph G such that for each number ai it contains a clique of size ai. Note that this
graph is of polynomial size since the integers are polynomially bounded. If the 3-Partition instance
can be solved, the (k,1)-balanced partitioning problem in G can be solved without cutting any edge.
If the 3-Partition instance cannot be solved, the optimum (k,1)-balanced partitioning in G will cut
at least one edge. An approximation algorithm with finite approximation factor has to differentiate
between these two cases. Hence, it can solve the 3-Partition problem which is a contradiction under
the assumption that P6=NP.

3 Algorithm and Analysis

3.1 Decomposing the graph

Our algorithm for solving the (k,1+ ε)-balanced partitioning problem proceeds in two phases. In
a first preprocessing phase the graph is decomposed via a recursive decomposition scheme. This
means we use a separation algorithm that gets a part of the graph as input, and outputs two non-empty
subsets of this part, for recursively decomposing the graph. To each such recursive decomposition
corresponds a binary decomposition tree T . Each node vt of T corresponds to a part Vvt ⊂V obtained
during the decomposition as follows. The root of the tree corresponds to the node set V of the input
graph G, the leaves correspond to individual vertices of G, and the two direct descendants of a node
vt correspond to the two subparts obtained when applying the separation algorithm to Vvt .

The separation algorithm is as follows. We set ε ′ := ε

3/(1+ ε

3 ) . In each divide step the algorithm
tries to find a minimum ε ′-balanced separator, that is a partition of an input set V into two parts with
size more than ε ′ · |V | that cuts a minimum number of edges. However, we allow our algorithm to
relax the balance constraint. We use an approximation algorithm that returns an ε ′/2-balanced cut,
i.e. every part contains at least ε ′/2 · |V | nodes, and that cuts a capacity of at most

O(S ·
√

logn/ε),

where S denotes the total capacity of edges in an optimum ε ′-balanced cut. In [LR99] it has been
shown how to construct approximate balanced separators using an approximation algorithm for
sparsest cut. Combining this algorithm with the recent approximation algorithm for the sparsest cut
problem by Arora, Rao and Vazirani [ARV04] gives a polynomial time algorithm for computing the
separators needed in our divide steps. Since each divide step reduces the larger side by a factor of at
least (1− ε ′/2) the resulting decomposition tree has height O(logn/ε).



3.2 Coarse T-partitionings

To solve the (k,1 + ε)-balanced partitioning problem efficiently, we do not look at all possible
partitionings, but we reduce the search space by only considering partitionings with a special
structure that is induced by the decomposition tree T . In order to describe this structure we introduce
the following definition.

Definition 2 We call a partitioning a T-partitioning if it only contains subsets of T , i.e., subsets that
occurred during the recursive decomposition process and that therefore correspond to some node of
T . We call a T -partitioning coarse if it does not contain any small subsets. More precisely it does not
contain subsets Vvt for which the parent subset Vvp (with vp parent of vt in the tree) contains less than
εn
3k nodes.

Our algorithm first computes a coarse T -partitioning P in which no partition is too large and
that does not cut too many edges in the graph. However P may contain too many (i.e., more than k)
partitions. In a second step the algorithm tries to transform P into a (k,1+ ε)-balanced partition by
merging some of the subsets of P to reduce the number of partitions.

However, this latter step may not always be possible without violating the balance constraint.
Therefore we introduce a definition that captures whether a given T -partitioning P can be transformed
into a (k,1+ ε)-balanced partition. Let J denote the index set of sets in P, i.e., P = {Vj, j ∈ J}. We
say that P is (1+ ε)-feasible if J can be partitioned into k distinct index sets J1, . . . ,Jk such that

∀` ∈ {1, . . . ,k} : ∑
j∈J`

(1+ ε/2)dlog1+ε/2 |Vj|e ≤ (1+ ε) · n
k

.

Note that the expression (1+ ε/2)dlog1+ε/2 |Vj|e rounds |Vj| to the next power of (1+ ε/2).
The above definition is not straightforward in the sense that we do not simply require that

∀` ∈ {1, . . . ,k} : ∑ j∈J`
|Vj| ≤ (1+ ε) · n

k , which means that the total size of all sets in a part is smaller
than (1+ ε) · n

k . The reason for the rounding to powers of (1+ ε/2) is that this definition of (1+ ε)-
feasibility will allow us to check this property in polynomial time, whereas for the straightforward
definition the decision whether a coarse T -partitioning is (1+ ε)-feasible is NP-complete.

The following lemma shows that we only have to consider feasible coarse T -partitionings in order
to solve the (k,1+ ε)-balanced partitioning problem with a polylogarithmic approximation ratio.

Lemma 3 There exists a (1 + ε)-feasible coarse T -partitioning that cuts at most O(log1.5 n/ε2) ·
cost(OPTk) edges, where OPTk denotes the optimum (exact) (k,1)-balanced partitioning.

Proof. Think of the optimum partitioning OPTk as a coloring of the graph with k distinct colors,
where each color is used for exactly n/k nodes. We successively transform OPTk into a coarse
T -partitioning that is (1+ ε)-feasible.

First we create a new partitioning OPT′
k that only contains subsets of T . This is done by the

following algorithm.
Let S denote a collection of subsets of V that is initially empty. As long as there exists a node v

of G that is not yet contained in a set of OPT′
k we traverse the path from the root of T to the leaf that

represents v. We take the first set on this path that is colored “almost monochromatically” according
to the coloring induced by OPTk, and add it to the collection S . Almost monochromatically means
that at least a 1/(1+ ε/3)-fraction of the nodes of the set are colored the same. More formally, a set
Vx ⊂V is colored almost monochromatically if there is a color c such that at least 1

1+ε/3 |Vx| nodes



of Vx are colored with c. We call c the majority color of Vx since more than half of the nodes of Vx

are colored with c (recall that we assumed ε ≤ 1). Note that the sets that are taken by this algorithm
are disjoint, i.e. S is a collection of disjoint subsets of V that upon the termination of the algorithm
covers all nodes of V , i.e. S is a partitioning. We denote this final result of the algorithm with OPT′

k.
Now, we modify OPT′

k to get a coarse T -partitioning OPT′′
k that contains no small sets. Initially,

OPT′′
k is equal to OPT′

k. We will successively remove small sets from OPT′′
k in the following way.

Suppose there is a set Vvt ∈ OPT′′
k such that the parent set Vvp contains less than εn

3k nodes. The nodes
in Vvp are all contained in sets of OPT′′

k that correspond to descendants of vp in T . We remove all
these sets from OPT′′

k and add Vvp instead. OPT′′
k is still a T -partitioning after this step; therefore

continuing in this manner gives a T -partitioning that contains no small sets, in other words a coarse
T -partitioning.

In order to prove the lemma we now show that OPT′′
k is (1+ ε)-feasible and that cost(OPT′′

k )≤
O(log1.5 n) · cost(OPTk).

Claim 4 OPT′′
k is (1+ ε)-feasible.

Proof. We first show that OPT′
k is (1 + ε)-feasible. We do this by merging the sets to a (k,1 + ε)-

balanced partition in the following way. Merge all sets of OPT′
k that have the same majority color

into one partition. This gives at most k partitions. We have to show that no partition is too large with
respect to the definition of (1+ ε)-feasibility. Fix a partition and let J denote the index set of the sets
in this partition. Further, let M j denote the number of nodes in a set Vj, j ∈ J that are colored with
the majority color. We have

∑
j∈J

|Vj|= (1+ ε/3) ·∑
j∈J

1
1+ ε/3

|Vj| ≤ (1+ ε/3) ·∑
j∈J

M j = (1+ ε/3) · n
k

where the last equality holds since in OPTk any color is used by exactly n
k vertices. In the definition of

(1+ε)-feasibility the sizes of subsets are rounded to powers of (1+ε/2). This can increase the above
sum only by a factor of (1+ ε/2). Hence, it is smaller than (1+ ε/2) · (1+ ε/3) · n

k ≤ (1+ ε) · n
k .

Now we will show that OPT′′
k is feasible as well. For this we have to decide in which partitions

to put the sets of OPT′′
k that are not contained in OPT′

k (all other sets remain in their partition). We do
this greedily. For a given set that is not yet assigned we choose a partition that still contains less than
n/k nodes and assign the set to this partition. It is guaranteed that we find a partition with less than
n/k nodes since the total number of nodes is n and there are k partitions. In this manner no partition
receives more than (1+ ε/3)n

k nodes, because all relevant sets have size at most εn
3k . Again, rounding

only increases this term by a factor of (1+ ε/2), which proves the claim.

The following claim shows that OPT′′
k approximates well the optimum solution w.r.t. the capacity

of edges cut.

Claim 5 cost(OPT′′
k )≤ O(log1.5 n/ε2) · cost(OPTk).

Proof. We show that cost(OPT′
k) ≤ O(log1.5 n/ε2) · cost(OPTk). This is sufficient since OPT′′

k is
obtained from OPT′

k by merging sets, which gives cost(OPT′′
k )≤ cost(OPT′

k).
The cost of OPT′

k is the capacity of all edges between different sets of the partitioning. A
convenient interpretation of this cost is that it is created by the ancestors of sets in OPT′

k, in the
following way. Suppose that there is an ancestor set Vva for some set Vvt of OPT′

k (i.e., va is ancestor



of vt in the tree). We say that the cost created by Vva is the capacity of edges that are cut in the divide
step of the recursive decomposition that divided Vva . In this way we have assigned the cost of OPT′

k
to the ancestor sets in T .

Now, we amortize the cost created by an ancestor set Vva against the capacity of edges that are
cut by the optimum partitioning OPTk within Vva . Consider the partitioning of Vva induced by the
optimum coloring of OPTk. No partition has more than 1

1+ε/3 · |Vva | = (1− ε ′)|Vva | nodes because
Vva is not colored almost monochromatically (here we used the definition of ε ′ as introduced in
Section 3.1). We merge partitions of Vva into a set M in decreasing order of their sizes until M
contains more than ε ′ · |Vva | nodes. Since ε ′ < 1/3 we have that |M| ≤ (1− ε ′)|Vva |. This means M
induces an ε ′-balanced cut for Vva . OPTk cuts all edges within this cut. Since, the divide step for Vva

uses an approximation to the optimum ε ′-balanced cut we get

costVva
(OPT′

k)≤ O(
√

log(n)/ε) · costVva
(OPTk) ,

where costVva
(OPT′

k) denotes the cost of OPT′
k created by Vva , and costVva

(OPTk) denotes the capacity
of edges cut by the optimum partitioning within Vva .

Since, a single edge of G is at most used height(T ) times for amortization we get that

cost(OPT′
k)≤ height(T ) ·O(

√
logn/ε) · cost(OPTk)

≤ O(log1.5 n/ε
2) · cost(OPTk) .

This completes the proof of the claim.

Using Claims 4 and 5 proves the lemma.

3.3 The algorithm

In this section we show how to find an optimal (1+ ε)-feasible coarse T -partitioning OPTT . From
Lemma 3 it follows that this partitioning gives a (k,1+ ε)-partitioning with an approximation factor
of O(log1.5 n/ε2) w.r.t. the capacity of edges cut.

The main observation for this algorithm is that tree sets that are smaller than εn
3k or larger than

(1+ ε)n
k do not have to be considered. The first type of set cannot be contained in OPTT because of

the definition of a coarse T -partitioning. The second type of set cannot be contained since then OPTT

would not be feasible, because such a large set cannot be assigned to a partition without exceeding
the balance constraint (the partition would have size larger than (1+ ε)n

k ).
In the following we remove all nodes from T that correspond to sets of size smaller than εn

3k , and
we mark all nodes that correspond to sets larger than (1 + ε)n

k as invalid. We can use a dynamic
programming approach to compute the optimum T -partitioning OPTT . Let for a node v ∈ T ′ (where
T ′ denotes the pruned tree), Tv denote the sub-tree rooted at r and let Gv denote the sub-graph of
G induced by the set Vv (the set corresponding to node v). The optimum partitioning for G \Gv

only depends on the sizes of sets used for partioning Tv. As described above we can assume that
these set-sizes are from the interval ( εn

3k ,(1 + ε)n
k ). Furthermore, since we are only interested in

(1+ ε)-feasibility we can round these sizes to powers of (1+ ε/2) .
Let t denote the number of (1+ε/2)-powers in the interval ( εn

3k ,(1+ε)n
k ) (i.e., t = O( 1

ε
log( 1

ε
))).

The powers of (1+ ε/2) partition this interval into t +1 sub-intervals. A subset whose size is in the
s-th interval has rounded size

rs := (1+ ε/2)dlog1+ε/2
εn
3k e · (1+ ε/2)s−1 .



Now, let for a partitioning P of Gv, ~g(P) = (g1, . . . ,gt+1) denote a size-vector in which the s-th entry
gs denotes the number of sets for rounded size rs that are used in the partitioning P. We call ~g(P) the
size-vector of the partitioning P. We define OPTTv(~gmax) as the cost of an optimum partitioning of
the sub-graph Gv such that the size-vector of this partitioning is dominated by ~gmax. Formally

OPTTv(~gmax) =


∞ if ∀P ~g(P) >~gmax

min
T -part. P for Tv
~g(P)≤~gmax

{cost(P)} otherwise

The cost OPTT of the optimum (1+ ε)-feasible coarse T -partitioning for G is then

OPTT = min{OPTT (~g) |~g is feasible} , (1)

where we say that a size-vector ~g = (g1, . . . ,gt+1) is feasible if it is possible to pack gs items of size
rs, s ∈ {1, . . . , t +1} into k bins of size (1+ ε)n

k .
We can compute the value OPTTv(~gmax) for every sub-tree and for every possible vector ~gmax via

dynamic programming in the following way. Fix a tree node v. We define r(v) ∈ {1, . . . , t + 1}∪
{invalid} to be the rounded size of the set Vv corresponding to v (if |Vv| ∈ ( εn

3k ,(1 + ε)n
k )) or to be

invalid. Furthermore we use out(Vv) to denote the number of edges leaving Vv, and we use vl and vr

to denote the children of v in the pruned tree T ′ (if v is not a leaf node). The dynamic programming
recurrence for OPTTv(~gmax) is as follows.

OPTTv(~gmax) =


∞ if ~gmax = (0, . . . ,0)

out(Vv) if rs 6= invalid and ers ≤~gmax

min
~gl,~gr

~gl +~gr =~gmax

{OPTTvl
(~gl)+OPTTvr

(~gr)} otherwise

3.4 Running Time

The running time for computing the value OPTT with the above recurrence is as follows. We start
with a bound on the number of entries in the dynamic programming table for OPTTv(~gmax). Firstly,
there are O(n) nodes in the tree (i.e., O(n) different values for v). Secondly, the overall number
of pieces is bounded by 1+ε/2

ε/3 k ≤ 3(1 + ε)k/ε because each set has size at least εn
3k and the total

rounded size of all sets cannot exceed (1+ ε/2)n. Therefore, each entry in a vector ~gmax is bounded
by 3(1+ ε)k/ε , which gives a bound of O((3(1+ ε)k/ε)t+1) on the number of different vectors to
consider. Overall the total number of entries is O(n · (3(1+ ε)k/ε)t+1).

For each entry there are at most (3(1 + ε)k/ε)t+1 possibilities to choose the vectors ~gl and ~gr.
Hence, the running time for computing one entry is O((3(1+ ε)k/ε)t+1). The running time for all
entries is O(n · (3(1+ ε)k/ε)2(t+1)).

After computing all entries in the table the algorithm has to compute the minimum in Equation 1.
For this the algorithm has to compute whether a vector ~g is feasible. This is the well known bin
packing problem which, in general, is NP-complete but can be solved in polynomial time for our case
because we only have items of a constant number of different sizes due to the rounding. Solving such
a bin packing problem needs time O(p2s) (see [HS88]), where p denotes the number of pieces and s
denotes the number of different sizes. In our case the number of pieces is bounded by 3(1+ ε)k/ε



and the number of different sizes is t +1. This gives a running time of O((3(1+ ε)k/ε)2(t+1)) for
checking the feasibility of a vector~g. Doing this for all vectors results in time O((3(1+ε)k/ε)3(t+1))
for evaluating the minimum in Equation 1. The total running time for the dynamic programming is
bounded by O(n · (3(1+ ε)k/ε)3(t+1)) = O(n · (k/ε)O( 1

ε
log( 1

ε
))).

The overall running time is the maximum of the (ε,1− ε)-separation algorithm, which is
polynomial time (O(max{logn, log 1

ε
} · (n 1

ε2 + n4.5))) and will use semidefinite programming as a

subroutine, and the dynamic programming algorithm O(n · (k/ε)O( 1
ε

log( 1
ε
))).

The following theorem summarizes the algorithmic result from this section

Theorem 6 For the (k,1 + ε)-balanced graph partitioning problem the above algorithm finds a
partition that cuts at most O(log1.5 n/ε2) · cost(OPTk) edges, where OPTk denotes the optimum
(exact) (k,1)-balanced partitioning and runs in time polynomial in n and k, but exponential in 1/ε .

4 Conclusions

We presented a polynomial time approximation algorithm for the (k,ν)-balanced partitioning prob-
lem that achieves an O(log1.5 n)-approximation ratio w.r.t. the capacity of edges between different
partitions. The algorithm extends in a straightforward manner to the case where the nodes of the
graphs are weighted and the goal is to balance the weight among the partitions (this works if the node
weights are polynomially bounded).

It seems a challenging task to improve the running time of the algorithm so that the dependence
on 1

ε
is reduced. Another interesting problem is to generalize the problem to the case where the

different partitions are required to have different size. This could be used to model parallel scheduling
on different machines, by making the partitions for fast processors larger. Finally, it is worth
mentioning that the current hardness results do not rule out an approximation algorithm for which
the approximation factor does not depend on 1/ε and only the running time depends on epsilon.
Therefore it is an interesting open problem whether the dependency on 1/ε in the approximation
ratio can be reduced or completely removed.
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