Massart's Finite Class Lemma and Growth Function

Instructors: Sham Kakade and Ambuj Tewari

1 Growth function

Consider the case $\mathcal{Y}=\{ \pm 1\}$ (classification). Let ϕ be the $0-1$ loss function and \mathcal{F} be a class of ± 1-valued functions. We can relate the Rademacher average of $\phi_{\mathcal{F}}$ to that of \mathcal{F} as follows.
Lemma 1.1. Suppose $\mathcal{F} \subseteq\{ \pm 1\}^{\mathcal{X}}$ and let $\phi\left(y^{\prime}, y\right)=\mathbf{1}\left[y^{\prime} \neq y\right]$ be the 0-1 loss function. Then we have,

$$
\Re_{m}\left(\phi_{\mathcal{F}}\right)=\frac{1}{2} \Re_{m}(\mathcal{F}) .
$$

Proof. Note that we can write $\phi\left(y^{\prime}, y\right)$ as $\left(1-y y^{\prime}\right) / 2$. Then we have,

$$
\begin{align*}
\Re_{m}\left(\phi_{\mathcal{F}}\right) & =\mathbb{E}\left[\left.\sup _{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^{m} \epsilon_{i} \frac{1-Y_{i} f\left(X_{i}\right)}{2} \right\rvert\, X_{1}^{m}, Y_{1}^{m}\right] \\
& =\mathbb{E}\left[\left.\sup _{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^{m} \epsilon_{i} \frac{Y_{i} f\left(X_{i}\right)}{2} \right\rvert\, X_{1}^{m}, Y_{1}^{m}\right] \tag{1}\\
& =\frac{1}{2} \mathbb{E}\left[\left.\sup _{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^{m}\left(-\epsilon_{i} Y_{i}\right) f\left(X_{i}\right) \right\rvert\, X_{1}^{m}, Y_{1}^{m}\right] \\
& =\frac{1}{2} \mathbb{E}\left[\left.\sup _{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^{m} \epsilon_{i} f\left(X_{i}\right) \right\rvert\, X_{1}^{m}, Y_{1}^{m}\right] \tag{2}\\
& =\frac{1}{2} \Re_{m}(\mathcal{F})
\end{align*}
$$

Equation (1) follows because $\mathbb{E}\left[\epsilon_{i} \mid X_{1}^{m}, Y_{1}^{m}\right]=0$. Equation (2) follows because $-\epsilon_{i} Y_{i}$'s jointly have the same distribution as $\epsilon_{i}{ }^{\prime}$ s.

Note that the Rademacher average of the class \mathcal{F} can also be written as

$$
\mathfrak{R}_{m}(\mathcal{F})=\mathbb{E}\left[\sup _{a \in \mathcal{F}_{\mid X_{1}^{m}}^{m}} \frac{1}{m} \sum_{i=1}^{m} \epsilon_{i} a_{i}\right],
$$

where $\mathcal{F}_{\mid X_{1}^{m}}$ is the function class \mathcal{F} restricted to the set X_{1}, \ldots, X_{m}. That is,

$$
\mathcal{F}_{\mid X_{1}^{m}}:=\left\{\left(\left(f\left(X_{1}\right), \ldots, f\left(X_{m}\right)\right) \mid f \in \mathcal{F}\right\}\right.
$$

Note that $\mathcal{F}_{\mid X_{1}^{m}}$ is finite and

$$
\left|\mathcal{F}_{\mid X_{1}^{m}}\right| \leq \min \left\{|\mathcal{F}|, 2^{m}\right\}
$$

Thus we can define the growth function as

$$
\Pi_{\mathcal{F}}(m):=\max _{x_{1}^{m} \in \mathcal{X}^{m}}\left|\mathcal{F}_{\mid x_{1}^{m}}\right|
$$

The following lemma due to Massart allows us to bound the Rademacher average in terms of the growth function.

Finite Class Lemma (Massart). Let \mathcal{A} be some finite subset of \mathbb{R}^{m} and $\epsilon_{1}, \ldots, \epsilon_{m}$ be independent Rademacher random variables. Let $r=\sup _{a \in \mathcal{A}}\|a\|$. Then, we have,

$$
\mathbb{E}\left[\sup _{a \in \mathcal{A}} \frac{1}{m} \sum_{i=1}^{m} \epsilon_{i} a_{i}\right] \leq \frac{r \sqrt{2 \ln |\mathcal{A}|}}{m}
$$

Proof. Let

$$
\mu=\mathbb{E}\left[\sup _{a \in \mathcal{A}} \sum_{i=1}^{m} \epsilon_{i} a_{i}\right] .
$$

We have, for any $\lambda>0$,

$$
\begin{aligned}
e^{\lambda \mu} & \leq \mathbb{E}\left[\exp \left(\lambda \sup _{a \in \mathcal{A}} \sum_{i=1}^{m} \epsilon_{i} a_{i}\right)\right] \\
& =\mathbb{E}\left[\sup _{a \in \mathcal{A}} \exp \left(\lambda \sum_{i=1}^{m} \epsilon_{i} a_{i}\right)\right] \\
& \leq \mathbb{E}\left[\sum_{a \in \mathcal{A}} \exp \left(\lambda \sum_{i=1}^{m} \epsilon_{i} a_{i}\right)\right] \\
& =\sum_{a \in \mathcal{A}} \mathbb{E}\left[\exp \left(\lambda \sum_{i=1}^{m} \epsilon_{i} a_{i}\right)\right] \\
& =\sum_{a \in \mathcal{A}} \prod_{i=1}^{m} \mathbb{E}\left[\exp \left(\lambda \epsilon_{i} a_{i}\right)\right] \\
& =\sum_{a \in \mathcal{A}} \prod_{i=1}^{m} \frac{e^{\lambda a_{i}}+e^{-\lambda a_{i}}}{2} \\
& \leq \sum_{a \in \mathcal{A}} \prod_{i=1}^{m} e^{\lambda^{2} a_{i}^{2} / 2} \\
& =\sum_{a \in \mathcal{A}} e^{\lambda^{2}\|a\|^{2} / 2} \\
& \leq|\mathcal{A}| e^{\lambda^{2} r^{2} / 2}
\end{aligned}
$$

Taking logs and dividing by λ, we get that, for any $\lambda>0$,

$$
\mu \leq \frac{\ln |\mathcal{A}|}{\lambda}+\frac{\lambda r^{2}}{2}
$$

Setting $\lambda=\sqrt{2 \ln |\mathcal{A}| / r^{2}}$ gives,

$$
\mu \leq r \sqrt{2 \ln |\mathcal{A}|}
$$

which proves the lemma.

