Boosting: a practical algorithmic tool and a statement about learning in the PAC model itself
Boosting, view #1

- **Definition:** Algorithm A is a weak-learner with edge γ for class C if: for any distribution D over examples labeled by some target $f \in C$, whp A produces a hypothesis h with $\text{err}_D(h) \leq 1/2 - \gamma$.

- **Note:** Ignoring δ parameter throughout the lecture since it can be handled easily (hwk 2).

- **Theorem:** Given a weak-learner A with edge γ for class C, we can produce an alg A' that achieves a PAC guarantee for class C (whp produces hypothesis with error $\leq \epsilon$) using $O\left(\frac{1}{\gamma^2} \log \frac{1}{\epsilon}\right)$ calls to A. A' is efficient if A is.

 “Weak learning \Rightarrow Strong learning”

Boosting, view #2

- Imagine you want a highly accurate algorithm to predict y from x.

- So, you publish a large dataset S_1 of (x, y) pairs and ask if anyone can find an h_1 of error $\leq 40\%$. (And say we require h_1 to be “simple” so we know it’s not overfitting)

- Now, you use h_1 to create a new dataset S_2 (by focusing more on the problematic data for h_1) and ask if anyone can find an h_2 of error $\leq 40\%$ on S_2.

- And so on.

- You can do this and combine the h_i s.t either (a) you drive your error down to 0 or else (b) you reach a hard dataset that nobody can do much better than random guessing on.
Preliminaries

• Assume we want to learn some unknown target function \(f \) over distribution \(D \).

• Assume we have a weak-learner \(A \) with edge \(\gamma \) that uses hypotheses from some class of VC-dim \(d \). (\(A \) should be able to achieve error \(\leq 1/2 - \gamma \) for learning \(f \) over any reweighting of \(D \)).

• We will end up running \(A \) for \(T \) times producing hypotheses \(h_1, \ldots, h_T \) and combining them into a single rule.

• By problem 3 on current hwk, the set of such combinations has VC-dim \(O(Td \log Td) \).

• This will allow us to do all this on a sample of size \(\tilde{O}\left(\frac{Td}{\epsilon}\right) \).

Preliminaries, contd.

• We will draw a training sample \(S \) of size \(m = \tilde{O}\left(\frac{Td}{\epsilon}\right) \).

• Assume that given any weighting of the points in \(S \), \(A \) will return a hypothesis \(h \) of error at most \(1/2 - \gamma \) over the distribution induced by that weighting. (ignoring \(\delta \))

• Will show can produce \(h \) with \(err_S(h) = 0 \) for \(T = O\left(\frac{\log m}{\gamma^2}\right) \).

• Just need \(m \gg \frac{d \log m}{\epsilon \gamma^2} \).
Boosting algo (Adaboost-light)

1. Given labeled sample $S = \{x_1, ..., x_m\}$, initialize each example x_i to have weight $w_i = 1$. Let $w = (w_1, ..., w_n)$.

2. For $t = 1, ..., T$ do:
 a. Call A on the distribution D_t over S induced by w.
 b. Receive hypothesis h_t of error $\leq 1/2 - \gamma$ over D_t.
 c. Multiply the weight of each example misclassified by h_t by $\alpha = \frac{0.5 + \gamma}{0.5 - \gamma}$. Leave the other weights alone.

3. Output the majority-vote classifier $MAJ(h_1, ..., h_T)$. Assume T is odd so no ties.

Thm: $T = O\left(\frac{\log m}{\gamma^2}\right)$ is sufficient s.t. $err_S(MAJ(h_1, ..., h_T)) = 0$.

Example

```
+  +  +  +  +  +
-  -  -  -  -
-  -  -  -  -
-  -  -  -  -
+  +  +  +  +
+  +  +  +  +
```
Example

Example
Boosting algo (Adaboost-light)

1. Given labeled sample $S = \{x_1, ..., x_m\}$, initialize each example x_i to have weight $w_i = 1$. Let $w = (w_1, ..., w_n)$.

2. For $t = 1, ..., T$ do:
 a. Call A on the distribution D_t over S induced by w.
 b. Receive hypothesis h_t of error $\leq 1/2 - \gamma$ over D_t.
 c. Multiply the weight of each example misclassified by h_t by $\alpha = \frac{0.5+\gamma}{0.5-\gamma}$. Leave the other weights alone.

3. Output the majority-vote classifier $MAJ(h_1, ..., h_T)$. Assume T is odd so no ties.

Thm: $T = O\left(\frac{\log m}{\gamma^2}\right)$ is sufficient s.t. $err_S(MAJ(h_1, ..., h_T)) = 0$.

Example

```
+ + + + + +
- - - - - -
- - - - - -
- - - - - -
+ + + + + +
```
Boosting algo (Adaboost-light)

"X" = mistake. Weight of \(x_i = \alpha^\#\text{mistakes in column } i \)

BTW, does this remind you of anything we’ve seen so far?

Proof of Boosting Theorem

Thm: \(T = O\left(\frac{\log m}{\gamma^2}\right) \) is sufficient s.t. \(err_S(MAJ(h_1, ..., h_T)) = 0 \).

Proof:

• First, if \(MAJ(h_1, ..., h_T) \) makes a mistake on any \(x_i \) then its final weight must be greater than \(\alpha^T/2 \).

• Let \(W_t \) be total weight after update \(t \). \(W_0 = m \).

• By the weak-learning assumption, \(h_t \) has error \(\leq 1/2 - \gamma \) on \(D_t \). So, at most \(1/2 - \gamma \) fraction of weight multiplied by \(\alpha \).

• So, \(W_{t+1} \leq \left(\alpha\left(\frac{1}{2} - \gamma\right) + \left(\frac{1}{2} + \gamma\right)\right)W_t = (1 + 2\gamma)W_t \).

• So if \(err_S(...) > 0 \) then \(\alpha^{T/2} \leq W_T \leq (1 + 2\gamma)^T m \).
Proof of Boosting Theorem

Thm: $T = O\left(\frac{\log m}{\gamma^2}\right)$ is sufficient s.t. $err_S(MAJ(h_1, ..., h_T)) = 0$.

Proof:

• Substituting $\alpha = \frac{1/2 + \gamma}{1/2 - \gamma} = \frac{1 + 2\gamma}{1 - 2\gamma}$ and rearranging, we get:

$$1 \leq (1 - 2\gamma)^{T/2}(1 + 2\gamma)^{T/2}m = (1 - 4\gamma^2)^{T/2}m \leq e^{-2\gamma^2 T m}.$$

• Once $T > \frac{\ln m}{2\gamma^2}$, right-hand-side is less than 1. Done.

• So if $err_S(\ldots) > 0$ then $\alpha^{T/2} \leq W_T \leq (1 + 2\gamma)^T m$.

More generally, after any T steps, the fraction of mistakes is at most $e^{-2\gamma^2 T}$.
Some Reflections

• Suppose each \(h_t \) flipped a coin for each example \(x_i \), predicting correctly with probability \(\frac{1}{2} + \gamma \).
 (I.e., suppose they all made independent errors)

• Then it’s clear that taking majority vote is good. By Hoeffding, for any given \(x_i \), \(\Pr[MA \text{ is incorrect}] \leq e^{-2\gamma^2 T} \).

So we actually just proved Hoeffding bounds, at least for \(\frac{1}{2} + \gamma \) vs \(\frac{1}{2} \). (Take limit as # examples \(\to \infty \), so that fraction of errors for each \(h_t \) matches expectation)

• More generally, after any \(T \) steps, the fraction of mistakes is at most \(e^{-2\gamma^2 T} \).

More Reflections

• Consider a zero-sum game with examples as columns and hypotheses in \(H \) as rows.

\[
\begin{array}{cccccccc}\hline
x_1 & x_2 & x_3 & \cdot & \cdot & \cdot & \cdot & x_m \\
\hline
h_1 & X & X & X & X & X & & \\
h_2 & X & X & & X & X & X & \\
h_3 & X & X & & & & X & X \\
\vdots & & & & & & X & X \\
\hline
\end{array}
\]

Rows represent all \(h \) in the class used by \(A \)

• If row plays \(h_i \) and column plays \(x_j \) then row wins if \(h_i(x_j) \) is correct, and column wins if \(h_i(x_j) \) is incorrect.
More Reflections

• Consider a zero-sum game with examples as columns and hypotheses in H as rows.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th>x_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>h_2</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>h_3</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>...</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td></td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td></td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
</tbody>
</table>

• We are given that for any distrib D over columns (mixed strategy for the column player) there exists a row that wins with prob $\geq 1/2 + \gamma$ (payoff $\geq 1/2 + \gamma$)

More Reflections

• Consider a zero-sum game with examples as columns and hypotheses in H as rows.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th>x_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>h_2</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>h_3</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>...</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td></td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td></td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
</tbody>
</table>

• By Minimax Thm, there exists a distribution P over h_i that wins with prob $\geq 1/2 + \gamma$ for any x_j.

• So, whp a large random sample from P will give correct vote on all x_j. (One way to see boosting is possible in principle)
More Reflections

- Consider a zero-sum game with examples as columns and hypotheses in H as rows.

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th>x_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>h_2</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>h_3</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>...</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- In fact, this is just like RWM versus a best-response oracle, except our focus is on properties of the majority vote over the choices of the best-response oracle.

Margin Analysis

- Empirically noticed that you can keep running the booster past the point of perfect classification of S, and generalization doesn't get worse.

- One way to explain: “L_1 margins” or “margin of the vote”
Margin Analysis

Argument sketch:

- As $T \to \infty$, row player’s strategy approaches minimax optimal (for all $x_j \in S$, $1/2 + \gamma$ of h_i vote correctly).

- Define h' as the randomized predictor: “given x, select $O\left(\frac{1}{\gamma^2 \log \frac{1}{\epsilon}}\right) h_i$ at random from h and take their maj vote”

- So, $err_S(h') \leq \epsilon/2$.

- Also, $err_D(h') \geq err_D(h)/2$. (If $h(x)$ is wrong, then at least 50% chance that $h'(x)$ is wrong too)

- But h' isn't overfitting since whp no small majority-votes are overfitting and this is just a randomization over them. So h isn't overfitting by much either.