Learning and Privacy

- To do machine learning, we need data.
- What if the data contains sensitive information?
- Even if the (person running the) learning algo can be trusted, perhaps the output of the algorithm reveals sensitive info.
- E.g., using search logs of friends to recommend query completions:

 Why are __
 Why are my feet so itchy?
Learning and Privacy

• To do machine learning, we need data.

• What if the data contains sensitive information?

• Even if the (person running the) learning algo can be trusted, perhaps the output of the algorithm reveals sensitive info.

• E.g., SVM or perceptron on medical data:
 - Suppose feature j is has-green-hair and the learned w has $w_j \neq 0$.
 - If there is only one person in town with green hair, you know they were in the study.

Learning and Privacy

• To do machine learning, we need data.

• What if the data contains sensitive information?

• Even if the (person running the) learning algo can be trusted, perhaps the output of the algorithm reveals sensitive info.

• An approach to address these problems:

 Differential Privacy
A preliminary story

• A classic result from theoretical crypto:
 - Say you want to figure out the average numeric grade of people in the room, without revealing anything about your own grade other than what is inherent in the answer.

• Turns out you can actually do this. In fact, any function at all. “secure multiparty computation”.
 - It’s really cool. Want to try?

• Anyone have to go to the bathroom?
 - What happens if we do it again?

Differential privacy “lets you go to the bathroom in peace”
Differential Privacy

High level idea:

• What we want is a protocol that has a probability distribution over outputs:

such that if person \(i \) changed their input from \(x_i \) to any other allowed \(x_i' \), the relative probabilities of any output do not change by much.

• This would effectively allow that person to pretend their input was any other value they wanted.

Bayes rule:

\[
\frac{\Pr(x_i|output)}{\Pr(x_i'|output)} = \frac{\Pr(output|x_i)}{\Pr(output|x_i')} \cdot \frac{\Pr(x_i)}{\Pr(x_i')} \cdot e^{\frac{-\epsilon^2}{2}}
\]

(Posterior \(\approx \) Prior)

Differential Privacy: Definition

It’s a property of a protocol \(A \) which you run on some dataset \(X \) producing some output \(A(X) \).

• \(A \) is \(\epsilon \)-differentially private if for any two neighbor datasets \(S, S' \) (differ in just one element \(x_i \rightarrow x_i' \)),

for all outcomes \(v \),

\[
e^{-\epsilon} \leq \frac{\Pr(A(S)=v)}{\Pr(A(S')=v)} \leq e^{\epsilon}
\]

\(\approx 1-\epsilon \)

probability over randomness in \(A \)

\(\approx 1+\epsilon \)
Differential Privacy: Definition

It's a property of a protocol A which you run on some dataset X producing some output $A(X)$.

- A is ϵ-differentially private if for any two neighbor datasets S, S' (differ in just one element $x_i \rightarrow x_i'$),

View as model of **plausible deniability**

(pretend after the fact that my input was really x_i')

for all outcomes v,

$$e^{-\epsilon} \leq \frac{\Pr(A(S)=v)}{\Pr(A(S')=v)} \leq e^{\epsilon}$$

\[\approx 1-\epsilon\] probability over randomness in A

\[\approx 1+\epsilon\]

Differential Privacy: Methods

It's a property of a protocol A which you run on some dataset X producing some output $A(X)$.

- Can we achieve it?
 - Sure, just have $A(X)$ always output 0.
 - This is perfectly private, but also completely useless.
 - Can we achieve it while still providing useful information?
Laplace Mechanism

Say have \(n \) inputs in range \([0,b]\). Want to release average while preserving privacy.

- Changing one input can affect average by \(\leq \frac{b}{n} \).
- Idea: take answer and add noise from Laplace distrib \(p(x) \propto e^{-\frac{|x|\epsilon n}{b}} \)
- Amount of noise added will be \(\approx \pm \frac{b}{(n\epsilon)} \).
- To get an overall error of \(\pm \gamma \), you need a sample size \(n = \frac{b}{\gamma\epsilon} \).
- Get a utility/privacy/database-size tradeoff.
- If want to estimate mean of a distribution up to \(\pm \gamma \) and the database is an iid sample, then for \(\gamma < \epsilon \) you can get privacy "for free".
Laplace mechanism more generally

- E.g., $f =$ standard deviation of income
- E.g., $f =$ result of some fancy computation.

Global Sensitivity of f:

$$GS_f = \max_{\text{neighbors } X, X'} |f(X) - f(X')|$$

- Just add noise $\text{Lap}(GS_f / \epsilon)$.

What can we do with this?

- Interface to ask questions
- Run learning algorithms by breaking down interaction into series of queries with noisy answers.
- **But, each answer leaks some privacy:**
 - If k questions and want total privacy loss of ϵ, better answer each with ϵ/k.
Can run SQ algorithms

• Anything learnable via Statistical Queries is learnable differentially privately using Laplace mechanism.

• Statistical query model:

\[q(x,l) \]

\[\Pr_B[q(x,f(x))=1] \pm \gamma. \]

• Many algorithms can be re-written to interface via such statistical estimates.

Can run SQ algorithms

• Anything learnable via Statistical Queries is learnable differentially privately using Laplace mechanism.

• Statistical query model:

\[q(x,l) \]

\[\Pr_B[q(x,f(x))=1] \pm \gamma. \]

- Really tailor-made for DP.
- In fact, for a single query, Laplace mechanism adds noise \(1/(en)\). Less than \(1/n^{1/2}\) due to sampling.
- Privacy “for free” unless q’s from space of low VC-dim...
Privately learnable = SQ-learnable?

- [KLNRS08]: Actually, anything learnable is learnable in principle with DP.
 - Exponential mechanism for general classes.
 - Assign score to each $f \in C$, exponentially decaying in its suboptimality.
 - Choose from this distrib over C.
 - Efficient algorithm for $C = \{\text{parity functions}\}$.
 - Interesting since not known to be efficiently learnable with noise, and provably not SQ-learnable.
 - SQ-learnable = learnable with local privacy, where no centralized database at all.

Local Sensitivity

- Consider $f = \text{median income}$
 - On some databases, f could be *very* sensitive. E.g., 3 people at salary=0, 3 people at salary=b, and you.
 - But on many databases, it’s not.
 - If f is not very sensitive on the actual input X, does that mean we don’t need to add much noise?

$$LS_f(X) = \max_{\text{nbrs } X'} |f(X) - f(X')|$$
Local Sensitivity

- Consider $f = \text{median income}$
 - If f is not very sensitive on the actual input X, does that mean we don't need to add much noise?
- Be careful: what if sensitivity itself is sensitive?

Smooth Sensitivity

- [NRS07] prove can instead use (roughly) the following smooth bound instead:
 \[
 \max_y \left[\mathcal{LS}_f(Y) e^{-\epsilon d(X,Y)} \right]
 \]
Smooth Sensitivity

- In principle, could apply sensitivity idea to any learning algorithm (say) that you’d like to run on your data.
- But might be hard to figure out

Objective perturbation [CMS08]

- Idea: add noise to the objective function used by the learning algorithm.
- Natural for algorithms like SVMs that have regularization term.
- [CMS] show how to do this, if use a smooth loss function. Also show nice experimental results.
So far: learning as goal, privacy as constraint

Now: learning as tool for achieving stronger privacy

Answering more questions

"Add iid noise" approach can only answer a limited number of questions before it has to shut down.

- **Fundamental limit**: \(\# \text{questions} \leq |S|^2 \) to preserve this kind of privacy?
- **Output “sanitized database”**: people can examine as they wish?
Idea: back to SQ’s from class of small VC dim

- Fix a class Q of statistical (i.e., counting/n) queries you care about (e.g., all 2^d marginals).
- VC-dimension bounds: whp a random subsample of size $O(\text{VCdim}(Q)/\alpha^2)$, will approximate all $q \in Q$ up to $\pm \alpha$.
- If $n \gg \text{VCdim}(Q)/(\epsilon \alpha^2)$, this offers at least $(0, \epsilon)$ privacy. Maybe can invert?

With probability $1 - \epsilon$, nothing is revealed about you, with prob ϵ, everything is revealed about you. We want: with prob 1, very little is revealed about you.

[BLR08] building on [KLNRS08]: Use this with the “exponential mechanism”: Explicit distrib over sets of size $m = O(\text{VCdim}(Q)/\alpha^2)$

$\Pr(S') \propto e^{-O(\epsilon n \text{ penalty}(S'))}$

Penalty(S') = max gap $S, S'(Q)$

- Solve for n s.t. bad S' (penalty α) have prob $\ll 1/2^m$.
- $-\epsilon n \alpha \ll -md = \left(\frac{\text{VCdim}(Q)}{\alpha^2}\right) d$
Idea: back to SQ’s from class of small VC dim

\[\Pr(S') \propto e^{-O(\epsilon n \text{ penalty}(S'))} \]

- Solve for \(n \) s.t. bad \(S' \) (penalty) have probability \(\ll 1/2^{md} \).
- Get \(n = O(d \text{ VCdim}(Q)/(\epsilon \alpha^3)) \) sufficient to whp output good sanitized db.

[BLR08] building on [KLNRS08]: Use this with the “exponential mechanism”: Explicit distrib over sets of size \(m=O(\text{VCdim}(Q)/\alpha^2) \)

\[\text{Penalty}(S') = \max_{s,s'} \text{gap}_{s,s'}(Q) \]