Last time we ended with...
Uniform Convergence (VC)

- **Theorem 1**: For any class C, distribution D over $X \times \{-1,1\}$, if $m = |S| \geq \frac{8}{\varepsilon^2} \left[\ln(C[2m]) + \ln \left(\frac{2}{\delta} \right) \right]$, then with prob $1-\delta$, all $h \in C$ have $|err_D(h) - err_S(h)| \leq \varepsilon$.

 - **Proof**: same as for Thm 1 except def of B^*:
 - $B^*_{S,S',S''} = \text{event that } \exists h \in C \text{ with } |err_{S'}(h) - err_S(h)| \geq \frac{\varepsilon}{2}$.
 - To show: for any $|S''| = 2m$, $\Pr_{S,S'} \left[B^*_{S,S',S''} \right] \leq \delta/2$.
 - Fix $h \in C[S'']$, pairing $(a_1, b_1), \ldots, (a_m, b_m)$. Say m' indices i s.t. only one of $h(a_i), h(b_i)$ is a mistake.
 - Prob that h is bad over coin-flip experiment is prob that get $|\#\text{heads} - \#\text{tails}| \geq \varepsilon m/2$ in $m' \leq m$ flips.
 - View as ratio being off from expectation by $\geq \left(\frac{em}{4m'} \right)$ and apply Hoeffding.

Motivation and Plan

These bounds are nice but have two drawbacks we’d like to address:

1. **Computability/estimability**: say we have a hypothesis class C that we don’t understand well. It might be hard to compute or estimate $C[m]$.

2. **Tightness**: Our bounds have two sources of loss. One is we did a union bound over labelings of the double-sample S'', which is overly pessimistic if many are very similar to each other. A second is that we did worst-case over S'', whereas we would rather do expected case, or even have a bound that depends on our actual training set.

 We will be able to address both, at least in the uniform convergence case.
In particular, we will show:

- Suppose you replaced all true labels of S with random labels and found the $h \in C$ of lowest “empirical error” for these.
- Say $E[\text{lowest “empirical error”}] = \frac{1}{2} - \alpha$.
- Clearly, in this experiment, we are overfitting by α since $err_D(h)$ for a random target function is exactly $\frac{1}{2}$.
- Claim: $2\alpha + \text{(low order)}$ is an upper bound on the amount of overfitting we get for the true target function.

Bounding overfitting of target by 2x amount of overfitting of random noise

Example where need the factor 2

- Suppose the target is all negative. Hypothesis class C is all Boolean functions over large domain X.
- For random labels, $E[\text{lowest “empirical error”}] = \frac{1}{2} - \alpha$, for $\alpha = \frac{1}{2}$ since can fit anything.
- For true target, can overfit even worse using $h = \text{“if } x \in S \text{ predict negative, else predict positive”}$.
Some preliminaries

- Rather than writing m as a function of ϵ, write ϵ as function of m. E.g., would write Theorem 1' as:
- For any class C and distribution D, whp all h in C satisfy
 \[
 \text{err}_D(h) \leq \text{err}_S(h) + \sqrt{\frac{8 \ln \left(\frac{2C^2m}{\delta} \right)}{m}}
 \]
 (And we bound in the other direction as well, but let's just focus on this direction - i.e., how much we overfit the sample).

Rademacher averages

- For a given set of data $S = \{(x_1, l_1), \ldots, (x_m, l_m)\}$ and class of functions F, the Empirical Rademacher Complexity of F is:
 \[
 R_S(F) = E_\sigma \left[\max_{h \in F} \frac{1}{m} \sum_{i} \sigma_i h(x_i) \right]
 \]
 where $\sigma = (\sigma_1, \ldots, \sigma_m)$ is a random $\{-1, +1\}$ labeling.
- I.e., if you pick a random labeling σ of S, on average how well correlated is the most-correlated $h \in F$?
- Note: $h: X \to \{-1, 1\}$ so $\sigma_i h(x_i) = 1$ if agree, -1 if disagree.
- Note “correlation” = agreement - disagreement, so error 45% means correlation of 10%.
Rademacher averages

- For a given set of data $S = \{(x_1, l_1), \ldots, (x_m, l_m)\}$ and class of functions F, the Empirical Rademacher Complexity of F is:

$$R_S(F) = E_{\sigma} \left[\max_{h \in F} \frac{1}{m} \sum_{i} \sigma_i h(x_i) \right]$$

where $\sigma = (\sigma_1, \ldots, \sigma_m)$ is a random $\{-1, +1\}$ labeling.

- Distributional RC of F is: $R_D(F) = E_{S \sim D^m}[R_S(F)]$

- **Theorem:** for any class C, distrib D, if $S \sim D^m$ then with prob $\geq 1 - \delta$, all $h \in C$ satisfy:

 $$err_D(h) \leq err_S(h) + R_D(C) + \sqrt{\frac{\ln(2/\delta)}{2m}}$$

 $$\leq err_S(h) + R_S(C) + 3\sqrt{\frac{\ln(2/\delta)}{2m}}.$$

Rademacher vs VC

- Rademacher bound can never be much worse than VC bound.

$$err_D(h) \leq err_S(h) + R_S(C) + O\left(\frac{\sqrt{\ln(2/\delta)}}{\sqrt{m}}\right)$$

$$R_S(C) = E_{\sigma} \left[\max_{h \in C} \frac{1}{m} \sum_{i} \sigma_i h(x_i) \right]$$

- How big can $R_S(C)$ be?

- Class C produces labelings $h_1, \ldots, h_{|C|}$ of S. For each such labeling h_i, the probability that its correlation with σ is more than 2ε is at most $e^{-2m\varepsilon^2}$ by Hoeffding bounds.

- Setting this to $\delta/|C|m$, whp all $h \in C$ have correlation with σ at most $2\sqrt{\frac{\ln(|C|m)/\delta}{2m}}$. So, $R_S(C)$ can’t be much larger.
On to the proof.

For this, we need to introduce another tail inequality...

McDiarmid’s inequality

Say x_1, \ldots, x_m are independent RVs, and $\phi(x_1, \ldots, x_m)$ is some real-valued function. Assume ϕ satisfies the Lipschitz condition that changing x_i can change ϕ by at most c_i. Then:

$$\Pr_x[\phi(x) > \mathbb{E}[\phi(x)] + \epsilon] \leq e^{-2\epsilon^2/(\Sigma_i c_i^2)}$$

- E.g., if $x_i \in [0,1]$ and $\phi(x) = \frac{x_1 + \cdots + x_m}{m}$, then $c_i = \frac{1}{m}$, and we get $e^{-2\epsilon^2 m}$ (we recover Hoeffding).
Rademacher proof

- **Theorem:** for any class C, distrib D, if $S \sim D^m$ then with prob $\geq 1 - \delta$, all $h \in C$ satisfy:
 - $err_D(h) \leq err_S(h) + R_D(C) + \sqrt{\frac{\ln(2/\delta)}{2m}} \leq err_S(h) + R_S(C) + 3 \sqrt{\frac{\ln(2/\delta)}{2m}}$.

 where $R_S(C) = E_{\sigma} \left[\max_{h \in C} \frac{1}{m} \sum_i \sigma_i h(x_i) \right], R_D(C) = E_S[R_S(C)]$.

- **Step 1:** Define $MAXGAP(S) = \max_{h \in C} [err_D(h) - err_S(h)]$. We want to show that with prob $\geq 1 - \delta$, $MAXGAP(S) \leq R_D(C) + \sqrt{\frac{\ln(2/\delta)}{2m}}$.

 Claim 1: with prob $\geq 1 - \delta/2$, $MAXGAP(S) \leq E_S[\max_{h \in C} \frac{1}{m} \sum_i \sigma_i h(x_i)] + \frac{\ln(2/\delta)}{2m}$.

 Proof: Think of $MAXGAP(S)$ as ϕ in McDiarmid. Examples are iid RVs. $MAXGAP$ can change by at most $\frac{1}{m}$ if any (x_i, l_i) changes. Claim 1 follows.

 So, suffices to show $E_S[\max_{h \in C} \frac{1}{m} \sum_i \sigma_i h(x_i)] \leq R_D(C)$.

Rademacher proof

- **Theorem:** for any class C, distrib D, if $S \sim D^m$ then with prob $\geq 1 - \delta$, all $h \in C$ satisfy:
 - $err_D(h) \leq err_S(h) + R_D(C) + \sqrt{\frac{\ln(2/\delta)}{2m}} \leq err_S(h) + R_S(C) + 3 \sqrt{\frac{\ln(2/\delta)}{2m}}$.

 where $R_S(C) = E_{\sigma} \left[\max_{h \in C} \frac{1}{m} \sum_i \sigma_i h(x_i) \right], R_D(C) = E_S[R_S(C)]$.

- **Step 1:** Define $MAXGAP(S) = \max_{h \in C} [err_D(h) - err_S(h)]$. We want to show that with prob $\geq 1 - \delta$, $MAXGAP(S) \leq R_D(C) + \sqrt{\frac{\ln(2/\delta)}{2m}}$.

 Claim 1: with prob $\geq 1 - \delta/2$, $MAXGAP(S) \leq E_S[\max_{h \in C} \frac{1}{m} \sum_i \sigma_i h(x_i)] + \frac{\ln(2/\delta)}{2m}$.

 Claim 2: with prob $\geq 1 - \delta/2$, $R_S(C)$ is within $2 \sqrt{\frac{\ln(2/\delta)}{2m}}$ of $R_D(C)$.

 So, suffices to show $E_S[\max_{h \in C} \frac{1}{m} \sum_i \sigma_i h(x_i)] \leq R_D(C)$.

Rademacher proof

• Step 2: show $E_S[\text{MAXGAP}(S)] \leq R_D(C)$.

• Proof (uses a ghost sample argument):
 • Let’s rewrite $err_D(h)$ as $E_{S'}[err_{S'}(h)]$ where S' is "ghost sample".
 $$E_S[\text{MAXGAP}(S)] = E_S \left[\max_{h \in C} [E_{S'}[err_{S'}(h)] - err_S(h)] \right]$$
 $$\leq E_{S,S'} \left[\max_{h \in C} [err_{S'}(h) - err_S(h)] \right]$$
 (you get to pick h after seeing both S and S')
 • Say $S = \{(x_1, l_1), ..., (x_m, l_m)\}$, $S' = \{(x'_1, l'_1), ..., (x'_m, l'_m)\}$. Can rewrite as:
 $$E_{S,S',\sigma} \left[\max_{h \in C} \frac{\sum_i \sigma_i (err_{x'_i}(h) - err_{x_i}(h))}{m} \right]$$
 $\sigma_i = 1_{h(x_i) \neq l_i}$
Rademacher proof

• **Step 2:** show $E_S[\text{MAXGAP}(S)] \leq R_D(C)$.

• **Proof (uses a ghost sample argument):**

 Now, like in the VCdim proof, let’s flip a coin σ_i for each i to decide whether or not to swap (x_i, l_i) and (x'_i, l'_i) before taking the max.

 $$E_{S,S',\sigma} \left[\max_{h \in C} \frac{\sum_i \sigma_i (\text{err}_{x'_i}(h) - \text{err}_{x_i}(h))}{m} \right]$$

 $$\leq E'_{S',\sigma} \left[\max_{h \in C} \frac{\sum_i \sigma_i \text{err}_{x'_i}(h)}{m} \right] - E_{S,\sigma} \left[\min_{h \in C} \frac{\sum_i \sigma_i \text{err}_{x_i}(h)}{m} \right]$$

 (gap is only larger if we allow the h’s to differ)
Rademacher proof

- **Step 2:** show \(E_S[\text{MAXGAP}(S)] \leq R_D(C). \)

- **Proof (uses a ghost sample argument):**
 - Almost done: this looks very close to definition of \(R_D(C). \)
 - There’s an extra factor of 2.
 - We are looking at the correlation of the losses of \(h \) with \(\sigma \), rather than the correlation of \(h \) with \(\sigma \).
 - To fix these, suppose we cheated by changing the def of \(R_D(C) \) so that \(\sigma \) is a random \{−1,1\} multiplier applied to the true labels rather than a random \{−1,1\} labeling. Is that cheating?

\[
= 2 E_{S,\sigma} \left[\max_{h \in C} \frac{\sum_i \sigma_i \text{err}_{x_i}(h)}{m} \right]
\]
Rademacher proof

- **Step 2:** show $E_S[\text{MAXGAP}(S)] \leq R_D(C)$.

$$R_D(C) = E_S\left[\max_{h \in C} \frac{1}{m} \sum_i \sigma_i l_i h(x_i)\right] = E_S\left[\max_{h \in C} \frac{1}{m} \sum_i \sigma_i \left(1 - 2\text{err}_{x_i}(h)\right)\right]$$

$$= E_S\left[\frac{1}{m} \sum_i \sigma_i + \max_{h \in C} \frac{1}{m} \sum_i \left(-2\sigma_i \text{err}_{x_i}(h)\right)\right]$$

- Now we’re done. First term is 0. Second term is 2 times the correlation with $-\sigma$, which is distributed exactly the same as σ.

$$= 2 E_S\left[\max_{h \in C} \frac{\sum_i \sigma_i \text{err}_{x_i}(h)}{m}\right]$$