Groundrules: Same as before. You should work on the exercises by yourself but may work with others on the problems (just write down who you worked with). Also if you use material from outside sources, say where you got it.

Problems:

1. **[PAC-learning of small OR-functions]** Suppose the target function is a disjunction (OR-function) of \(r \) out of \(n \) boolean variables, for \(r \ll n \). The list-and-cross-off algorithm for learning an OR function might produce a hypothesis of size \(O(n) \), so its sample size for PAC-learning would be \(\tilde{O}(n/\epsilon) \). Alternatively, we could try all \(O(n^r) \) possible OR-functions of size \(\leq r \) and pick the smallest consistent with our training sample. This would require only \(\tilde{O}((r \log n)/\epsilon) \) samples but takes time exponential in \(r \). Here, give a different, polynomial-time, algorithm that guarantees to find an OR of at most \(O(r \log m) \) variables that is consistent with the training data, where \(m \) is the number of training examples. Describe a variant of your algorithm that runs in polynomial time and finds an OR of only \(O(r \log(1/\epsilon)) \) variables, with error at most \(\epsilon/2 \) on the training data. Note that by Occam + Chernoff bounds, the latter algorithm requires sample size at most \(O(\frac{1}{\epsilon^2}((r \log 1/\epsilon) \log n + \log 1/\delta)) \) to learn in the PAC model, so is just very slightly worse than the exponential-time algorithm that tries all \(O(n^r) \) OR-functions of size \(\leq r \).

 Hint: think about the greedy set-cover algorithm (look it up if you haven’t seen it).

2. **[Uniform distribution learning of DNF Formulas]** Give an algorithm to learn the class of DNF formulas having at most \(s \) terms over the uniform distribution on \(\{0, 1\}^n \), which has sample size polynomial in \(n \) and \(s \), and running time \(n^{O(\log(s/\epsilon))} \). So, your algorithm matches the SQ-dimension lower bounds.

 Hint: Think of your algorithm for Problem 1.

 Note: your solution requires that data come from the uniform distribution. The best algorithm known for learning polynomial-size DNF formulas over general distributions has running time roughly \(2^{\tilde{O}(n^{1/3})} \) [Klivans-Servedio].

3. **[SQ learning Decision Lists and Trees]** Give an algorithm to learn the class of decision lists in the SQ model (and argue correctness for your algorithm). Your algorithm should work for any distribution \(D \) (not just the uniform distribution). Be clear about what specifically the queries \(\chi \) are and the tolerances \(\tau \). Remember, you are not allowed to ask for conditional probabilities like \(\Pr[A|B] \) but you can ask for \(\Pr[A \land B] \).
So, combined with your results from Homework 1, this gives an algorithm for learning decision trees of size s in the SQ model with $n^{O(\log s)}$ queries of tolerance $1/n^{O(\log s)}$, matching our SQ-dimension lower bounds.

Note: this problem can be a bit tricky. In particular, it is possible to create a distribution D over $\{0, 1\}^n$ and a target decision list c with the following properties:

(a) $\Pr_D[c(x) = 1] = 1/2$.

(b) For all $1 \leq i \leq n$, either $\Pr_D[x_i = 1] \leq 2^{-n/2}$ or else $\Pr_D[c(x) = 1|x_i = 1] = 1/2$.

In particular, no variable is noticeably correlated with the target, and an algorithm based on trying to find an x_i such that $\Pr[c(x) = y|x_i = b]$ is large for some y, b such that the event “$x_i = b$” happens with noticeable probability is going to have trouble. Note: this is one reason that there is no known analog of Problem 1 for decision lists.