Boosting: a practical algorithmic tool and a statement about learning in the PAC model itself

Boosting, view #1
- Definition: Algorithm A is a weak-learner with edge γ for class C if: for any distribution D over examples labeled by some target $f \in C$, whp A produces a hypothesis h with $err_D(h) \leq 1/2 - \gamma$. (think of $\gamma = 0.1$)
- Note: Ignoring δ parameter throughout the lecture since it can be handled easily (hwk 2).
- Theorem: Given a weak-learner A with edge γ for class C, we can produce an alg A' that achieves a PAC guarantee for class C (whp produces hypothesis with error $\leq \epsilon$) using $O \left(\frac{1}{\gamma^2} \log \frac{1}{\epsilon} \right)$ calls to A. A' is efficient if A is.

"Weak learning \Rightarrow Strong learning"

Boosting, view #2
- Imagine you want a highly accurate algorithm to predict y from x.
- So, you publish a large dataset S_1 of (x,y) pairs and ask if anyone can find an h_1 of error $\leq 40\%$. (And say we require h_1 to be "simple" so we know it's not overfitting)
- Now, you use h_1 to create a new dataset S_2 (by focusing more on the problematic data for h_1) and ask if anyone can find an h_2 of error $\leq 40\%$ on S_2.
- And so on.
- You can do this and combine the h_is.t either (a) you drive your error down to 0 or else (b) you reach a hard dataset that nobody can do much better than random guessing on.

Preliminaries
- Assume we want to learn some unknown target function f over distribution D.
- Assume we have a weak-learner A with edge γ that uses hypotheses from some class of VC-dim d. (A should be able to achieve error $\leq 1/2 - \gamma$ for learning f over any reweighting of D)
- We will end up running A for T times producing hypotheses $h_1, ..., h_T$ and combining them into a single rule.
- By problem 3 on current hwk, the set of such combinations has VC-dim $O(Td \log Td)$.
- This will allow us to do all this on a sample of size $\tilde{O} \left(\frac{m^2 d}{\epsilon^2} \right)$.

(\tilde{O} notation hides logarithmic factors)

Preliminaries, contd.
- We will draw a training sample S of size $m = \tilde{O} \left(\frac{r^2}{\epsilon \gamma} \right)$.
- Assume that given any weighting of the points in S, A will return a hypothesis h of error at most $1/2 - \gamma$ over the distribution induced by that weighting. (ignoring δ)
- Will show can produce h with $err_S(h) = 0$ for $T = O \left(\frac{\log m}{\gamma^2} \right)$.
- Just need $m \gg \frac{d \log m}{\epsilon^2} \approx \frac{d \log \left(\frac{1}{\gamma^2} \right)}{\epsilon^2}$.
Boosting algo (Adaboost-light)

1. Given labeled sample $S = \{x_1, ..., x_m\}$, initialize each example x_i to have weight $w_i = 1$. Let $w = (w_1, ..., w_m)$.

2. For $t = 1, ..., T$ do:
 a. Call A on the distribution D_t over S induced by w.
 b. Receive hypothesis h_t of error $\leq 1/2 - \gamma$ over D_t.
 c. Multiply the weight of each example misclassified by h_t by $\alpha = \frac{0.5 + \gamma}{0.5 - \gamma}$. Leave the other weights alone.

3. Output the majority vote classifier $\text{MAJ}(h_1, ..., h_T)$.

Assume T is odd so no ties.

Thm: $T = O\left(\log \frac{m}{\gamma^2}\right)$ is sufficient s.t. $\text{err}_S(\text{MAJ}(h_1, ..., h_T)) = 0$.

Example

<table>
<thead>
<tr>
<th>h_1</th>
<th>h_2</th>
<th>h_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

$\text{err}_S(h_1) = \frac{1}{4}$
$\text{err}_S(h_2) = \frac{1}{4} 	imes 3 = \frac{3}{4}$
$\text{err}_S(h_3) = \frac{1}{4} 	imes 3 = \frac{3}{4}$

Example

<table>
<thead>
<tr>
<th>h_1</th>
<th>h_2</th>
<th>h_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

$\text{err}_S(h_1) = \frac{1}{4}$
$\text{err}_S(h_2) = \frac{1}{4} 	imes 3 = \frac{3}{4}$
$\text{err}_S(h_3) = \frac{1}{4} 	imes 3 = \frac{3}{4}$
Proof of Boosting Theorem

Thm: $T = O\left(\frac{\log m}{\gamma^2}\right)$ is sufficient s.t. $\text{err}_5(MA(h_1, \ldots, h_T)) = 0$.

Proof:
- First, if $MA(h_1, \ldots, h_T)$ makes a mistake on any x_i, then its final weight must be greater than $aT/2$.
- Let W_i be total weight after update i. $W_0 = m$.
- By the weak-learning assumption, h_i has error $\leq 1/2 - \gamma$ on D_i. So, at most $1/2 - \gamma$ fraction of weight multiplied by a.
- So, $W_{i+1} \leq \left(\alpha\left(\frac{1}{2} - \gamma\right) + \frac{1}{2} + \gamma\right)W_i = (1 + 2\gamma)W_i$.
- So if $\text{err}_5(...) > 0$ then $aT/2 \leq W_T \leq (1 + 2\gamma)^Tm$.

 So, $1 \leq a^{-T/2}(1 + 2\gamma)^Tm$.

More Reflections

- Consider a zero-sum game with examples as columns and hypotheses in H as rows.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_{11}</th>
<th>x_{12}</th>
<th>x_{13}</th>
<th>x_{14}</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>h_2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>h_3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>...</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

 Rows represent all h in the class used by A.

- If row plays h_i and column plays x_j, then row wins if $h_i(x_j)$ is correct, and column wins if $h_i(x_j)$ is incorrect.
More Reflections

- Consider a zero-sum game with examples as columns and hypotheses in H as rows.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>...</th>
<th>x_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>h_2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>h_3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>...</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

- We are given that for any distrib D over columns (mixed strategy for the column player) there exists a row that wins with prob $\geq 1/2 + \gamma$ (payoff $\geq 1/2 + \gamma$).

- By Minimax Thm, there exists a distribution P over h_i that wins with prob $\geq 1/2 + \gamma$ for any x_j.
- So, whp a large random sample from P will give correct majority vote on all x_j. (One way to see boosting is possible in principle)

In fact, this is just like RWM versus a best-response oracle, except our focus is on properties of the majority vote over the choices of the best-response oracle.

Margin Analysis

- Empirically noticed that you can keep running the booster past the point of perfect classification of S, and generalization doesn't get worse.
- One way to explain: "L_1 margins" or "margin of the vote"

Argument sketch:

- As $T \to \infty$, row player's strategy approaches minimax optimal (for all $x_j \in S$, $1/2 + \gamma$ of h_i vote correctly).

- Define h' as the randomized predictor: "given x, select $\theta \left(\frac{1}{T} \log \frac{1}{\epsilon} \right) h_i$ at random from h and take their maj vote"

- $\text{So, } err_S(h') \leq \epsilon/2$.

- Also, $err_D(h') \geq err_D(h)/2$. (If $h(x)$ is wrong, then at least 50% chance that $h'(x)$ is wrong too)

- But h' isn't overfitting since whp no small majority-votes are overfitting and this is just a randomization over them. So h isn't overfitting by much either.