Learning and Game Theory

Avrim Blum
5/13/20, 5/18/20

• Zero-sum games, Minimax Optimality & Minimax Thm; Connection to Boosting & Regret Minimization
• General-sum games, Nash equilibrium and Correlated equilibrium; Internal/Swap Regret Minimization

Game theory

• Field developed by economists to study social & economic interactions.
 - Wanted to understand why people behave the way they do in different economic situations. Effects of incentives. Rational explanation of behavior.

• “Game” = interaction between parties with their own interests. Could be called “interaction theory”.
• Important for understanding/improving large systems:
 - Internet routing, social networks, e-commerce
 - Problems like spam etc.

Game Theory: Setting

• Have a collection of participants, or players.
• Each has a set of choices, or strategies for how to play/behave.
• Combined behavior results in payoffs (satisfaction level) for each player.

Start by talking about important case of 2-player zero-sum games

Consider the following scenario...

• Shooter has a penalty shot. Can choose to shoot left or shoot right.
• Goalie can choose to dive left or dive right.
• If goalie guesses correctly, (s)he saves the day. If not, it’s a goooooooaaaalll!
• Vice-versa for shooter.

2-Player Zero-Sum games

• Two players Row and Col. Zero-sum means that what's good for one is bad for the other.
• Game defined by matrix with row for each of Row's options and a column for each of Col's options. Matrix R gives row player's payoffs, C gives column player's payoffs, R + C = 0.
• E.g., penalty shot [Matrix R]:

<table>
<thead>
<tr>
<th></th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Right</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Minimax-optimal strategies

• Minimax optimal strategy is a (randomized) strategy that has the best guarantee on its expected payoff, over choices of the opponent. [maximizes the minimum]
• I.e., the thing to play if your opponent knows you well.

• What are the minimax optimal strategies for this game?
Minimax optimal strategy for shooter is 50/50. Guarantees expected payoff $\geq \frac{1}{2}$ no matter what goalie does.
Minimax optimal strategy for goalie is 50/50. Guarantees expected shooter payoff $\leq \frac{1}{2}$ no matter what shooter does.

Minimax-optimal strategies

• How about for goalie who is weaker on the left?
Minimax optimal for shooter is (2/3,1/3). Guarantees expected gain at least $\frac{2}{3}$.
Minimax optimal for goalie is also (2/3,1/3). Guarantees expected loss at most $\frac{2}{3}$.

Minimax Theorem (von Neumann 1928)

• Every 2-player zero-sum game has a unique value V.
• Minimax optimal strategy for R guarantees R's expected gain at least V.
• Minimax optimal strategy for C guarantees C's expected loss at most V.

Counterintuitive: Means it doesn't hurt to publish your strategy if both players are optimal. (Borel had proved for symmetric 5x5 but thought was false for larger games)

Proof of minimax thm using RWM

• Suppose for contradiction it was false.
• This means some game G has $V_C > V_R$:
 - If Column player commits first, there exists a row that gets the Row player at least V_C.
 - But if Row player has to commit first, the Column player can make him get only V_R.
• Scale matrix so payoffs to row are in [-1,0]. Say $V_R = V_C - \delta$.

-
Proof contd
• Now, consider playing randomized weighted-majority alg as Row, against Col who plays optimally against Row’s distrib.
• In T steps, in expectation,
 - Alg gets \(\geq \) [best row in hindsight] - 2(Tlog n)\(^{1/2}\)
 - BRiH \(\geq T V_c\) [Best against opponent’s empirical distribution]
 - Alg \(\leq T V_R\) [Each time, opponent knows your randomized strategy]
 - Gap is \(\delta T\). Contradicts assumption once \(\delta T > 2(Tlog n)^{1/2} \), or \(T > 4\log(n)/\delta^2 \).

What if two regret minimizers play each other?
• Then their time-average strategies must approach minimax optimality.
 1. If Row’s time-average is far from minimax, then Col has strategy that in hindsight substantially beats value of game.
 2. So, by Col’s no-regret guarantee, Col must substantially beat value of game.
 3. So Row will do substantially worse than value.

Boosting & game theory
• Suppose I have an algorithm A that for any distribution (weighting fn) over a dataset S can produce a rule \(h \in H \) that gets < 45% error.
• AdaBoost gives a way to use such an A to get error \(\to 0 \) at a good rate, using weighted votes of rules produced.
• How can we see that this is even possible?

Boosting & game theory
• Let’s assume the class H is finite.
• Think of a matrix game where columns indexed by examples in S, rows indexed by h in H.
• \(M_{ij} = 1 \) if \(h_i(x_j) \) is correct, else \(M_{ij} = -1 \).

Internal/Swap Regret and Correlated Equilibria
• Assume for any D over cols, exists row s.t. \(E[\text{payoff}] \geq 0.1 \).
• Minimax implies exists a weighting over rows s.t. for every \(x_i \), expected payoff \(\geq 0.1 \).
• So, \(sgn(\sum_i \alpha_i h_i) \) is correct on all \(x_i \). Weighted vote has \(L_1 \) margin at least 0.1.
• AdaBoost gives you a way to get this with only access via weak learner. But this at least implies existence...
General-sum games

- In general-sum games, can get win-win and lose-lose situations.
- E.g., "what side of sidewalk to walk on?":

<table>
<thead>
<tr>
<th>person walking towards you</th>
<th>you</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>(1,1)</td>
<td>(-1,-1)</td>
</tr>
<tr>
<td>(-1,-1)</td>
<td>(1,1)</td>
</tr>
</tbody>
</table>

Nash Equilibrium

- A Nash Equilibrium is a stable pair of strategies (could be randomized).
- Stable means that neither player has incentive to deviate on their own.
- E.g., "what side of sidewalk to walk on":

<table>
<thead>
<tr>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1)</td>
<td>(-1,-1)</td>
</tr>
<tr>
<td>(-1,-1)</td>
<td>(1,1)</td>
</tr>
</tbody>
</table>

NE are: both left, both right, or both 50/50.

Existence of NE

- Nash (1950) proved: any general-sum game must have at least one such equilibrium.
 - Might require randomized strategies (called "mixed strategies")
 - This also yields minimax thm as a corollary.
 - Pick some NE and let V = value to row player in that equilibrium.
 - Since it’s a NE, neither player can do better even knowing the (randomized) strategy their opponent is playing.
 - So, they’re each playing minimax optimal.

What if all players minimize regret?

- In zero-sum games, empirical frequencies quickly approaches minimax optimal.
- In general-sum games, does behavior quickly (or at all) approach a Nash equilibrium?
 - After all, a Nash Eq is exactly a set of distributions that are no-regret wrt each other. So if the distributions stabilize, they must converge to a Nash equil.
 - Well, unfortunately, no.

A bad example for general-sum games

- Augmented Shapley game from [Zinkevich04]:
 - First 3 rows/cols are Shapley game (rock / paper / scissors but if both do same action then both lose).
 - 4th action “play foosball” has slight negative if other player is still doing r/p/s but positive if other player does 4th action too.
 - RWM will cycle among first 3 and have no regret, but do worse than only Nash Equilibrium of both playing foosball.

- We didn’t really expect this to work given how hard NE can be to find...

A bad example for general-sum games

- [Balcan-Constantin-Mehta12]:
 - Failure to converge even in Rank-1 games (games where R+C has rank 1).
 - Interesting because one can find equilibria efficiently in such games.
What can we say?

- If algorithms minimize "internal" or "swap" regret, then empirical distribution of play approaches correlated equilibrium.
 - Foster & Vohra, Hart & Mas-Colell, …
 - Though doesn’t imply play is stabilizing.

What are internal/swap regret and correlated equilibria?

More general forms of regret

1. "best expert" or "external" regret:
 - Given n strategies. Compete with best of them in hindsight.

2. "sleeping expert" or "regret with time-intervals":
 - Given n strategies, k properties. Let S_i be set of days satisfying property i (might overlap). Want to simultaneously achieve low regret over each S_i.

3. "internal" or "swap" regret: like (2), except that S_i = set of days in which we chose strategy i.

Internal/swap-regret

- E.g., each day we pick one stock to buy shares in.
 - Don’t want to have regret of the form "every time I bought IBM, I should have bought Microsoft instead".
 - Formally, swap regret is wrt optimal function f:{1,…,n}→{1,…,n} such that every time you played action j, it plays f(j).

Internal/swap-regret

- E.g., each day we pick one stock to buy shares in.
 - Don’t want to have regret of the form "every time I bought IBM, I should have bought Microsoft instead".
 - Formally, swap regret is wrt optimal function f:{1,…,n}→{1,…,n} such that every time you played action j, it plays f(j).

Weird... why care?

"Correlated equilibrium"

- Distribution over entries in matrix, such that if a trusted party chooses one at random and tells you your part, you have no incentive to deviate.
 - E.g., Shapley game.

 \[
 \begin{array}{ccc}
 R & P & S \\
 R & -1,1 & -1,1 & 1,-1 \\
 P & 1,-1 & 1,1 & -1,1 \\
 S & -1,1 & 1,1 & -1,1 \\
 \end{array}
 \]

In general-sum games, if all players have low swap-regret, then empirical distribution of play is apx correlated equilibrium.

Correlated vs Coarse-correlated Eq

In both cases: a distribution over entries in the matrix. Think of a third party choosing from this distr and telling you your part as "advice".

"Correlated equilibrium"

- You have no incentive to deviate, even after seeing what the advice is.

"Coarse-Correlated equilibrium"

- If only choice is to see and follow, or not to see at all, would prefer the former.

Low external-regret ⇒ apx coarse correlated equilib.
Algorithms for achieving low regret of this form:

- Foster & Vohra, Hart & Mas-Colell, Fudenberg & Levine.
- Will present method of [BM05] showing how to convert any “best expert” algorithm into one achieving low swap regret.
- Unfortunately, #steps to achieve low swap regret is $O(n \log n)$ rather than $O(\log n)$.

Can convert any "best expert" algorithm A into one achieving low swap regret. Idea:
- Instantiate one copy A_j responsible for expected regret over times we play j.
- Allows us to view p_j as prob we play action j, or as prob we play alg A_j.
- A_j guarantees $\sum_t (p_j(c)^t)q_j^t \leq \min_i \sum_t p_j^t c_i^t + \text{[regret term]}$.
- Write as: $\sum_j p_j(q_j^t c^t) \leq \min_i \sum_t p_j^t c_i^t + \text{[regret term]}$.

Our total cost For each j, can move our prob to its own $i=f(j)$

Get swap-regret at most n times orig external regret.