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Machine Learning: 
a tour through some favorite results, 

directions, and open problems

Your guide:



Philosophy of the tour

• nice/clean theory.

• relation to other TOC issues / tools 
have potential use in other TOC areas.

• good open problems.

• useful in practice

• I know something about it.

A set of topics with:



Itinerary
Preparation: Basic concept learning setting 

(learning from examples)

Stop 1:Batch learning:Algs&Sample complexity 
(why am I trying to optimize on data I’ve seen: why should 

this carry over to the future?)

Stop 2:Online learning (expert advice and other 

problems) 

Stop 3:SQ and Fourier (strong complexity results)

Stop 4:Current “hot” practical issues.

Emphasize connections to other TOC areas/issues (incl 

apx algs, online algs, auctions, complexity, crypto)



The concept learning setting
• Imagine learning algorithm trying to decide 

which loan applicants are bad credit risks.

• Might represent each person by n features. 
(e.g., income range, debt load, employment history, etc.)

• Take sample S of data, labeled according to 
whether they were/weren’t good risks.

• Goal of algorithm is to use data seen so far 
produce good prediction rule (a “hypothesis”) 

h(x) for future data. 



The concept learning setting
E.g., 

Given this data, some reasonable rules might 
be:
•Predict YES iff  (!recent delinq) AND (%down > 5).

•Predict YES iff 100*[mmp/inc] – 1*[%down] < 25.

•...



Big questions

(A) How might we automatically generate 
rules that do well on observed data?

(B) What kind of confidence do we have 
that they will do well in the future?

Or, in reverse order,
•What to optimize? [sample complexity]
•How to optimize it? [algorithms]



Power of basic paradigm

• E.g., document classification
– convert to bag-of-words

– LTFs do well

• E.g., driving a car
– convert image into     

features.

– Use neural net with        
several outputs.

Lots of problems solved by converting to basic 
“concept learning from structured data” setting. 



Stop 1: PAC model: Algs & 
sample complexity



Natural formalization (PAC)

• Alg is given sample S = {(x,y)} presumed to 
be drawn from some distribution D over 
instance space X, labeled by some target 
function f. 

• Alg does optimization over S to produce 
some hypothesis h.

• Goal is for h to be close to f over D.

• Allow failure with small prob d (to allow for 
chance that S is not representative).



Basic PAC learning defn

• A concept class is a set of functions, 
together with a representation of them.

• Alg A PAC-learns concept class C by 
hypothesis class H if for any target f in C, 
any distrib D over X, any e, d > 0, 
– A uses at most poly(n,1/e,1/d,size(f)) examples 

and running time.

– With probability 1-d, A produces h in H of 
error at most e.

accuracy confidence



Example of guarantee: Decision Lists

Given a dataset S of m examples over n boolean 
features, drawn according to unknown distrib
D, labeled by unknown target f:

1. Algorithm A will find a consistent DL if one 
exists, in time O(mn).

2. If m > (1/e)[n(2+ln n) + ln(1/d)], then

Pr[exists consistent DL h with err(h) > e] < d.



How can we find a consistent DL?

if (x1=0) then -, else

if (x2=1) then +, else

if (x4=1) then +, else -



Decision List algorithm
• Start with empty list.

• Find if-then rule consistent with data. 
(and satisfied by at least one example)

• Put rule at bottom of list so far, and cross off 
examples covered. Repeat until no examples remain.

If algorithm fails, then:
•No DL consistent with remaining data.
•So, no DL consistent with original data.

OK, fine.  Now why should we expect it 
to do well on future data?



Confidence/sample-complexity

• Consider some hypothesis h with err(h) > e.

• Chance that h survives m examples is at 
most (1-e)m.

• Number of DLs over n Boolean features is 
at most n!4n. (for each feature there are 4 possible rules, and 

no feature will appear more than once)

) Pr[some DL h with err(h)>e is consistent] 
< n!4n(1-e)m.

• This is < d for m > (1/e)[n(2+ln n) + ln(1/d)]
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Occam’s razor (contd)2

• Even if we have different notions of what’s 
simpler (e.g., different representation 
languages), we can both use Occam’s razor.

• Of course, there’s no guarantee there will 
be a short explanation for the data.  That 
depends on your representation.

Nice interpretation:



Where are we now?
• Introduced PAC model.  Showed class of 

decision lists learnable by decision list 
hypotheses.

• Saw Occam’s razor argument.

• Implications:
– If we view cost of examples as comparable 

to cost of computation, then don’t have to 
worry about cost of data since just need ~ 
1/e examples per bit we output.

– But, in practice, costs often wildly different, 
so sample-complexity issues are crucial.



What’s next

• Stop 1(a): a few more words about sample 
complexity.

• Stop 1(b): a few more words about 
algorithmic issues.

• Stop 1(c): some of my favorite open 
problems.



More on sample complexity
• Bounds so far are for “realizable case”. (when we 

expect there will be a perfect rule).  They say whp 
if true error > e then empirical error > 0.

• More generally, might want to say whp all rules 
have empirical error near to true error.

• “uniform convergence”
• Gives hope for local optimization over training data.



Tighter measures of size(H)

• Suppose we want to separate data using a 
line in the plane.

+
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+

+
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-

-

-

• There are infinitely-many linear separators, 
but not that many really different ones.

• In hindsight, only O(m2) ways of separating 
our given m points.



Neat fact

• Can replace |H| with # ways of splitting 
2m points in the bounds.

• # ways of splitting = O(mVC-dim(H)). (VC-
dimension is the largest number d of 
points that can be split in all 2d ways.)

• We then take the log, so this shows the 
number of examples needed is only linear 
in VC-dim(H).



Proof sketch
Step 1: imagine we draw m training examples and m

test examples.
Then, Pr[exists h that looks good on train, bad on test]

> ½Pr[some bad h looks good on train] 
(so can show 2nd is small by proving 1st is small)

Step 2: make even worse on ourselves by allowing 
adversary to pick 2m points.  Randomize over 
partition into m train and m test.

Step 3: But now we’re back in finite case.  Can 
argue like Occam, over the splits of the sample.

Can view result as allowing description language to 
depend on unlabeled double sample.



Other related nice bounds
• Margin bounds.

– Nice connection to Johnson-Lindenstrauss too.

• PAC-Bayes bounds.
– Can view Occam as saying for any prob dist P 

over H, we can be confident in hi if it is 
consistent with e-1[log(1/pi) + log(1/d)] samples. 
(basically allowing hi to fool us with prob dpi)

– What if no individual hi that’s consistent has 
high enough pi, but there are several that 
together have a high sum of pi’s? Then can 
randomize over them to get bounds as if was 
one hyp with combined probs.

• Subsample (“compression”) bounds



What’s next

• Stop 1(a): a few more words about sample 
complexity.

• Stop 1(b): a few more words about 
algorithmic issues.

• Stop 1(c): some of my favorite open 
problems.



Algorithmic/model issues

• If H=C then learning is NP-hard if 
consistency problem is NP-hard.
– May not be clear if difficulty is due to C or H.

• To look at “how inherently hard is C to 
predict?”, let H = poly time programs. 
Then hardness is more cryptographic.

• To use hard learning problem for crypto, 
need to be hard for “random” fns in C. 

PAC model talks of learning C by H.



Algorithmic/model issues

• In practice, most natural to fix H, allow C 
to be arbitrary.  (After all, H is under 
our control, but target function isn’t).

• Try to find reasonable h in H if one 
exists.  Usually hard to say anything 
positive theoretically.

PAC model talks of learning C by H.



Algorithmic/model issues

• Get same set of learnable concepts if fix 
e=1/4, d = ½. (reasonable prob, reasonable acc)

• Or, e = ½ - 1/poly, d = 1 – 1/poly.  (With 
1/poly chance we do slightly better than 
random guessing).  “weak learning”.

• Result for d is easy to see.  Result for e is 
Boosting. [Schapire, Freund & Schapire]

– Boosting results are really nice (both theoretically and 
practically).  Involves re-weighting sample and rerunning 
algorithm.  But not going to talk about....

PAC model talks of e and d. (high prob, high acc)



Algorithmic/model issues

• “Membership query” model: learner can ask 
for f(x) for examples x of its construction.
– adds significant power.
– allows for more interesting algorithms.
– but rare in practice. Esp because “target 

function” is really a fiction.

• What is often possible in practice is “active 
learning”.  Have large unlabeled sample and 
alg may choose among these.

What about adding extra power to alg?



Open Problems

1. Learning functions of r relevant variables.

2. Learning “almost-OR” functions.

3. Learning DLs over string-valued features.

4. Learning Monotone DNF over uniform.



Learning functions of r variables

• Examples in {0,1}n.  Uniform distribution.
• But only r of these n bits are relevant.
• Target is arbitrary function of these r.

Q1: learn in poly time for r = O(log n)?
Note: this is special case of “Are DNF learnable 
over uniform dist?” and  “Are decision trees 
learnable over uniform dist?”



Learning functions of r variables

• Examples in {0,1}n.  Uniform distribution.
• But only r of these n bits are relevant.
• Target is arbitrary function of these r.

Q1: learn in poly time for r = O(log n)?

Note 2: this is easy if we allow Membership 
Queries.



Learning functions of r variables

• Examples in {0,1}n.  Uniform distribution.
• But only r of these n bits are relevant.
• Target is arbitrary function of these r.

Q2: How about r = loglog(n)?

Now can assume we know truth-table, since only 
n possibilities.



Learning functions of r variables

• Examples in {0,1}n.  Uniform distribution.
• But only r of these n bits are relevant.
• Target is arbitrary function of these r.

Q2: How about no(r) or  even nr/2?

Best known is recent [MOS] result of ~ n0.7r.



Example of hard-looking function

• Pick two sets A,B.

• Target is maj(A) XOR parity(B).



Open Problems

1. Learning functions of r relevant variables.

2. Learning “almost-OR” functions.

3. Learning DLs over string-valued features. 

4. Learning Monotone DNF over uniform.



Learning “almost-OR” functions

Suppose target f has the property that it is 
close to an OR function over D.

– for some OR f’, Prx[f(x) != f’(x)] < 1%.

Can we get error < 49%?  ½-1/nk? (in poly time)

If we replace “OR” with “XOR”, and require 
H=C, then [Hastad] shows ½ - e is NP-hard.

[Note: new hardness result of Dinur, Guruswami, and Khot on Set-Cover implies 
our problem is NP-hard if we require hyp to be an OR-function *and* require 1-
sided error (we must get all positives correct, and at least 1% of negatives 
correct)]



Possibly easier version

Suppose really two functions, f and g:
– f is an OR function.
– g is arbitrary.
– Example drawn from D.  With probability 99%, 

gets labeled by f, with probability 1%, gets 
labeled by g.

Potentially easier since adversary has less 
control.  Still open though.

However, if require g = 1-f, then this is random 
noise model, and problem is easy. (even if 

you raise noise rate to 49%).



Open Problems

1. Learning functions of r relevant variables.

2. Learning “almost-OR” functions.

3. Learning DLs over string-valued features.

4. Learning Monotone DNF over uniform.



Learning Decision Lists revisited

• What if features were string-valued 
rather than boolean valued? [also known as 

“infinite attribute model”]

• E.g., x = (hello, how, are, you).

• Target is a decision list, like:
if (x1 = “hello”) then +, else if (x2 = “joe”) then 
-, else if (x1 = “aargh”) then +, else -.

• Can we learn in time poly(n, size(f))?
(Previous alg may produce hyp that grows 

linearly with size of data set.)



Open Problems

1. Learning functions of r relevant variables.

2. Learning “almost-OR” functions.

3. Learning DLs over string-valued features.

4. Learning Monotone DNF over uniform.



Learning Monotone DNF over uniform

• Uniform distribution on {0,1}n.

• Target is a monotone DNF formula.

• Can you learn with error rate < 25%?

➢It’s known how to achieve error rate ½ -
O(n-1/2) [weak learning]  [BBL]

➢It’s known how to strong-learn if the 
number of terms is small: 2p(log n)  [S]

➢But it’s not known how to strong-learn in 
general.



Stop 2: online learning



Basic setting
• View learning as a sequence of trials.

• In each trial, algorithm is given x, asked to 
predict f, and then is told the correct value.  

• Make no assumptions about how examples 
are chosen.

• Goal is to minimize number of mistakes.

Note: can no longer talk about # examples needed 
to converge. Instead, we focus on number of 
mistakes.   Need to “learn from our mistakes”.



Simple example: learning an OR fn
• Suppose features are boolean: X = {0,1}n.

• Target is an OR function, like x3 v x9 v x12, 
with no noise.

• Can we find an on-line strategy that makes 
at most n mistakes?

• Sure.
– Start with h(x) = x1 v x2 v ... v xn

– Invariant: {vars in h} contains {vars in f }
– Mistake on negative: throw out vars in h set to 1 

in x.  Maintains invariant and decreases |h| by 1.
– No mistakes on postives.  So at most n mistakes 

total.



More general class: LTFs
• Target is a vector (a1, ... an) and threshold t.

• Example x \in {0,1}n is positive if a1x1 + ... + anxn > t, 
else is negative.

• An OR function is the case ai \in {0,1}, t=1.

Q: can you guarantee at most poly(n,size(f)) mistakes?

Yes. Use the ellipsoid algorithm.

• Examples seen so far form a set of linear 
constraints.  (reversing usual use of “a” and “x” in LP)

• Center of ellipsoid is hypothesis.

• Mistake can be viewed as output of separation 
oracle.



Using “expert” advice

• We solicit n “experts” for their advice. (Will the 
market go up or down?)

• We then want to use their advice somehow to 
make our prediction.  E.g.,

Say we want to predict the stock market.

Rough question: What's a good strategy for using their 
opinions, given that in advance we don't know which is best?

[“expert” ´ someone with an opinion.  Not necessarily 
someone who knows anything.]



Simpler question
• We have n “experts”.

• One of these is perfect (never makes a mistake).  
We just don’t know which one.

• Can we find a strategy that makes no more than 
lg(n) mistakes?

Answer: sure.  Just take majority vote over all experts that 
have been correct so far.  Called “halving algorithm”.

Followup question: what if we have a “prior” p over the 
experts. Can we make no more than lg(1/pi) mistakes, where 
expert i is the perfect one?

Sure, just take weighted vote according to p.



Relation to concept learning

• If computation time is no object, can have 
one “expert” per concept in C.

• If target in C, then number of mistakes at 
most lg(|C|).

• More generally, for any description 
language, number of mistakes is at most 
number of bits to write down f.



Back to expert-advice
What if no expert is perfect?  Goal is to do nearly 

as well as the best one in hindsight. 

Strategy #1:

• Iterated halving algorithm.  Same as before, but 
once we've crossed off all the experts, restart 
from the beginning.

• Makes at most log(n)*OPT mistakes, where OPT

is # mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we've 
“learned”.  Can we do better? Yes.



Weighted Majority Algorithm

Intuition: Making a mistake doesn't completely 
disqualify an expert. So, instead of crossing 
off, just lower its weight.

Weighted Majority Alg:
– Start with all experts having weight 1.

– Predict based on weighted majority vote.

– Penalize mistakes by cutting weight in half.



Weighted Majority Algorithm
Weighted Majority Alg:

– Start with all experts having weight 1.

– Predict based on weighted majority vote.

– Penalize mistakes by cutting weight in half.

Example:



Analysis: do nearly as well as best 
expert in hindsight

• M = # mistakes we've made so far.

• m = # mistakes best expert has made so far.

• W = total weight (starts at n).

• After each mistake, W drops by at least 25%.

So, after M mistakes, W is at most n(3/4)M.

• Weight of best expert is (1/2)m. So,

constant 
comp. ratio



Randomized Weighted Majority

2.4(m + lg n) not so good if the best expert makes a 
mistake 20% of the time. Can we do better? Yes.

• Instead of taking majority vote, use weights as 
probabilities. (e.g., if 70% on up, 30% on down, then pick 

70:30)  Idea: smooth out the worst case.

• Also, generalize ½ to 1- e. 

unlike most C.R.s 
or apx bounds, 
numbers are 
pretty good.



Analysis
• Say at time t we have fraction Ft of weight on 

experts that made mistake.

• So, we have probability Ft of making a mistake, and 
we remove an eFt fraction of the total weight.
– Wfinal = n(1-e F1)(1 - e F2)...

– ln(Wfinal) = ln(n) + t [ln(1 - e Ft)] · ln(n) - e t Ft

(using ln(1-x) < -x)

= ln(n) - e M.            ( Ft = E[# mistakes])

• If best expert makes m mistakes, then ln(Wfinal) > ln((1-e)m).

• Now solve: ln(n) - e M > m ln(1-e).



A fun application

• n buckets.  (Think of as startup companies.)

• You are standing in one of them.

• At each time step, a ball falls into one of the buckets.  If 
it's your bucket, you get $1.

• Then you can choose to move if you want

• Game ends when fullest bucket has d balls.

This is hopeless if an opponent is tossing the balls based on 
knowing where you are(n't). However, say sequence of balls 
is predetermined (but unknown).  

Randomized WM will guarantee you an expected gain of  at 
least d – (2d log n)1/2.

[Multiply weight by 1+e whenever ball falls in, e = (d/log n)1/2.]



Summarizing

• Can be (1+e)-competitive with best expert 
in hindsight, with additive e-1log(n).

• If have prior, can replace additive term 
with e-1log(1/pi). [e

-1 x number of bits]

• Often written in terms of additive loss.  
If running T time steps, set epsilon to get 
additive loss (2T log n)1/2



What can we use this for?

• Can use to combine multiple algorithms to 
do nearly as well as best in hindsight.
– E.g., online auctions: one expert per price level. 

• Play repeated game to do nearly as well as 
best strategy in hindsight (which is at least 
as good as minimax optimal).

• Extensions: “bandit problem”, movement 
costs.



What about if “n” is large?

• Bounds still good even if #experts is very 
large.
– adaptive search trees: one expert per tree.

– online path planning: one expert per path.

– online linear programming: one expert per 
corner.

• Nice recent results [KV][Z] on ways to get 
these bounds efficiently for these types 
of problems.



Stop 3: SQ learning and 
Fourier analysis



What are the goals of 
complexity theory?

• We’d like to prove w/o assumptions that 
no polynomial-time algorithm can solve 
some natural problem (like one in NP).

• Barring that, how about an algorithm 
with one arm tied behind its back?

• How about both arms behind back, while 
hopping on one foot? (like AC0 ckts)

How often do you find yourself saying: “drat, there’s no way
my alg is going to succeed because it’s an AC0 ckt”?



What are the goals of 
complexity theory?

• We’d like to prove w/o assumptions that 
no polynomial-time algorithm can solve 
some natural problem (like one in NP).

• Barring that, how about an algorithm 
with one arm tied behind its back?

• How about both arms behind back, while 
hopping on one foot? (like AC0 ckts)

(Of course, there’s been phenomenal success in showing 
how mild-looking assumptions can have enormous 
consequences)



SQ and Fourier analysis

• We will define a paradigm for using 
data that nearly all learning algorithms 
satisfy or can be cast into. (“Statistical 
Queries”)

• Use Fourier analysis to prove without 
assumptions they cannot learn certain 
natural classes in poly time.
– E.g., decision trees, parity functions, 

log(n)-relevant-var function.



The Statistical Query model
• PAC model, but algorithm no longer has 

access to individual labeled examples.

• Instead, algorithm may ask “what is the 
probability a labeled example would have 
property P?” Gets answer back up to error t.

• Think of this as asking for statistics about a 
poly-size sample S.

• Formally, P must be poly-time computable, 
and t > 1/poly(...).

• Also assume alg knows underlying dist D.



Most algorithms can be cast 
in this framework

E.g., list-and-cross-off OR-function alg:

• Ask for Pr[f(x)=0 & xi = 1] with t = e/2n.
(i.e., what’s the chance we’d cross it off)

• Cross off all xi with Pr[..] > e/2n.

• What’s left will include all correct variables.

• Might include some incorrect ones too, but 
they will introduce at most e/n error each.



Most algorithms can be cast 
in this framework

• Given current hypothesis h.

• Asks for err(h) = Pr[h(x) != f(x)]. 

• Then asks: “what if I make small change z or 
tweak parameter w, does it get better?”

E.g., typical local-optimization algorithm:



Most algorithms can be cast 
in this framework

In fact, only recently were examples shown of 
(non-SQ) alg to learn something with noise 
that is not learnable by SQs.

What I like: can get very good handle on what 
can/cannot be learned in this model.

Original motivation of model: algorithms 
that behave this way can automatically be 
made tolerant to random classification 
noise. [Kearns]



Fourier analysis of finite fns

• Let’s write pos, neg as +1, -1.

• Think of a fn f:{0,1}n! {-1,+1} as vector:

Nice properties:

• <f,f> = x PrD(x)f(x)f(x) = 1.
• <f,g> = x PrD(x)f(x)g(x) 

= PrD[f(x) = g(x)] – PrD[f(x) != g(x)].

“orthogonal” = “pairwise uncorrelated”. E.g., 
under uniform dist, all 2n parity functions 
are orthogonal (so they form a basis).



SQ dimension

SQ dimension of a concept class C, over distr 
D, is the size of the largest subset S of C
of “nearly orthogonal” functions:

– For all f,g in S,  |<f,g>| < 1/|S|.

• If SQ-dim(C) = poly(...) then you can weak-
learn over D in SQ model. [non-uniform alg]

• If SQ-dim(C) > poly(...) then you can’t weak-
learn over D in SQ model.



Positive direction

If SQ-dim(C) = poly(...) then you can weak-
learn over D in SQ model.
– SQ dimension of a concept class C, over distr D, 

is the size of the largest subset S of C such that 
for all f,g in S,  |<f,g>| < 1/|S|.

– So, just hard-code S = {h1,...,h|S|} into the 
learning alg.

– Ask for correlation of hi with target for all hiin S

– One of them must have at least 1/|S| correlation



Negative direction

If SQ-dim(C) > poly(...) then you can’t weak-
learn over D in SQ model.

Slightly over-simplified proof sketch:
– Show that any statistical query can be converted 

to asking for correlation of target with some 
unit-length vector q, up to +/- 1/poly.

– So, suppose C has > poly(...) orthogonal functions.
– query q can have  correlation e with at most 1/e2

of them.
– If only ask poly many queries, can only knock out 

negligible fraction.  If target is random from S, 
then whp all queries can be answered with 0.



Implications

• Parity functions have SQ-dim 2n, so can’t 
learn by SQ.

• Decision trees contain {Parity functions of 
size log(n)}. nlog n of them, so can’t learn by 
SQ. 

• Same for “functions of log(n) relevant 
variables.”



Stop 4: Current “hot” 
practical issues



Current “hot” practical issues

• Learning from labeled and unlabeled data.

• Nonlinear embeddings.

• MDPs and stochastic games.

• Adaptive programs and environments.

• Kernels, comp bio, many others, ... [not 
going to talk about]



Learning from labeled and 
unlabeled data

• Often unlabeled data is cheap, labeled data is 
expensive.  Can unlabeled data help?

• Rough answer: unlabeled data can suggest which 
hyps are a-priori more reasonable.
– E.g., linear separators that don’t go through clusters.

– E.g., data with pair-wise relationships (vertices in a 
graph): hyps that are good cuts or good ratio-cuts.

➢Using unlabeled data to order your hypotheses.

• Algorithmically, can use to bootstrap.
– E.g., co-training if two different sources of info. (e.g., 

words on page; words pointing to page)



Nonlinear embeddings
• Often the “real” dimensionality of data is a 

lot smaller than the space we’re using.
• But might not be just a linear embedding.

• Want a nonlinear projection that unrolls 
the manifold.

• E.g., one approach: take a lot of data, draw 
nearest-neighbor graph, use to project.



MDPs and stochastic games.

• Robot learning to act in its environment.
– Think of a directed graph where edges have 

rewards and a probability distribution over 
endpoints.  (MDP)

• Robot learning to act in environment with 
other agents who have their own agendas.
– Stochastic game.



Adaptive programs and 
environments

• Can machine learning be a first-class part 
of a programming language?
– E.g., easy to write code with parameters that 

get optimized to the user’s needs.

• Can systems/environments be built that 
adapt, suggest, help, etc.

• Mostly crude (paperclip) or just talk right 
now...



References

[need to fill in...]
For more information, there is a web site for the 

area as a whole at www.learningtheory.org, with 
pointers to survey articles, course notes, 
tutorials, and textbooks.

http://www.learningtheory.org/

