
A New Conjecture on Hardness of 2-CSP’s with1

Implications to Hardness of Densest k-Subgraph2

and Other Problems3

Julia Chuzhoy4

Toyota Technological Institute at Chicago, USA. Email: cjulia@ttic.edu.5

Mina Dalirrooyfard6

Massachusetts Institute of Technology, USA. Email: minad@mit.edu.7

Vadim Grinberg8

Weizmann Institute of Science, Israel. Email: vadim.grinberg@weizmann.ac.il.9

Zihan Tan10

DIMACS, Rutgers University, USA. Email: zihantan1993@gmail.con.11

Abstract12

We propose a new conjecture on hardness of 2-CSP’s, and show that new hardness of approximation13

results for Densest k-Subgraph and several other problems, including a graph partitioning problem,14

and a variation of the Graph Crossing Number problem, follow from this conjecture. The conjecture15

can be viewed as occupying a middle ground between the d-to-1 conjecture, and hardness results16

for 2-CSP’s that can be obtained via standard techniques, such as Parallel Repetition combined17

with standard 2-prover protocols for the 3SAT problem. We hope that this work will motivate18

further exploration of hardness of 2-CSP’s in the regimes arising from the conjecture. We believe19

that a positive resolution of the conjecture will provide a good starting point for other hardness of20

approximation proofs.21

Another contribution of our work is proving that the problems that we consider are roughly22

equivalent from the approximation perspective. Some of these problems arose in previous work,23

from which it appeared that they may be related to each other. We formalize this relationship in24

this work.25

2012 ACM Subject Classification Mathematics of computing → Approximation algorithms26

Keywords and phrases Hardness of Approximation, Densest k-Subgraph27

Digital Object Identifier 10.4230/LIPIcs.ITCS.2023.1728

Related Version Full Version: https://arxiv.org/abs/2211.0590629

Funding Julia Chuzhoy: Supported in part by NSF grant CCF-2006464.30

Mina Dalirrooyfard: Part of the work done at Toyota Technological Institute at Chicago.31

Vadim Grinberg: Part of the work done at Toyota Technological Institute at Chicago. Supported in32

part by NSF grant CCF-2006464.33

Zihan Tan: Supported by a grant to DIMACS from the Simons Foundation (820931) and NSF grant34

CCF-2006464.35

1 Introduction36

In this paper we consider several graph optimization problems, the most prominent and37

extensively studied of which is Densest k-Subgraph. One of the main motivations of this38

work is to advance our understanding of the approximability of these problems. Towards39

this goal, we propose a new conjecture on the hardness of a class of 2-CSP problems, and40

we show that new hardness of approximation results for all these problems follow from41

this conjecture. We believe that the conjecture is interesting in its own right, as it can be42

© Julia Chuzhoy, Mina Dalirrooyfard, Vadim Grinberg, and Zihan Tan;
licensed under Creative Commons License CC-BY 4.0

14th Innovations in Theoretical Computer Science Conference (ITCS 2023).
Editor: Yael Tauman Kalai; Article No. 17; pp. 17:1–17:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ITCS.2023.17
https://arxiv.org/abs/2211.05906
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 A New Conjecture on 2-CSP’s with Implications to Densest k-Subgraph

seen as occupying a middle ground between the d-to-1 conjecture, and the type of hardness43

of approximation results that one can obtain for 2-CSP problems via standard methods44

(such as using constant-factor hardness of approximation results for 3-SAT, combined with45

standard 2-prover protocols and Parallel Repetition). While our conditional hardness of46

approximation proofs are combinatorial and algorithmic in nature, we hope that this work47

will inspire complexity theorists to study the conjecture, and also lead to other hardness of48

approximation proofs that combine both combinatorial and algebraic techniques.49

We prove a new conditional hardness of approximation result for Densest k-Subgraph50

based on our conjecture. In addition to the Densest k-Subgraph problem, we study three other51

problems. The first problem, called (r,h)-Graph Partitioning, recently arose in the hardness52

of approximation proof of the Node-Disjoint Paths problem of [18], who mention that the53

problem appears similar to Densest k-Subgraph, but could not formalize this intuition. We54

also study a new problem that we call Dense k-Coloring, that can be viewed as a natural55

middle ground between Densest k-Subgraph and (r,h)-Graph Partitioning. The fourth problem56

that we study is a variation of the notoriously difficult Minimum Crossing Number problem,57

that we call Maximum Bounded-Crossing Subgraph. This problem also arose implicitly in [18].58

We show that all four problems are roughly equivalent from the approximation perspective, in59

the regime where the approximation factors are somewhat large (but some of our reductions60

require quasi-polynomial time). We then derive conditional hardness of approximation results61

for all these problems based on these reductions and the conditional hardness of Densest62

k-Subgraph.63

The main contribution of this paper is thus twofold: first, we propose a new conjecture on64

hardness of CSP’s and show that a number of interesting hardness of approximation results65

follow from it. Second, we establish a close connection between the four problems that we66

study. The remainder of the Introduction is organized as follows. We start by providing a67

brief overview of the four problems that we study in this paper. We then state our conjecture68

on hardness of CSP’s and put it into context with existing results and well-known conjectures.69

Finally, we provide a more detailed overview of our results and techniques.70

Densest k-Subgraph.71

In the Densest k-Subgraph problem, given an n-vertex graph G and an integer k > 1, the72

goal is to compute a subset S of k vertices of G, while maximizing the number of edges in73

G[S]. Densest k-Subgraph is one of the most basic graph optimization problems that has74

been studied extensively (see e.g. [2, 7–10, 12, 15, 25–30, 36, 41, 44, 46, 47, 52]). At the same75

time it seems notoriously difficult, and despite this extensive work, our understanding of its76

approximability is still incomplete. The best current approximation algorithm for Densest77

k-Subgraph, due to [8], achieves, for every ε > 0, an O(n1/4+ε)-approximation, in time78

nO(1/ε). Even though the problem appears to be very hard, its hardness of approximation79

proof has been elusive. For example, no constant-factor hardness of approximation proofs80

for Densest k-Subgraph are currently known under the standard P 6= NP assumption, or81

even the stronger assumption that NP 6⊆ BPTIME(npoly logn). In a breakthrough result,82

Khot [36] proved a factor-c hardness of approximation for Densest k-Subgraph, for some83

small constant c, assuming that NP 6⊆ ∩ε>0BPTIME(2nε). Several other papers proved84

constant and super-constant hardness of approximation results for Densest k-Subgraph under85

average-case complexity assumptions: namely that no efficient algorithm can refute random86

3-SAT or random k-AND formulas [2, 25]. Additionally, a factor 2Ω(log2/3 n)-hardness of87

approximation was shown under assumptions on solving Planted Clique [2]. In a recent88

breakthrough, Manurangsi [46] proved that, under the Exponential Time Hypothesis (ETH),89

J. Chuzhoy, M. Dalirrooyfard, V. Grinberg, and Z. Tan 17:3

the Densest k-Subgraph problem is hard to approximate to within factor n1/(log logn)c , for90

some constant c. Proving a super-constant hardness of Densest k-Subgraph under weaker91

complexity assumptions remains a tantalizing open question that we attempt to address92

in this paper. Unfortunately, it seems unlikely that the techniques of [46] can yield such a93

result. In this paper we show that, assuming the conjecture on hardness of 2-CSP that we94

introduce, Densest k-Subgraph is NP-hard to approximate to within factor 2(logn)ε , for some95

constant ε > 0.96

The (r, h)-Graph Partitioning Problem.97

A recent paper [18] on the hardness of approximation of the Node-Disjoint Paths (NDP)98

problem formulated and studied a new graph partitioning problem, called (r,h)-Graph Par-99

titioning. The input to the problem is a graph G, and two integers, r and h. The goal100

is to compute r vertex-disjoint subgraphs H1, . . . ,Hr of G, such that for each 1 ≤ i ≤ r,101

|E(Hi)| ≤ h, while maximizing
∑r
i=1 |E(Hi)|. A convenient intuitive way of thinking about102

this problem is that we are interested in obtaining a balanced partition of the graph G into103

r vertex-disjoint subgraphs, so that the subgraphs contain sufficiently many edges. Unlike104

standard graph partitioning problems, that typically aim to minimize the number of edges105

connecting the different subgraphs in the solution, our goal is to maximize the total number106

of edges that are contained in the subgraphs. In order to avoid trivial solutions, in which107

one of the subgraphs contains almost the entire graph G, and the remaining subgraphs are108

almost empty, we place an upper bound h on the number of edges that each subgraph may109

contribute towards the solution. Note that the subgraphs Hi of G in the solution need not110

be vertex-induced subgraphs.111

The work of [18] attempted to use (r,h)-Graph Partitioning as a proxy problem for proving112

hardness of approximation of NDP. Their results imply that NDP is at least as hard to113

approximate as (r,h)-Graph Partitioning, to within polylogarithmic factors. In order to prove114

hardness of NDP, it would then be sufficient to show that (r,h)-Graph Partitioning is hard115

to approximate. Unfortunately, [18] were unable to do so. Instead, they considered a116

generalization of (r,h)-Graph Partitioning, called (r,h)-Graph Partitioning with Bundles. They117

showed that NDP is at least as hard as (r,h)-Graph Partitioning with Bundles, and then proved118

hardness of this new problem. In the (r,h)-Graph Partitioning with Bundles problem, the input119

is the same as in (r,h)-Graph Partitioning, but now graph G must be bipartite, and, for every120

vertex v, we are given a partition B(v) of the set of edges incident to v into subsets that are121

called bundles. We require that, in a solution (H1, . . . ,Hr) to the problem, for every vertex122

v ∈ V (G), and every bundle β ∈ B(v), at most one edge of β contributes to the solution;123

in other words, at most one edge of β may lie in
⋃
iE(Hi). This is a somewhat artificial124

problem, but this definition allows one to bypass some of the barriers that arise when trying125

to prove hardness of (r,h)-Graph Partitioning from existing hardness results for CSP’s.126

It was noted in [18] that the (r,h)-Graph Partitioning problem resembles the Densest127

k-Subgraph problem for two reasons. First, in Densest k-Subgraph, the goal is to compute a128

dense subgraph of a given graph, with a prescribed number of vertices. One can think of129

(r,h)-Graph Partitioning as the problem of computing many vertex-disjoint dense subgraphs130

of a given graph. Second, natural hardness of approximation proofs for both problems131

seem to run into the same barriers. It is therefore natural to ask: (i) Can we prove that132

the (r,h)-Graph Partitioning problem itself is hard to approximate? In particular, can the133

techniques of [18] be exploited in order to obtain such a proof? and (ii) Can we formalize134

this intuitive connection between (r,h)-Graph Partitioning and Densest k-Subgraph? In this135

paper we make progress on both these questions. Our conditional hardness result for136

ITCS 2023

17:4 A New Conjecture on 2-CSP’s with Implications to Densest k-Subgraph

Densest k-Subgraph indeed builds on the ideas from [18] for proving hardness of (r,h)-Graph137

Partitioning with Bundles. We also provide “almost” approximation-preserving reductions138

between (r,h)-Graph Partitioning and Densest k-Subgraph: we show that, if there is an efficient139

factor α(n)-approximation algorithm for Densest k-Subgraph, then there is a randomized140

efficient factor O(α(n2) · poly logn)-approximation algorithm to (r,h)-Graph Partitioning. We141

also provide a reduction in the opposite direction: we prove that, if there is an efficient α(n)-142

approximation algorithm for (r,h)-Graph Partitioning, then there is a randomized algorithm for143

Densest k-Subgraph, that achieves approximation factor O
(
(α(nO(logn)))3 · log2 n

)
, in time144

nO(logn). Therefore, we prove that Densest k-Subgraph and (r,h)-Graph Partitioning are roughly145

equivalent from the approximation perspective (at least for large approximation factors and146

quasi-polynomial running times). Combined with our conditional hardness of approximation147

for Densest k-Subgraph, our results show that, assuming the conjecture on hardness of 2-CSP148

that we introduce, for some constant 0 < ε ≤ 1/2, there is no efficient 2(logn)ε -approximation149

algorithm for (r,h)-Graph Partitioning, unless NP ⊆ BPTIME(nO(logn)).150

Maximum Bounded-Crossing Subgraph.151

The third problem that we study is a variation of the classical Minimum Crossing Number152

problem. In the Minimum Crossing Number problem, given an input n-vertex graph G, the153

goal is to compute a drawing of G in the plane while minimizing the number of crossings in the154

drawing. We define the notions of graph drawing and crossings formally in the Preliminaries,155

but these notions are quite intuitive and the specifics of the definition are not important in156

this high-level overview.157

The Minimum Crossing Number problem was initially introduced by Turán [54] in 1944,158

and has been extensively studied since then (see, e.g., [13,14,16,19,20,32,33], and also [48–51]159

for excellent surveys). But despite all this work, most aspects of the problem are still160

poorly understood. A long line of work [16, 17, 20, 21, 24, 32, 33, 43] has recently led to161

the first sub-polynomial approximation algorithm for the problem in low degree graphs.162

Specifically, [21] obtain a factor O
(

2O((logn)7/8 log logn) ·∆O(1)
)
-approximation algorithm163

for Minimum Crossing Number, where ∆ is the maximum vertex degree. To the best of164

our knowledge, no non-trivial approximation algorithms are known for the problem when165

vertex degrees in the input graph G can be arbitrary. However, on the negative side, only166

APX-hardness is known for the problem [3,11]. As the current understanding of the Minimum167

Crossing Number problem from the approximation perspective is extremely poor, it is natural168

to study hardness of approximation of its variants.169

Let us consider two extreme variations of the Minimum Crossing Number problem. The170

first variant is the Minimum Crossing Number problem itself, where we need to draw an input171

graph G in the plane with fewest crossings. The second variant is where we need to compute172

a subgraph G′ of the input graph G that is planar, while maximizing |E(G′)|. The latter173

problem has a simple constant-factor approximation algorithm, obtained by letting G′ be174

any spanning forest of G (this is since a planar n-vertex graph may only have O(n) edges).175

In this paper we study a variation of the Minimum Crossing Number problem, that we176

call Maximum Bounded-Crossing Subgraph, which can be viewed as an intermediate problem177

between these two extremes. In the Maximum Bounded-Crossing Subgraph problem, given178

an n-vertex graph G and an integer L > 0, the goal is to compute a subgraph H ⊆ G,179

such that H has a plane drawing with at most L crossings, while maximizing |E(H)|.180

Unless we are interested in constant approximation factors, this problem is only interesting181

when the bound L on the number of crossings is Ω(n). This is since, from the Crossing182

Number Inequality [1, 42], if |E(G)| ≥ 4|V (G)|, then the crossing number of G is at least183

J. Chuzhoy, M. Dalirrooyfard, V. Grinberg, and Z. Tan 17:5

Ω(|E(G)|3/|V (G)|2). Therefore, for L = O(n), a spanning tree provides a constant-factor184

approximation to the problem. We emphasize that the focus here is on dense graphs, whose185

crossing number may be as large as Ω(n4).186

The Maximum Bounded-Crossing Subgraph problem was implicitly used in [18] for proving187

hardness of approximation of NDP, as an intermediate problem, in the reduction from188

(r,h)-Graph Partitioning with Bundles to NDP. Their work suggests that there may be a189

connection between (r,h)-Graph Partitioning and Maximum Bounded-Crossing Subgraph, even190

though the two problems appear quite different. In this paper we prove that the two191

problems are roughly equivalent from the approximation perspective: if there is an efficient192

factor α(n)-approximation algorithm for (r,h)-Graph Partitioning, then there is an efficient193

O(α(n) · poly logn)-approximation algorithm for Maximum Bounded-Crossing Subgraph. On194

the other hand, an efficient α(n)-approximation algorithm for Maximum Bounded-Crossing195

Subgraph implies an efficient O((α(n))2 · poly logn)-approximation algorithm for (r,h)-Graph196

Partitioning. Combined with our conditional hardness of approximation for (r,h)-Graph197

Partitioning, we get that, assuming the conjecture on hardness of 2-CSP that we introduce,198

for some constant 0 < ε ≤ 1/2 there is no efficient 2(logn)ε-approximation algorithm for199

Maximum Bounded-Crossing Subgraph, unless NP ⊆ BPTIME(nO(logn)).200

Dense k-Coloring.201

The fourth and last problem that we consider is Dense k-Coloring. In this problem, the input202

is an n-vertex graph G and an integer k, such that n is an integral multiple of k. The goal203

is to partition V (G) into n/k disjoint subsets S1, . . . , Sn/k, of cardinality k each, so as to204

maximize
∑n/k
i=1 |E(Si)|. This problem can be viewed as an intermediate problem between205

Densest k-Subgraph and (r,h)-Graph Partitioning. The connection to (r,h)-Graph Partitioning206

seems clear: in both problems, the goal is to compute a large collection of disjoint subgraphs207

of the input graph G, that contain many edges of G. While in (r,h)-Graph Partitioning we208

place a limit on the number of edges in each subgraph, in Dense k-Coloring we require that209

each subgraph contains exactly k vertices. The connection to the Densest k-Subgraph problem210

is also clear: while in Densest k-Subgraph the goal is to compute a single dense subgraph211

of G containing k vertices, in Dense k-Coloring we need to partition G into many dense212

subgraphs, containing k vertices each. We show reductions between the Dense k-Coloring213

and the Densest k-Subgraph problem in both directions, that provide very similar guarantees214

to the reductions between (r,h)-Graph Partitioning and Densest k-Subgraph. In particular, our215

results show that, assuming the conjecture on the hardness of 2-CSP that we introduce, for216

some constant 0 < ε ≤ 1/2, there is no efficient 2(logn)ε-approximation algorithm for Dense217

k-Coloring, unless NP ⊆ BPTIME(nO(logn)).218

Our Conjecture on Hardness of 2-CSP’s219

We now turn to describe our new conjecture on hardness of 2-CSP’s. We consider the following220

bipartite version of the Constraint Satisfaction Problem with 2 variables per constraint (2-221

CSP). The input consists of two sets X and Y of variables, together with an integer A ≥ 1.222

Every variable in X ∪ Y takes values in [A] = {1, . . . , A}. We are also given a collection C223

of constraints, where each constraint C(x, y) ∈ C is defined over a pair of variables x ∈ X224

and y ∈ Y . For each such constraint, we are given a truth table that, for every pair of225

assignments a to x and a′ to y, indicates whether (a, a′) satisfy the constraint. The value226

of the CSP is the largest fraction of constraints that can be simultaneously satisfied by an227

assignment to the variables. For given values 0 < s < c ≤ 1, the (c, s)-Gap-CSP problem is228

ITCS 2023

17:6 A New Conjecture on 2-CSP’s with Implications to Densest k-Subgraph

the problem of distinguishing CSP’s of value at least c from those of value at most s.229

We can associate, to each constraint C = C(x, y) ∈ C, a bipartite graph GC = (L,R,E),230

where L = R = [A], and there is an edge (a, a′) in E iff the assignments a to x and a′ to y231

satisfy C. Notice that instance I of the Bipartite 2-CSP problem is completely defined by232

X,Y,A, C, and the graphs in {GC}C∈C, so we will denote I = (X,Y,A, C, {GC}C∈C). We233

let the size of instance I be size(I) = |C| ·A2 + |X|+ |Y |. We sometimes refer to A as the234

size of the alphabet for instance I. We say that instance I of 2-CSP is d-to-d′ iff for every235

constraint C, every vertex of GC that lies in L has degree at most d, and every vertex that236

lies in R has degree at most d′. (We note that this is somewhat different from the standard237

definition, that requires that all vertices in L have degree exactly d and all vertices of R have238

degree exactly d′. In the standard definition, the alphabet sizes for variables in X and Y239

may be different, that is, variables in X take values in [A] and variables of Y take values in240

[A′] for some integers A,A′. However, this difference is insignificant to our discussion, and it241

is more convenient for us to use this slight variation of the standard definition).242

The famous Unique-Games Conjecture of Khot [35] applies to 1-to-1 CSP’s. The conjecture243

states that, for any 0 < ε < 1, there is a large enough value A, such that the (1−ε, ε)-Gap-CSP244

problem is NP-hard for 1-to-1 instances with alphabet size A. The conjecture currently245

remains open, though interesting progress has been made on the algorithmic side: the results246

of [4] provide an algorithm for the problem with running time 2nO(1/ε1/3) .247

A conjecture that is closely related to the Unique-Games Conjecture is the d-to-1 Conjec-248

ture of Khot [35]. The conjecture states that, for every 0 < ε < 1, and d > 0, there is a large249

enough value A, such that the (1, ε)-Gap-CSP problem in d-to-1 instances with alphabet size250

A is NP-hard.251

Håstad [31] proved the following nearly optimal hardness of approximation results for252

CSP’s: he showed that for every 0 < ε < 1, there are values d and A, such that the problem253

of (1, ε)-Gap-CSP in d-to-1 instances with alphabet size A is NP-hard. The value d, however,254

depends exponentially on poly(1/ε) in this result. In contrast, in the d-to-1 Conjecture, both255

d and ε are fixed, and d may not have such a strong dependence on 1/ε.256

On the algorithmic side, the results of [4, 53] provide an algorithm for (c, s)-Gap-CSP257

on d-to-1 instances. The running time of the algorithm is 2nO(1/(log(1/s))1/2) , where the O(·)258

notation hides factors that are polynomial in d and A.259

A recent breakthrough in this area is the proof of the 2-to-2 conjecture (now theorem),260

that builds on a long sequence of work [5,6,22,23,37–40]. The theorem proves that for every261

0 < ε < 1, there is a large enough value A, such that the (1 − ε, ε)-Gap-CSP problem is262

NP-hard on 2-to-2 instances with alphabet size A.263

In this paper, we propose the following conjecture regarding the hardness of Gap-CSP in264

d-to-d instances.265

I Conjecture 1. There is a constant 0 < ε ≤ 1/2, such that it is NP-hard to distinguish266

between d(n)-to-d(n) instances of 2-CSP of size n, that have value at least 1/2, and those of267

value at most s(n), where d(n) = 2(logn)ε and s(n) = 1/264(logn)1/2+ε .268

We now compare this conjecture to existing conjectures and results in this area that we269

are aware of. First, in contrast to the d-to-1 conjecture, we allow the parameter d and the270

soundness parameter s to be functions of n – the size of the input instance. Note that the271

size of the input instance depends on the alphabet size A, so, unlike in the setting of the272

d-to-1 conjecture, A may no longer be arbitrarily large compared to d and s.273

The hardness of approximation result of Håstad [31] for d-to-d CSP’s only holds when d274

depends exponentially on poly(1/s), (in particular it may not extend to the setting where275

J. Chuzhoy, M. Dalirrooyfard, V. Grinberg, and Z. Tan 17:7

s(n) = 1/264(logn)1/2+ε , since the size n of the instance depends polynomially on d(n)).276

We can also combine standard constant hardness of approximation results for CSP’s (such277

as, for example, 3-SAT) with the Parallel Repetition theorem, to obtain NP-hardness of278

(1, s(n))-Gap-CSP on d(n)-to-d(n) instances. Using this approach, if we start from an instance279

of CSP of size N and a constant hardness gap (with perfect completeness), after ` rounds of280

parallel repetition, we obtain hardness of (1, s)-Gap-CSP on d-to-d instances with s = 2−O(`),281

d = 2O(`), and the resulting instance size n = NO(`). Note that d = (1/s)Θ(1) holds,282

wich is different from the relationship between these parameters required by the conjecture.283

Specifically, by setting the number of repetition to be ` = Θ
(
(logN)(1/2+ε)/(1/2−ε)), we can284

ensure the desired bound s(n) = 1/264(logn)1/2+ε . However, in this setting, we also get that285

d(n) = 2Ω((logn)1/2+ε), which is significantly higher than the desired value d(n) = 2(logn)ε .286

Lastly, one could attempt to combine the recent proof of the 2-to-2 conjecture with Parallel287

Repetition in order to reap the benefits of both approaches, but the resulting parameters288

also fall short of the ones stated in the conjecture.289

From the above discussion, one can view Conjecture 1 as occupying a middle ground290

between the d-to-1 conjecture, and the results one can obtain via standard techniques of291

amplifying a constant hardness of a CSP, such as 3SAT, via Parallel Repetition. We note292

that, while the conjecture appears closely related to the Unique Games Conjecture and293

d-to-1 conjecture, we are not aware of any additional formal connections, except for those294

mentioned above.295

We now proceed to discuss our results and techniques in more detail.296

1.1 A More Detailed Overview of our Results and Techniques297

In addition to posing Conjecture 1 that we already described above, we prove conditional298

hardness of approximation of the four problems that we consider. We also prove that all299

four problems are roughly equivalent approximation-wise. We now discuss the conditional300

hardness of approximation for Densest k-Subgraph and the connections between the four301

problems that we establish.302

Conditional Hardness of Densest k-Subgraph.303

Our first result is a conditional hardness of Densest k-Subgraph. Specifically, we prove that,304

assuming that Conjecture 1 holds and that P 6= NP, for some 0 < ε ≤ 1/2, there is no efficient305

approximation algorithm for Densest k-Subgraph problem that achieves approximation factor306

2(logN)ε , where N is the number of vertices in the input graph.307

We now provide a brief overview of our techniques. The proof of the above result employs308

a Cook-type reduction, and follows some of the ideas that were introduced in [18]. We309

assume for contradiction that there is a factor-α algorithm A for the Densest k-Subgraph310

problem, where α = 2(logN)ε . Given an input instance I of the 2-CSP problem of size n, that311

is a d(n)-to-d(n) instance, we construct a constraint graph H representing I. We gradually312

decompose graph H into a collection H of disjoint subgraphs, such that, for each subgraph313

H ′ ∈ H, we can either certify that the value of the corresponding instance of 2-CSP is at314

most 1/4, or it is at least β, for some carefully chosen parameter β. In order to compute315

the decomposition, we start with H = {H}. If, for a graph H ′ ∈ H, we certified that the316

corresponding instance of 2-CSP has value at most 1/4, or at least β, then we say that graph317

H ′ is inactive. Otherwise, we say that it is active. As long as H contains at least one active318

graph, we perform iterations. In each iteration, we select an arbitrary active graph H ′ ∈ H319

to process. In order to process H ′, we consider an assignment graph G′ associated with H ′,320

ITCS 2023

17:8 A New Conjecture on 2-CSP’s with Implications to Densest k-Subgraph

that contains a vertex for every variable-assignment pair (x, a), where x is a variable whose321

corresponding vertex belongs to H ′. We view G′ as an instance of the Densest k-Subgraph322

problem, for an appropriately chosen parameter k, and apply the approximation algorithm A323

for Densest k-Subgraph to it. Let S be the set of vertices of G′ that Algorithm A computes324

as a solution to this instance. Note that S is a set of vertices in the assignment graph G′,325

while H is a family of subgraphs of the constraint graph H. We exploit the set S of vertices326

in order to either (i) compute a large subset E′ ⊆ E(H ′) of edges, such that, if we denote by327

C′ ⊆ C the set of constraints corresponding to E′, then at most 1/4 of the constraints of C′328

can be simultaneously satisfied; or (ii) compute a large subset E′ ⊆ E(H ′) of edges as above,329

and certify that at least a β-fraction of such constraints can be satisfied; or (iii) compute a330

subgraph H ′′ ⊆ H ′, such that |V (H ′′)| � |V (H ′)|, and the number of edges contained in331

graphs H ′′ and H ′ \ V (H ′′) is sufficiently large compared to E(H ′). In the former two cases,332

we replace H ′ with graph H ′[E′] in H, and graph H ′[E′] becomes inactive. In the latter case,333

we replace H ′ with two graphs: H ′′ and H ′ \V (H ′′), that both remain active. The algorithm334

terminates once every graph in H is inactive. The crux of the analysis of the algorithm is to335

show that, when the algorithm terminates, the total number of edges lying in the subgraphs336

H ′ ∈ H is high, compared to |E(H)|. The specific fraction of edges that remain in the337

subgraphs H ′ ∈ H is governed by the parameters s(n) and d(n), and the specific relationship338

between these parameters in Conjecture 1 is selected to ensure that many edges remain in the339

graphs of H when the algorithm terminates. The algorithm for decomposing graph H into340

subgraphs and its analysis employ some of the techniques and ideas introduced in [18], and341

is very similar in spirit to the hardness of approximation proof of the (r,h)-Graph Partitioning342

with Bundles problem, though details are different. We employ this decomposition algorithm343

multiple times, in order to obtain a partition (E0, E1, . . . , Ez) of the set E(H) of edges344

of the constraint graph into a small number of subsets, such that, among the constraints345

corresponding to the edges of E0, at most a 1/4-fraction can be satisfied by any assignment346

to X ∪ Y , and, for all 1 ≤ i ≤ z, a large fraction of constraints corresponding to edges of Ei347

can be satisfied by some assignment. Depending on the cardinality of the set E0 of edges we348

then determine whether I is a Yes-Instance or a No-Instance.349

Reductions from Dense k-Coloring and (r,h)-Graph Partitioning to Densest k-Subgraph.350

We show that, if there is an efficient factor α(n)-approximation algorithm for the Densest351

k-Subgraph problem, then there is a randomized efficient O(α(n2) · poly logn)-approximation352

algorithm for Dense k-Coloring, and a randomized efficient O(α(n2)·poly logn)-approximation353

algorithm for (r,h)-Graph Partitioning. The two reductions are very similar, so we focus on354

describing the first one. We believe that the reduction is of independent interest, and uses355

unusual techniques.356

We assume that there is an α(n)-approximation algorithm for the Densest k-Subgraph357

problem. In order to obtain an approximation algorithm for Dense k-Coloring, we start by358

formulating a natural LP-relaxation for the problem. Unfortunately, this LP-relaxation has359

a large number of variables: roughly nΘ(k), where n is the number of vertices in the input360

graph and k is the parameter of the Dense k-Coloring problem instance. We then show an361

efficient algorithm, that, given a solution to the LP-relaxation, whose support size is bounded362

by poly(n), computes an approximate integral solution to the Dense k-Coloring problem.363

The main challenge is that, since the LP relaxation has nΘ(k) variables, it is unclear364

how to solve it efficiently. We consider the dual linear program, that has poly(n) variables365

and nΘ(k) constraints. Using the α(n)-approximation algorithm for Densest k-Subgraph as366

a subroutine, we design an approximate separation oracle for the dual LP, that allows us367

J. Chuzhoy, M. Dalirrooyfard, V. Grinberg, and Z. Tan 17:9

to solve the original LP-relaxation for Dense k-Coloring, obtaining a solution whose support368

size is bounded by poly(n). By applying the LP-rounding approximation algorithm to this369

solution, we obtain the desired approximate solution to the input instance of Dense k-Coloring.370

Reductions from Densest k-Subgraph to (r,h)-Graph Partitioning and Dense k-Coloring.371

We prove that, if there is an efficient α(n)-approximation algorithm for Dense k-Coloring,372

then there is a randomized algorithm for the Densest k-Subgraph problem, whose running373

time is nO(logn), that with high probability obtains an O(α(nO(logn)) · logn)-approximate374

solution to the input instance of the problem. We also show a similar reduction from Densest375

k-Subgraph to (r,h)-Graph Partitioning, but now the resulting approximation factor for Densest376

k-Subgraph becomes O((α(nO(logn)))3 · log2 n). By combining these reductions with our377

conditional hardness result for Densest k-Subgraph, we get that, assuming Conjecture 1,378

for some constant 0 < ε ≤ 1/2, there is no efficient 2(logn)ε-approximation algorithm for379

(r,h)-Graph Partitioning and for Dense k-Coloring, unless NP ⊆ BPTIME(nO(logn)).380

The two reductions are very similar; we focus on the reduction to Dense k-Coloring in381

this overview. Our construction is inspired by the results of [34], and we borrow some of our382

ideas from them. Assume that there is an efficient α(n)-approximation algorithm for Dense383

k-Coloring. Let G be an instance of the Densest k-Subgraph problem. The main difficulty in384

the reduction is that it is possible that G only contains one very dense subgraph induced by385

k vertices, while the Dense k-Coloring problem requires that the input graph G can essentially386

be partitioned into many such dense subgraphs. To overcome this difficulty, we construct387

a random “inflated” bipartite graph H, that contains nO(logn) vertices, where n = |V (G)|.388

Every vertex of G is mapped to some vertex of H at random, while every edge of G is389

mapped to a large number of edges of H. This allows us to ensure that, if G contains a390

subgraph G′ induced by a set of k vertices, where |E(G′)| = R, then graph H can essentially391

be partitioned into a large number of subgraphs that contain k vertices each, and many of392

them contain close to R edges. Therefore, we can apply our α(n)-approximation algorithm393

for Dense k-Coloring to the new graph H. The main challenge in the reduction is that,394

while this approximation algorithm is guaranteed to return a large number of disjoint dense395

subgraphs of H, since every edge of G contributes many copies to H, it is not clear that one396

can extract a single dense subgraph of G from dense subgraphs of H. The main difficulty in397

the reduction is to ensure that, on the one hand, a single k-vertex dense subgraph in G can398

be translated into |V (H)|/k dense subgraphs of H; and, on the other hand, a dense k-vertex399

subgraph of H can be translated into a dense subgraph of G on k vertices. We build on and400

expand the ideas from [34] in order to ensure these properties.401

Reductions between (r,h)-Graph Partitioning and Maximum Bounded-Crossing Subgraph.402

Lastly, we provide reductions between (r,h)-Graph Partitioning and Maximum Bounded-Crossing403

Subgraph in both directions. First, we show that, if there is an efficient factor α(n)-404

approximation algorithm for (r,h)-Graph Partitioning, then there is an efficient O(α(n) ·405

poly logn)-approximation algorithm for Maximum Bounded-Crossing Subgraph. On the other406

hand, an efficient α(n)-approximation algorithm for Maximum Bounded-Crossing Subgraph407

implies an efficient O((α(n))2 ·poly logn)-approximation algorithm for (r,h)-Graph Partitioning.408

Combined with our conditional hardness of approximation for (r,h)-Graph Partitioning, we409

get that, assuming Conjecture 1, for some constant 0 < ε ≤ 1/2, there is no efficient410

2(logn)ε-approximation algorithm for Maximum Bounded-Crossing Subgraph, unless NP ⊆411

BPTIME(nO(logn)).412

ITCS 2023

17:10 A New Conjecture on 2-CSP’s with Implications to Densest k-Subgraph

Both these reductions exploit the following connection between crossing number and413

graph partitioning: if a graph G has a drawing with at most L crossings, then there is a414

balanced cut in G, containing at most O
(√

L+ ∆ · |E(G)|
)
edges, where ∆ is maximum415

vertex degree in G. This result can be viewed as an extension of the classical Planar Separator416

Theorem of [45]. Another useful fact exploited in both reductions is that any graph G with417

m edges has a plane drawing with at most m2 crossings. In particular, if H = {H1, . . . ,Hr}418

is a solution to an instance of the (r,h)-Graph Partitioning problem on graph G, then there is a419

drawing of graph H =
⋃r
i=1Hi, in which the number of crossings is bounded by r ·h2. These420

two facts establish a close relationship between the (r,h)-Graph Partitioning and Maximum421

Bounded-Crossing Subgraph problems, that are exploited in both our reductions.422

We have now obtained a chain of reductions, showing that all four problems, Dens-423

est k-Subgraph, Dense k-Coloring, (r,h)-Graph Partitioning, and Maximum Bounded-Crossing424

Subgraph are almost equivalent from approximation viewpoint, if we consider sufficiently425

large approximation factors and allow randomized quasi-polynomial time algorithms. We426

also obtain conditional hardness of approximation results for all four problems based on427

Conjecture 1.428

Organization.429

We start with preliminaries in Section 2. In Section 3 we provide the conditional hardness430

of approximation proof for the Densest k-Subgraph problem. In Section 4 we provide our431

reductions from Dense k-Coloring and (r,h)-Graph Partitioning to Densest k-Subgraph, and in432

Section 5 we provide reductions in the opposite direction. Lastly, in Section 6 we provide433

reductions between (r,h)-Graph Partitioning and Maximum Bounded-Crossing Subgraph. Due434

to lack of space, some of the proofs are deferred to the full version of the paper.435

2 Preliminaries436

By default, all logarithms are to the base of 2. For a positive integer N , we denote by437

[N] = {1, 2, . . . , N}. All graphs are finite, simple and undirected. We say that an event holds438

with high probability if the probability of the event is 1− 1/nc for a large enough constant c,439

where n is the number of vertices in the input graph.440

2.1 General Notation441

Let G be a graph and let S be a subset of its vertices. We denote by G[S] the subgraph of G442

induced by S. For two disjoint subsets A,B of vertices of G, we denote by EG(A,B) the set443

of all edges with one endpoint in A and the other endpoint in B, and we denote by EG(A)444

the set of all edges with both endpoints in A. Given a graph G and a vertex v ∈ V (G),445

we denote by degG(v) the degree of v in G. For a subset S of vertices of G, its volume is446

volG(S) =
∑
v∈S degG(v). We sometimes omit the subscript G if it is clear from the context.447

Given a graph G, a drawing ϕ of G is an embedding of G into the plane, that maps every448

vertex v of G to a point (called the image of v and denoted by ϕ(v)), and every edge e of449

G to a simple curve (called the image of e and denoted by ϕ(e)), that connects the images450

of its endpoints. If e is an edge of G and v is a vertex of G, then the image of e may only451

contain the image of v if v is an endpoint of e. Furthermore, if some point p belongs to the452

images of three or more edges of G, then p must be the image of a common endpoint of all453

edges e with p ∈ ϕ(e). We say that two edges e, e′ of G cross at a point p, if p ∈ ϕ(e)∩ϕ(e′),454

and p is not the image of a shared endpoint of these edges. Given a graph G and a drawing455

J. Chuzhoy, M. Dalirrooyfard, V. Grinberg, and Z. Tan 17:11

ϕ of G in the plane, we use cr(ϕ) to denote the number of crossings in ϕ, and the crossing456

number of G, denoted by CrN(G), is the minimum number of crossings in any drawing of G.457

2.2 Problem Definitions and Additional Notation458

In this paper we consider the following four problems: Densest k-Subgraph, Dense k-Coloring,459

(r,h)-Graph Partitioning and Maximum Bounded-Crossing Subgraph. We now define the460

problems, along with some additional notation.461

Densest k-Subgraph.462

In the Densest k-Subgraph problem, the input is a graph G and an integer k > 0. The goal is463

to compute a subset S ⊆ V (G) of k vertices, maximizing |EG(S)|. We denote an instance464

of the problem by DkS(G, k), and we denote the value of the optimal solution to instance465

DkS(G, k) by OPTDkS(G, k).466

We also consider a bipartite version of the Densest k-Subgraph problem, called467

Bipartite Densest (k1, k2)-Subgraph. This problem was first studied in [2]. The input to the468

problem is a bipartite graph G = (A,B,E) and positive integers k1, k2. The goal is to469

compute a subset S ⊆ V (G) of vertices with |S∩A| = k1 and |S∩B| = k2, such that |EG(S)|470

is maximized. An instance of this problem is denoted by BDkS(G, k1, k2), and the value of471

the optimal solution to instance BDkS(G, k1, k2) is denoted by OPTBDkS(G, k1, k2). The472

following lemma shows that the Bipartite Densest (k1, k2)-Subgraph problem and the Densest473

k-Subgraph problem are roughly equivalent from the approximation viewpoint. Similar results474

were also shown in prior work.475

I Lemma 2. Let α : Z+ → Z+ be an increasing function such that α(n) = o(n). Then the476

following hold:477

If there exists an α(n)-approximation algorithm for the Densest k-Subgraph problem with478

running time at most T (n), where n is the number of vertices in the input graph, then there479

exists an O(α(N2))-approximation algorithm for the Bipartite Densest (k1, k2)-Subgraph480

problem, with running time O(T (N2) · poly(N)), where N is the number of vertices in481

the input graph. Moreover, if the algorithm for Densest k-Subgraph is deterministic, then482

so is the algorithm for Bipartite Densest (k1, k2)-Subgraph.483

Similarly, if there exists an efficient α(N)-approximation algorithm for the Bipartite484

Densest (k1, k2)-Subgraph problem, where N is the number of vertices in the input graph,485

then there exists an efficient O(α(2n))-approximation algorithm for the Densest k-Subgraph486

problem, where n is the number of vertices in the input graph. Moreover, if the algorithm487

for Bipartite Densest (k1, k2)-Subgraph is deterministic, then so is the algorithm for488

Densest k-Subgraph.489

Dense k-Coloring.490

The input to the Dense k-Coloring problem consists of an n-vertex graph G and an integer491

k > 0, such that n is an integral multiple of k. The goal is to compute a partition of V (G)492

into n/k subsets S1, . . . , Sn/k of cardinality k each, while maximizing
∑n/k
i=1 |EG(Si)|. An493

instance of the Dense k-Coloring problem is denoted by DkC(G, k), and the value of the494

optimal solution to instance DkC(G, k) is denoted by OPTDkC(G, k).495

ITCS 2023

17:12 A New Conjecture on 2-CSP’s with Implications to Densest k-Subgraph

(r, h)-Graph Partitioning.496

The input to the (r,h)-Graph Partitioning problem consists of a graph G, and integers r, h > 0.497

The goal is to compute r vertex-disjoint subgraphs H1, . . . ,Hr of G, such that for all498

1 ≤ i ≤ r, |E(Hi)| ≤ h, while maximizing
∑r
i=1 |E(Hi)|. An instance of the (r,h)-Graph499

Partitioning problem is denoted by GP(G, r, h), and the value of the optimal solution to500

instance GP(G, r, h) is denoted by OPTGP(G, r, h).501

Maximum Bounded-Crossing Subgraph.502

In the Maximum Bounded-Crossing Subgraph problem, the input is a graph G and an integer503

L > 0. The goal is to compute a subgraph H ⊆ G with CrN(H) ≤ L, while maximizing504

|E(H)|. An instance of the Maximum Bounded-Crossing Subgraph problem is denoted by505

MBCS(G,L), and the value of the optimal solution to instance MBCS(G,L) is denoted by506

OPTMBCS(G,L). We note that we can assume that L ≤ |V (G)|4, as otherwise the optimal507

solution is the whole graph G, since the crossing number of a simple graph G is at most508

|E(G)|2 ≤ |V (G)|4.509

3 Conditional Hardness of Densest k-Subgraph510

3.1 Conjecture on Hardness of 2-CSP’s511

We consider the Bipartite 2-CSP problem, that is defined as follows. The input to the problem512

consists of two sets X,Y of variables, together with an integer A > 1. Every variable513

z ∈ X∪Y takes values in set [A] = {1, . . . , A}. We are also given a collection C of constraints,514

where each constraint C(x, y) ∈ C is defined over a pair of variables x ∈ X and y ∈ Y . For515

each such constraint, we are given a truth table that, for every pair of assignments a to x516

and a′ to y, specifies whether (a, a′) satisfy constraint C(x, y). The value of the CSP is the517

largest fraction of constraints that can be simultaneously satisfied by an assignment to the518

variables.519

We associate with each constraint C = C(x, y) ∈ C, a bipartite graph GC = (L,R,E),520

where L = R = [A], and there is an edge (a, a′) in E iff the assignments a to x and a′ to y521

satisfy C. Notice that instance I of the Bipartite 2-CSP problem is completely determined by522

X,Y,A, C, and the graphs in {GC}C∈C, so we will denote I = (X,Y,A, C, {GC}C∈C). The523

size of instance I is defined to be size(I) = |C| ·A2 + |X|+ |Y |.524

Consider some instance I = (X,Y,A, C, {GC}C∈C) of Bipartite 2-CSP. We say that I is a525

d-to-d instance if, for every constraint C, every vertex of graph GC = (L,R,E) has degree526

at most d.527

Consider now some functions d(n), s(n) : R+ → R+. We assume that, for all n,528

d(n) ≥ 1 and s(n) < 1. In a (d(n), s(n))-2CSP problem, the input is an instance I =529

(X,Y,A, C, {GC}C∈C) of Bipartite 2-CSP, such that, if we denote by n = size(I), then the530

instance is d(n)-to-d(n). We say that I is a Yes-Instance, if there is some assignment531

to the variables of X ∪ Y that satisfies at least |C|/2 of the constraints, and we say that532

it is a No-Instance, if the largest number of constraints of C that can be simultaneously533

satisfied by any assignment is at most s(n) · |C|. Given an instance I of (d(n), s(n))-2CSP534

problem, the goal is to distinguish between the case where I is a Yes-Instance and the535

case where I is a No-Instance. If I is neither a Yes-Instance nor a No-Instance, the536

output of the algorithm can be arbitrary. We now state our conjecture regarding hardness of537

(d(n), s(n))-2CSP, that is a restatement of Conjecture 1 from the Introduction.538

J. Chuzhoy, M. Dalirrooyfard, V. Grinberg, and Z. Tan 17:13

I Conjecture 3. There is a constant 0 < ε ≤ 1/2, such that the (d(n), s(n))-2CSP problem539

is NP-hard for d(n) = 2(logn)ε and s(n) = 1/264(logn)1/2+ε .540

3.2 Conditional Hardness of Densest k-Subgraph541

In the remainder of this section, we prove the following theorem on the conditional hardness542

of Densest k-Subgraph.543

I Theorem 4. Assume that Conjecture 3 holds and that P 6= NP. Then for some 0 < ε ≤ 1/2,544

there is no efficient approximation algorithm for Densest k-Subgraph problem that achieves545

approximation factor 2(logN)ε , where N is the number of vertices in the input graph.546

In fact we will prove a slightly more general theorem, that will be useful for us later.547

I Theorem 5. Suppose there is an algorithm for the Densest k-Subgraph problem, that,548

given an instance DkS(G, k) with |V (G)| = N , in time at most T (N), computes a factor549

2(logN)ε-approximate solution to the problem, for some constant 0 < ε ≤ 1/2. Then there550

is an algorithm, that, given an instance I of (d(n), s(n))-2CSP problem of size n, where551

d(n) = 2(logn)ε and s(n) = 1/264(logn)1/2+ε , responds “YES” or ”NO”, in time O(poly(n) ·552

T (poly(n))). If I is a Yes-Instance, the algorithm is guaranteed to respond “YES”, and if553

it is a No-Instance, it is guaranteed to respond “NO”.554

Theorem 4 immediately follows from Theorem 5. The remainder of this section is555

dedicated to proving Theorem 5. A central notion that we use is a constraint graph that is556

associated with an instance I of 2-CSP.557

Let I = (X,Y,A, C, {GC}C∈C) be an instance of the Bipartite 2-CSP problem. The558

constraint graph associated with instance I is denoted by H(I), and it is defined as follows.559

The set of vertices of H(I) is the union of two subsets: set V = {v(x) | x ∈ X} of vertices560

representing the variables of X, and set U = {v(y) | y ∈ Y } of vertices representing the561

variables of Y . For convenience, we will not distinguish between the vertices of V and the562

variables of X, so we will identify each variable x ∈ X with its corresponding vertex v(x).563

Similarly, we will not distinguish between vertices of U and variables of Y . The set of564

edges of H(I) contains, for every constraint C = C(x, y) ∈ C, edge eC = (x, y). We say565

that edge eC represents the constraint C. Notice that, if E′ is a subset of edges of H(I),566

then we can define a set Φ(E′) ⊆ C of constraints that the edges of E′ represent, namely:567

Φ(E′) = {C ∈ C | eC ∈ E′}. Next, we define bad sets of constraints and bad sets of edges.568

I Definition 6 (Bad Set of Constraints and Bad Collection of Edges). Let C′ ⊆ C be a collection569

of constraints of an instance I = (X,Y,A, C, {GC}C∈C) of Bipartite 2-CSP. We say that C′ is570

a bad set of constraints if the largest number of constraints of C′ that can be simultaneously571

satisfied by any assignment to the variables of X ∪ Y is at most |C
′|

4 . If E′ ⊆ E(H(I)) is a572

set of edges of H(I), whose corresponding set Φ(E′) of constraints is bad, then we say that573

E′ is a bad collection of edges.574

The next observation easily follows from the definition of a bad set of constraints.575

I Observation 7. Let I = (X,Y,A, C, {GC}C∈C) be an instance of bipartite 2-CSP, and let576

C′, C′′ ⊆ C be two disjoint sets of constraints that are both bad. Then C′ ∪ C′′ is also a bad set577

of constraints.578

Next, we define good subsets of constraints and good subgraphs of the constraint graph579

H(I).580

ITCS 2023

17:14 A New Conjecture on 2-CSP’s with Implications to Densest k-Subgraph

I Definition 8 (Good Set of Constraints and Good Subgraphs of H(I)). Let C′ ⊆ C be a581

collection of constraints of an instance I = (X,Y,A, C, {GC}C∈C) of Bipartite 2-CSP, and582

let 0 < β ≤ 1 be a parameter. We say that C′ is a β-good set of constraints, if there is an583

assignment to variables of X ∪Y that satisfies at least |C
′|
β constraints of C′. If E′ ⊆ E(H(I))584

is a set of edges of H(I), whose corresponding set Φ(E′) of constraints is β-good, then we say585

that E′ is a β-good collection of edges. Lastly, if H ′ ⊆ H(I) is a subgraph of the constraint586

graph, and the set E(H ′) of edges is β-good, then we say that graph H ′ is β-good.587

The next observation easily follows from the definition of a good set of constraints.588

I Observation 9. Let I = (X,Y,A, C, {GC}C∈C) be an instance of bipartite 2-CSP, let589

0 < β ≤ 1 be a parameter, and let H ′, H ′′ be two subgraphs of H(I) that are both β-good and590

disjoint in their vertices. Then graph H ′ ∪H ′′ is also β-good.591

The observation follows from the fact that, since graphs H ′, H ′′ are disjoint in their592

vertices, if we let C′ = Φ(E(H ′)), C′′ = Φ(E(H ′′)) be the sets of constraints associated with593

the edge sets of both graphs, then the variables participating in the constraints of C′ are594

disjoint from the variables participating in the constraints of C′′.595

The following theorem is key in proving Theorem 5.596

I Theorem 10. Assume that there exists a constant 0 < ε ≤ 1/2, and an α(N)-approximation597

algorithm A for the Densest k-Subgraph problem, whose running time is at most T (N), where598

N is the number of vertices in the input graph, and α(N) = 2(logN)ε . Then there is an599

algorithm, whose input consists of an instance I = (X,Y,A, C, {GC}C∈C) of Bipartite 2-CSP600

and parameter n that is greater than a large enough constant, so that size(I) ≤ n holds, and601

I is a d(n)-to-d(n) instance of Bipartite 2-CSP, for d(n) ≤ 2(logn)ε . Let β = 28(logn)1/2+ε ,602

and let r = dβ · logne. The algorithm returns a partition (Eb, E1, . . . , Er) of E(H(I)), such603

that Eb is a bad set of edges, and for all 1 ≤ i ≤ r, set Ei of edges is β3-good. The running604

time of the algorithm is O(T (poly(n)) · poly(n).605

The proof of Theorem 5 easily follows from Theorem 10. Assume that there exists a606

constant 0 < ε ≤ 1/2, and an α(N)-approximation algorithm A for the Densest k-Subgraph607

problem, whose running time is at most T (N), where N is the number of vertices in the608

input graph, and α(N) = 2(logN)ε . We show an algorithm for the (d(n), s(n))-2CSP problem,609

for d(n) = 2(logn)ε and s(n) = 1/264(logn)1/2+ε . Let I = (X,Y,A, C, {GC}C∈C) be an input610

instance of the Bipartite 2-CSP problem, with size(I) = n, so that I is a d(n)-to-d(n) instance611

of Bipartite 2-CSP, for d(n) ≤ 2(logn)ε . If n is bounded by a constant, then we can determine612

whether I is a Yes-Instance or a No-Instance by exhaustively trying all assignments to613

its variables. Therefore, we assume that n is greater than a large enough constant. We apply614

the algorithm from Theorem 10 to this instance I. Let (Eb, E1, . . . , Er) be the partition of615

the edges of E(H(I)) that the algorithm returns. We now consider two cases.616

Assume first that |Eb| > 2|C|/3. Let Cb ⊆ C be the set of all constraints that correspond617

to the edges of Eb. Recall that set Cb of constraints is bad, so in any assignment, at most618

|Cb|
4 of the constraints in Cb may be satisfied. Therefore, if f is any assignment to variables619

of X ∪ Y , the number of constraints in C that are not satisfied by f is at least 3|Cb|
4 > |C|

2 .620

Clearly, I may not be a Yes-Instance in this case. Therefore, if |Eb| > 2|C|/3, we report621

that I is a No-Instance.622

If |Eb| ≤ 2|C|/3, then we report that I is a Yes-Instance. It is now enough to show623

that, if |Eb| ≤ 2|C|/3, then instance I may not be a No-Instance. In other words, it is624

enough to show that there is an assignment that satisfies more than |C|
264(log n)1/2+ε constraints.625

J. Chuzhoy, M. Dalirrooyfard, V. Grinberg, and Z. Tan 17:15

Indeed, since |Eb| ≤ 2|C|/3, there is an index 1 ≤ i ≤ r, with |Ei| ≥ |C|
3r . Since set Ei of626

edges is β3-good, there is an assignment to the variables of X ∪ Y , that satisfies at least627
|Ei|
β3 ≥ |C|

3rβ3 constraints that correspond to the edges of Ei. Recall that β = 28(logn)1/2+ε

628

and r = dβ · logne. Therefore, 3rβ3 ≤ 6β4 logn ≤ 264(logn)1/2+ε . We conclude that there is629

an assignment satisfying at least |C|/264(logn)1/2+ε constraints, and so I may not be a No-630

Instance. It is easy to verify that the running time of the algorithm is O(T (poly(n))·poly(n).631

To conclude, we have shown that, if there is an α(N)-approximation algorithm A for632

the Densest k-Subgraph problem, with running time at most T (N), where N is the number633

of vertices in the input graph, and α(N) = 2(logN)ε , then there is an algorithm for the634

(d(n), s(n))-2CSP problem, for d(n) = 2(logn)ε and s(n) = 1/28(logn)1/2+ε , whose running635

time is O(T (poly(n)) · poly(n).636

In the remainder of this section we prove Theorem 10.637

3.3 Proof of Theorem 10638

The following theorem is the main technical ingredient of the proof of Theorem 10.639

I Theorem 11. Assume that there exists an α(N)-approximation algorithm A for the640

Bipartite Densest (k1, k2)-Subgraph problem, whose running time is at most T (N), where641

N is the number of vertices in the input graph. Then there is an algorithm, that, given642

an instance I = (X,Y,A, C, {GC}C∈C) of Bipartite 2-CSP and parameters n, β ≥ 1, so that643

size(I) ≤ n, β ≥ 230(α(n))3(logn)12, and I is a d(n)-to-d(n) instance of Bipartite 2-CSP,644

for some function d(n), in time O(T (n) · poly(n)), does one of the following:645

either correctly establishes that graph H(I) is β3-good; or646

computes a bad set C′ ⊆ C of constraints, with |C′| ≥ |C|
8 log2 n

; or647

computes a subgraph H ′ = (X ′, Y ′, E′) of H(I), for which the following hold:648

|X ′| ≤ 2d(n)·|X|
β ;649

|Y ′| ≤ 2d(n)·|Y |
β ; and650

|E′| ≥ volH(X′∪Y ′)
2048d(n)·α(n)·log4 n

.651

The proof of Theorem 11 partially relies on ideas and techniques from [18], and is deferred652

to the full version of the paper. We now complete the proof of Theorem 10 using Theorem 11,653

starting with the following simple corollary, whose proof is deferred to the full version of the654

paper.655

I Corollary 12. Assume that there exists an α(N)-approximation algorithm A for the Bipartite656

Densest (k1, k2)-Subgraph problem, whose running time is at most T (N), where N is the657

number of vertices in the input graph. Then there is an algorithm, whose input consists of658

an instance I = (X,Y,A, C, {GC}C∈C) of Bipartite 2-CSP and parameters n, β ≥ 1, so that659

size(I) ≤ n, β ≥ 230(α(n))3(logn)12, and I is a d(n)-to-d(n) instance of Bipartite 2-CSP.660

The algorithm returns a partition (E1, E2) of E(H(I)), where E1 is a bad set of edges, and:661

either the algorithm correctly certifies that E2 is a β3-good set of edges; or662

it computes a subgraph H ′ = (X ′, Y ′, E′) of H(I), with E(H ′) ⊆ E2, for which the663

following hold:664

|X ′| ≤ 2d(n)·|X|
β ;665

|Y ′| ≤ 2d(n)·|Y |
β ; and666

|E′| ≥ |E∗2 |
2048d(n)·α(n)·log4 n

, where E∗2 is a set of edges containing every edge e ∈ E2 with667

exactly one endpoint in V (H ′).668

ITCS 2023

17:16 A New Conjecture on 2-CSP’s with Implications to Densest k-Subgraph

The running time of the algorithm is O(T (n) · poly(n)).669

Next, we obtain the following corollary.670

I Corollary 13. Assume that there exists a constant 0 < ε ≤ 1/2, and an α(N)-approximation671

algorithm A for the Bipartite Densest (k1, k2)-Subgraph problem, whose running time is at672

most T (N), where N is the number of vertices in the input graph, and α(N) = 2(4 logN)ε .673

Then there is an algorithm, whose input consists of an instance I = (X,Y,A, C, {GC}C∈C)674

of Bipartite 2-CSP and parameter n that is greater than a large enough constant, so that675

size(I) ≤ n holds, and I is a d(n)-to-d(n) instance of Bipartite 2-CSP, for d(n) ≤ 2(logn)ε .676

Let β = 28(logn)1/2+ε . The algorithm returns a partition (E1, E2, E3) of E(H(I)), where E1677

is a bad set of constraints, E2 is a β3-good set of constraints, and |E1 ∪E2| ≥ |E(H(I))|
β . The678

running time of the algorithm is O(T (n) · poly(n)).679

Proof: Throughout the proof, we assume that there exists a constant 0 < ε ≤ 1/2, and680

an α(N)-approximation algorithm A for the Bipartite Densest (k1, k2)-Subgraph problem,681

whose running time is at most T (N), where N is the number of vertices in the input graph,682

and α(N) = 2(2 logN)ε . Assume that we are given an instance I = (X,Y,A, C, {GC}C∈C) of683

Bipartite 2-CSP, together with a parameter n that is greater than a large enough constant, so684

that size(I) ≤ n, and I is a d(n)-to-d(n) instance of Bipartite 2-CSP, for d(n) ≤ 2(logn)ε . For685

convenience, we denote H = H(I). Our algorithm uses a parameter η = 212d(n) ·α(n) · log4 n.686

The algorithm is iterative. Over the course of the algorithm, we maintain a collection H687

of subgraphs of H, and another subgraph Hg of H. We will ensure that, throughout the688

algorithm, all graphs in H ∪ {Hg} are mutually disjoint in their vertices. We denote by689

Eg = E(Hg) and E1 =
⋃
H′∈HE(H ′). Additionally, we maintain another set Eb of edges of690

H, that is disjoint from Eg ∪ E1, and we denote by E0 = E(H) \ (Eg ∪ Eb ∪ E1) the set691

of all remaining edges of H. We ensure that the following invariants hold throughout the692

algorithm.693

I1. set Eg = E(Hg) of edges is β3-good;694

I2. set Eb of edges is bad; and695

I3. all graphs in H ∪ {Hg} are disjoint in their vertices.696

Intuitively, we will start with the set H containing a single graph H, and Eg = Eb =697

E0 = ∅. As the algorithm progresses, we will iteratively add edges to sets Eg, Eb and E0,698

while partitioning the graphs in H into smaller subgraphs. The algorithm will terminate699

once H = ∅. The key in the analysis of the algorithm is to ensure that |E0| is relatively700

small when the algorithm terminates. We do so via a charging scheme: we assign a budget701

to every edge of E1 ∪Eg ∪Eb, that evolves over the course of the algorithm, and we keep702

track of this budget over the course of the algorithm.703

In order to define vertex budgets, we will assign, to every graph H ∈ H a level, that is an704

integer between 0 and dlogne. We will ensure that, throughout the algorithm, the following705

additional invariants hold:706

I4. If H ′ ∈ H is a level-i graph, then the budget of every edge e ∈ E(H ′) is at most ηi; and707

I5. Throughout the algorithm’s execution, the total budget of all edges in Eg ∪Eb ∪E1 is at708

least |E(H)|.709

Intuitively, at the end of the algorithm, we will argue that the level of every graph in H710

is not too large, and that the budget of every edge in Eg ∪ Eb ∪ E1 is not too large. Since711

J. Chuzhoy, M. Dalirrooyfard, V. Grinberg, and Z. Tan 17:17

the total budget of all edges in Eg ∪ Eb ∪ E1 is at least |E(H)|, it will then follow that712

|Eg ∪ Eb ∪ E1| is sufficiently large. We now proceed to describe the algorithm.713

Our algorithm will repeatedly use the algorithm from Corollary 12, with the same714

functions α(N), d(n), and parameter β. In order to be able to use the corollary, we need715

to estalish that β ≥ 230(α(n))3(logn)12. This is immediate to verify since β = 28(logn)1/2+ε ,716

α(n) = 2(4 logn)ε , and n is large enough.717

At the beginning of the algorithm, we set E0 = Eg = Eb = ∅, and we let H contain a718

single graph H, which is assigned level 0. Note that E1 = E(H) must hold. Every edge719

e ∈ E(H) is assigned budget b(e) = 1. Clearly, the total budget of all edges of E1 ∪Eg ∪Eb720

is B =
∑
e∈E1∪Eg∪Eb b(e) = |E(H)|. The algorithm performs iterations, as long as H 6= ∅.721

In every iteration, we select an arbitrary graph H ′ ∈ H to process.722

We now describe an iteration where some graph H ′ ∈ H is processed. We assume723

that graph H ′ is assigned level i. Notice that graph H ′ naturally defines an instance724

I ′ = (X ′, Y ′, A, C′, {GC}C∈C′) of Bipartite 2-CSP, where X ′ = V (H ′) ∩X, Y ′ = V (H ′) ∩ Y ,725

C′ = {C ∈ C | eC ∈ E(H ′)}, and the graphs GC for constraints C ∈ C′ remain the same as726

in instance I. Clearly, size(I ′) ≤ size(I) ≤ n, and H(I ′) = H ′. Furthermore, instance I ′727

remains a d(n)-to-d(n) instance. We apply the algorithm from Corollary 12 to instance I ′,728

with parameters n and β remaining unchanged. Consider the partition (E1, E2) of E(H ′)729

that the algorithm returns. Recall that the set E1 of edges is bad. We add the edges of E1730

to set Eb. From Invariant I2 and Observation 7, set Eb of edges continues to be bad. If731

the algorithm from Corollary 12 certified that E2 is a β3-good set of edges, then we update732

graph Hg to be Hg ∪ (H ′ \ E1), and we add the edges of E2 to set Eg. We then remove733

graph H ′ from H, and continue to the next iteration. Note that, from Observation 9 and734

Invariants I1 and I3, the set Eg of edges continues to be β3-good. It is easy to verify that all735

remaining invariants also continue to hold.736

From now on we assume that the algorithm from Corollary 12 returned a subgraph737

H ′′ = (X ′′, Y ′′, E′′) of H ′, with E′′ ⊆ E2, such that |X ′′| ≤ 2d(n)·|X′|
β and |Y ′′| ≤ 2d(n)·|Y ′|

β .738

In particular, |V (H ′′)| = |X ′′|+ |Y ′′| ≤ 2d(n)
β · (|X ′|+ |Y ′|) ≤ 2d(n)

β · |V (H ′)|. Additionally,739

if we denote by E∗2 the subset of edges of E2 containing all edges with exactly one endpoint740

in X ′′ ∪ Y ′′, then |E′′| ≥ |E∗2 |
2048d(n)·α(n)·log4 n

must hold. We let H∗ be the graph obtained741

from H ′ \ E1, by deleting the vertices of H ′′ from it, so V (H∗) ∪ V (H ′′) = V (H ′), and742

E(H∗) ∪ E(H ′′) ∪ E∗2 = E2. We remove graph H ′ from H, and we add graphs H ′′ and H∗743

to H, with graph H ′′ assigned level (i+ 1), and graph H∗ assigned level i. We also add the744

edges of E∗2 to E0, and we update the set E1 of edges to contain all edges of
⋃
H̃∈HE(H̃).745

Since we did not modify graph Hg in the current iteration, it is immediate to verify that746

Invariants I1–I3 continue to hold. Next, we update the budgets of edges, in order to ensure747

that Invariants I4 and I5 continue to hold. Intuitively, the edges of E∗2 are now added to748

set E0, so we need to distribute their budget among the edges of E(H ′′), in order to ensure749

that the total budget of all edges in Eg ∪ Eb ∪ E1 does not decrease. This will ensure that750

Invariant I5 continues to hold. At the same time, since the level of graph H ′′ is (i+ 1), while751

the level of graph H ′ was i, we can increase the budgets of the edges of E(H ′) and still752

maintain Invariant I4.753

Formally, recall that Corollary 12 guarantees that |E∗2 | ≤ |E′′| · (2048d(n) ·α(n) · log4 n) =754

|E′′|·η
2 . From Invariant I4, the current budget of every edge in E′′ ∪ E∗2 is bounded by ηi.755

Therefore, at the beginning of the current iteration:
∑
e∈E′′∪E∗2

b(e) ≤ ηi · (|E∗2 |+ |E′′|) ≤756

ηi · |E′′| ·
(
1 + η

2
)
< ηi+1 · |E′′|.757

We set the budget of every edge in E′′ to be ηi+1, and leave the budgets of all other758

edges unchanged. It is easy to verify that
⋃
e∈Eg∪Eb∪E1 b(e) does not decrease in the current759

ITCS 2023

17:18 A New Conjecture on 2-CSP’s with Implications to Densest k-Subgraph

iteration, so Invariant I5 continues to hold. It is also easy to verify that Invariant I4 continues760

to hold. Therefore, all invariants continue to hold at the end of the iteration. This completes761

the description of an iteration.762

The algorithm terminates when H = ∅. Clearly, we obtain a partition (Eg, Eb, E0) of763

E(H) into disjoint subsets, where the set Eb of edges is bad, and the set Eg of edges is764

β3-good. It remains to show that |Eg ∪ Eb| ≥ |E(H)|
β . We use the edge budgets in order to765

prove this. Let L∗ be the largest level of any subgraph of H that belonged to H at any time766

during the algorithm. We start with the following key observation, whose proof is deferred767

to the full version of the paper.768

I Observation 14. L∗ ≤ (logn)1/2−ε.769

From Invariant I4, throughout the algorithm, for every edge e ∈ E1, b(e) ≤ ηL
∗ must770

hold. Once an edge is added to Eb ∪ Eg, its budget does not change. Therefore, at the end771

of the algorithm, the budget of every edge in Eg ∪ Eb is at most ηL∗ . On the other hand,772

from Invariant I5, at the end of the algorithm, the total budget of all edges in E1 ∪ Eg ∪ Eb773

is at least |E(H)|. Therefore, at the end of the algorithm, |Eg ∪ Eb| ≥ |E(H)|
ηL∗ holds.774

We now bound ηL∗ . Recall that η = 212d(n)·α(n)·log4 n ≤ 24(logn)ε , since d(n) ≤ 2(logn)ε ,775

α(n) = 2(4 logn)ε , and n is large enough. Since, from Observation 14, L∗ ≤ (logn)1/2−ε, we776

get that ηL∗ ≤ 24(logn)1/2
< β, since β = 28(logn)1/2+ε . Therefore, |Eg ∪ Eb| ≥ |E(H)|/β as777

required.778

Lastly, it is easy to verify that the algorithm has at most poly(n) iterations, and the779

running time of each iteration is bounded by O(T (n) · poly(n)), so the total running time of780

the algorithm is at most O(T (n) · poly(n)).781

We are now ready to complete the proof of Theorem 10. Assume that there exists a782

constant 0 < ε ≤ 1/2, and an α(N)-approximation algorithm A for the Densest k-Subgraph783

problem, whose running time is at most T (N), where N is the number of vertices in the784

input graph, and α(N) = 2(logN)ε . From Lemma 2, there exists an α′(N)-approximation785

algorithm A for the Bipartite Densest (k1, k2)-Subgraph problem, where N is the number of786

vertices in the input graph, and α′(N) ≤ O(α(N2)) ≤ O
(
2(2 logN)ε). The running time of787

the algorithm is at most O(T (N2) · poly(N)). Denote by T ′(N) = O(T (N2) · poly(N)) this788

bound on the running time of the algorithm, and let α′′(N) = 2(4 logN)ε . Then there is an789

α′′(N)-approximation algorithm for Bipartite Densest (k1, k2)-Subgraph with running time at790

most O(T ′(N)).791

Assume now that we are given an instance I = (X,Y,A, C, {GC}C∈C) of Bipartite 2-CSP792

and parameter n that is greater than a large enough constant, so that size(I) ≤ n holds,793

and I is a d(n)-to-d(n) instance of Bipartite 2-CSP, for d(n) ≤ 2(logn)ε . Let β = 28(logn)1/2+ε ,794

and let r = dβ · logne. For convenience, we denote H = H(I). Initially, we set Eb = ∅. Our795

algorithm performs r iterations, where for all 1 ≤ j ≤ r, in iteration j we construct the set796

Ej ⊆ E(H) of edges, that is β3-good, and possibly adds some edges to set Eb. We ensure797

that, throughout the algorithm, the set Eb of edges is bad.798

We now describe the jth iteration. We assume that sets E1, . . . , Ej−1 of edges of799

H were already defined. We construct graph Hj , that is obtained from graph H, by800

deleting the edges of E1 ∪ · · · ∪ Ej−1 ∪ Eb from it. Notice that graph Hj naturally defines801

an instance Ij = (X,Y,A, Cj , {GC}C∈Cj
) of Bipartite 2-CSP, with Hj = H(Ij), where802

Cj = {C ∈ C | eC ∈ E(Hj)}. We apply the algorithm from Corollary 13 to graph Hj , with803

parameters n, β, and d(n) remaining unchanged. Consider a partition (E1, E2, E3) of E(Hj)804

that the algorithm returns. We add the edges of E1 to set Eb. Since both sets of edges are805

bad, from Observation 7, set Eb of edges continues to be bad. We also set Ej = E2, which806

J. Chuzhoy, M. Dalirrooyfard, V. Grinberg, and Z. Tan 17:19

is guaranteed to be a β3-good set of edges. Recall that Corollary 13 also guarantees that807

|E1 ∪ E2| ≥ |E(Hj)|/β. We then continue to the next iteration.808

Since, from the above discussion, for all 1 ≤ j < r, |E(Hj+1)| ≤
(

1− 1
β

)
|E(Hj)|, and809

since r = dβ · logne, at the end of the algorithm, we are guaranteed that the final collection810

Eb, E1, . . . , Er of subsets of edges indeed partitions E(H).811

Notice that the running time of a single iteration is bounded by O(T ′(n) · poly(n)) ≤812

O(T (poly(n)) · poly(n)). Since the number of iterations is bounded by poly(n), the total813

running time of the algorithm is bounded by O(T (poly(n)) · poly(n)).814

4 Reductions from Dense k-Coloring and (r,h)-Graph Partitioning to815

Densest k-Subgraph816

Our reductions from the Dense k-Coloring and (r,h)-Graph Partitioning problems to Densest817

k-Subgraph are summarized in the following theorem.818

I Theorem 15. Let α : Z+ → Z+ be an increasing function, such that α(n) ≤ o(n). Assume819

that there is an efficient α(n)-approximation algorithm for the Densest k-Subgraph problem,820

where n is the number of vertices in the input graph. Then both of the following hold:821

there is an efficient randomized algorithm that, given an instance of Dense k-Coloring822

whose graph contains N vertices, with high probability computes an O(α(N2) ·poly logN)-823

approximate solution to this instance; and824

there is an efficient randomized algorithm that, given an instance of (r,h)-Graph Partitioning825

whose graph contains N vertices, with high probability computes an O(α(N2) ·poly logN)-826

approximate solution to this instance.827

The proof of the theorem is deferred to the full version of the paper, due to lack of space.828

We provide a high-level overview of the proof of the first assertion: a reduction from Dense829

k-Coloring to Densest k-Subgraph. The proof of the second assertion is similar. We start by830

considering an LP-relaxation of the Dense k-Coloring problem, whose number of variables831

is at least
(
N
k

)
. Due to this high number of variables, we cannot solve it directly. We first832

show an algorithm, that, given an approximate fractional solution to this LP-relaxation,833

whose support size is polynomial in N , computes an approximate integral solution to the834

Dense k-Coloring problem instance. We then show an efficient algorithm that computes an835

approximate solution to the LP-relaxation, whose support is relatively small. In order to do836

so, we design an approximate separation oracle to the dual LP of the LP-relaxation, that837

relies on an approximation algorithm for Densest k-Subgraph.838

5 Reductions from Densest k-Subgraph to Dense k-Coloring and839

(r,h)-Graph Partitioning840

Our reductions from Densest k-Subgraph to Dense k-Coloring and (r,h)-Graph Partitioning are841

summarized in the following theorem.842

I Theorem 16. Let α : Z+ → Z+ be an increasing function with α(n) ≤ o(n). Then the843

following hold:844

If there exists an efficient α(n)-approximation algorithm A for the Dense k-Coloring prob-845

lem, where n is the number of vertices in the input graph, then there exists a randomized846

algorithm for the Densest k-Subgraph problem, whose running time is NO(logN), that with847

ITCS 2023

17:20 A New Conjecture on 2-CSP’s with Implications to Densest k-Subgraph

high probability computes an O(α(NO(logN)) · logN)-approximate solution to the input848

instance of the problem; here N is the number of vertices in the input instance of Densest849

k-Subgraph.850

If there exists an efficient α(n)-approximation algorithm for the (r,h)-Graph Partitioning851

problem, where n is the number of vertices in the input graph, then there exists a random-852

ized algorithm for the Densest k-Subgraph problem, whose running time is NO(logN), that853

with high probability computes an O((α(NO(logN)))3 · log2N)-approximate solution to the854

input instance of the problem; here N is the number of vertices in the input instance of855

Densest k-Subgraph.856

Due to lack of space, we defer the proof of the theorem to the full version of the paper.857

The key to both reductions is a randomized algorithm, that, given an instance DkS(G, k) of858

the Densest k-Subgraph problem, constructs an auxiliary graph H. Intuitively, if instance859

DkS(G, k) of Densest k-Subgraph has a solution of value h, then with high probability, graph860

H has close to |V (H)|/k subgraphs that contain close to h edges each. On the other hand,861

there is an algorithm that, given a subgraph H ′ ⊆ H that contains at most k vertices, extracts862

a subgraph of the original graph G, containing at most k vertices, and close to |E(H ′)|863

edges. If |V (G)| = N , then our construction of graph H ensures that |V (H)| ≤ NO(logN),864

which leads to the quasi-polynomial time of our reductions. The specific construction of the865

graph H is inspired by the ideas from [34]. We obtain the following immediate corollary of866

Theorem 16, whose proof is deferred to the full version of the paper due to lack of space.867

I Corollary 17. Assume that Conjecture 3 holds and that NP 6⊆ BPTIME(nO(logn)). Then868

for some constant 0 < ε′ ≤ 1/2, there is no efficient 2(logn)ε′ -approximation algorithm for869

(r,h)-Graph Partitioning, and there is no efficient 2(logn)ε′ -approximation algorithm for Dense870

k-Coloring.871

6 Reductions between (r,h)-Graph Partitioning and Maximum872

Bounded-Crossing Subgraph873

We establish a connection between the (r,h)-Graph Partitioning and Maximum Bounded-Crossing874

Subgraph problems via the following two theorems.875

I Theorem 18. Let α : Z+ → Z+ be an increasing function with α(n) = o(n). Assume876

that there exists an efficient α(n)-approximation algorithm for the (r,h)-Graph Partitioning877

problem, where n is the number of vertices in the input graph. Then there exists an efficient878

O(α(N) · poly logN)-approximation algorithm for Maximum Bounded-Crossing Subgraph,879

where N is the number of vertices in the input instance of Maximum Bounded-Crossing880

Subgraph.881

I Theorem 19. Let α : Z+ → Z+ be an increasing function with α(n) = o(n). Assume that882

there exists an efficient α(N)-approximation algorithm for the Maximum Bounded-Crossing883

Subgraph problem, where N is the number of vertices in the input graph. Then there exists an884

efficient O((α(n))2 · poly logn)-approximation algorithm for (r,h)-Graph Partitioning, where n885

is the number of vertices in the input instance of (r,h)-Graph Partitioning.886

The proofs of the above two theorems are deferred to the full version of the paper. Both887

proofs exploit well-known connections between crossing number and graph partitioning, that888

can be viewed as an extension of the classical Planar Separator Theorem of [45]: namely,889

if a graph G has a drawing with at most L crossings, then there is a balanced cut in G,890

J. Chuzhoy, M. Dalirrooyfard, V. Grinberg, and Z. Tan 17:21

containing at most O
(√

L+ ∆ · |E(G)|
)
edges, where ∆ is maximum vertex degree in G.891

Another useful fact exploited in the proofs of both these theorems is that any graph G with892

m edges has a plane drawing with at most m2 crossings. For example, if H = {H1, . . . ,Hr}893

is a solution to an instance of the (r,h)-Graph Partitioning problem on graph G, then there is a894

drawing of graph H =
⋃r
i=1Hi, in which the number of crossings is bounded by r ·h2. These895

two facts are exploited in order to establish a close relationship between the (r,h)-Graph896

Partitioning and Maximum Bounded-Crossing Subgraph problems, and complete the proofs of897

Theorems 18 and 19. By combining Theorem 19 with Corollary 17, we obtain the following898

corollary, whose proof is deferred to the full version of the paper.899

I Corollary 20. Assume that Conjecture 3 holds and that NP 6⊆ BPTIME(nO(logn)). Then900

for some constant 0 < ε′ ≤ 1/2, there is no efficient 2(logn)ε′ -approximation algorithm for901

Maximum Bounded-Crossing Subgraph.902

7 Acknowledgement903

The authors thank Irit Dinur and Uri Feige for insightful and helpful discussions.904

References905

1 M. Ajtai, V. Chvátal, M. Newborn, and E. Szemerédi. Crossing-free subgraphs. Theory and906

Practice of Combinatorics, pages 9–12, 1982.907

2 Noga Alon, Sanjeev Arora, Rajsekar Manokaran, Dana Moshkovitz, and Omri Weinstein.908

Inapproximabilty of densest k-subgraph from average case hardness. Manuscript, 2011.909

https://www.tau.ac.il/~nogaa/PDFS/dks8.pdf.910

3 Christoph Ambuhl, Monaldo Mastrolilli, and Ola Svensson. Inapproximability results for911

sparsest cut, optimal linear arrangement, and precedence constrained scheduling. In 48th912

Annual IEEE Symposium on Foundations of Computer Science (FOCS’07), pages 329–337.913

IEEE, 2007.914

4 Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique games915

and related problems. Journal of the ACM (JACM), 62(5):1–25, 2015.916

5 Boaz Barak, Parikshit Gopalan, Johan Håstad, Raghu Meka, Prasad Raghavendra, and David917

Steurer. Making the long code shorter. SIAM Journal on Computing, 44(5):1287–1324, 2015.918

6 Boaz Barak, Pravesh K. Kothari, and David Steurer. Small-set expansion in shortcode graph919

and the 2-to-2 conjecture. In 10th Innovations in Theoretical Computer Science Conference,920

ITCS 2019, January 10-12, 2019, San Diego, California, USA, pages 9:1–9:12, 2019. URL:921

https://doi.org/10.4230/LIPIcs.ITCS.2019.9, doi:10.4230/LIPIcs.ITCS.2019.9.922

7 Siddharth Barman. Approximating nash equilibria and dense bipartite subgraphs via an923

approximate version of caratheodory’s theorem. In Proceedings of the forty-seventh annual924

ACM symposium on Theory of computing, pages 361–369, 2015.925

8 Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vijayaraghavan.926

Detecting high log-densities: an O(n1/4) approximation for densest k-subgraph. In Proceedings927

of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts,928

USA, 5-8 June 2010, pages 201–210, 2010. URL: http://doi.acm.org/10.1145/1806689.929

1806718, doi:10.1145/1806689.1806718.930

9 Aditya Bhaskara, Moses Charikar, Venkatesan Guruswami, Aravindan Vijayaraghavan, and931

Yuan Zhou. Polynomial integrality gaps for strong sdp relaxations of densest k-subgraph. In932

Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages933

388–405. SIAM, 2012.934

10 Mark Braverman, Young Kun Ko, Aviad Rubinstein, and Omri Weinstein. Eth hardness for935

densest-k-subgraph with perfect completeness. In Proceedings of the Twenty-Eighth Annual936

ACM-SIAM Symposium on Discrete Algorithms, pages 1326–1341. SIAM, 2017.937

ITCS 2023

https://www.tau.ac.il/~nogaa/PDFS/dks8.pdf
https://doi.org/10.4230/LIPIcs.ITCS.2019.9
http://dx.doi.org/10.4230/LIPIcs.ITCS.2019.9
http://doi.acm.org/10.1145/1806689.1806718
http://doi.acm.org/10.1145/1806689.1806718
http://doi.acm.org/10.1145/1806689.1806718
http://dx.doi.org/10.1145/1806689.1806718

17:22 A New Conjecture on 2-CSP’s with Implications to Densest k-Subgraph

11 Sergio Cabello. Hardness of approximation for crossing number. Discrete & Computational938

Geometry, 49(2):348–358, 2013.939

12 Shih-Chia Chang, Li-Hsuan Chen, Ling-Ju Hung, Shih-Shun Kao, and Ralf Klasing. The940

hardness and approximation of the densest k-subgraph problem in parameterized metric graphs.941

In 2020 International Computer Symposium (ICS), pages 126–130. IEEE, 2020.942

13 Chandra Chekuri and Anastasios Sidiropoulos. Approximation algorithms for euler genus943

and related problems. In 2013 IEEE 54th Annual Symposium on Foundations of Computer944

Science, pages 167–176. IEEE, 2013.945

14 Markus Chimani and Petr Hliněnỳ. A tighter insertion-based approximation of the crossing946

number. In International Colloquium on Automata, Languages, and Programming, pages947

122–134. Springer, 2011.948

15 Eden Chlamtác, Michael Dinitz, Christian Konrad, Guy Kortsarz, and George Rabanca. The949

densest k-subhypergraph problem. SIAM Journal on Discrete Mathematics, 32(2):1458–1477,950

2018.951

16 Julia Chuzhoy. An algorithm for the graph crossing number problem. In Proceedings of the952

forty-third annual ACM symposium on Theory of computing, pages 303–312. ACM, 2011.953

17 Julia Chuzhoy. Excluded grid theorem: Improved and simplified. In Proceedings of the954

forty-seventh annual ACM symposium on Theory of Computing, pages 645–654, 2015.955

18 Julia Chuzhoy, David Hong Kyun Kim, and Rachit Nimavat. Almost polynomial hardness of956

node-disjoint paths in grids. Theory of Computing, 17(6):1–57, 2021.957

19 Julia Chuzhoy, Sepideh Mahabadi, and Zihan Tan. Towards better approximation of graph958

crossing number. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science959

(FOCS), pages 73–84. IEEE, 2020. Full version: Arxiv:2011.06545.960

20 Julia Chuzhoy, Yury Makarychev, and Anastasios Sidiropoulos. On graph crossing number961

and edge planarization. In Proceedings of the twenty-second annual ACM-SIAM symposium962

on Discrete algorithms, pages 1050–1069. SIAM, 2011.963

21 Julia Chuzhoy and Zihan Tan. A subpolynomial approximation algorithm for graph crossing964

number in low-degree graphs. In Proceedings of the 54th Annual ACM SIGACT Symposium965

on Theory of Computing, STOC 2022, pages 303–316, 2022. Full version: Arxiv:2202.06827.966

22 Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. On non-optimally expand-967

ing sets in Grassmann graphs. In Proceedings of the 50th Annual ACM SIGACT Symposium on968

Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 940–951,969

2018. URL: https://doi.org/10.1145/3188745.3188806, doi:10.1145/3188745.3188806.970

23 Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. Towards a proof of the971

2-to-1 games conjecture? In Proceedings of the 50th Annual ACM SIGACT Symposium on972

Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 376–389,973

2018. URL: https://doi.org/10.1145/3188745.3188804, doi:10.1145/3188745.3188804.974

24 Guy Even, Sudipto Guha, and Baruch Schieber. Improved approximations of crossings in975

graph drawings and vlsi layout areas. SIAM Journal on Computing, 32(1):231–252, 2002.976

25 Uriel Feige. Relations between average case complexity and approximation complexity. In977

Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 534–543,978

2002.979

26 Uriel Feige and Michael Langberg. Approximation algorithms for maximization problems980

arising in graph partitioning. Journal of Algorithms, 41(2):174–211, 2001.981

27 Uriel Feige, David Peleg, and Guy Kortsarz. The dense k-subgraph problem. Algorithmica,982

29(3):410–421, 2001.983

28 Uriel Feige, Michael Seltser, et al. On the densest k-subgraph problem. Technical Report984

CS97-16, Weizmann Institute of Science., 1997. https://citeseerx.ist.psu.edu/viewdoc/985

download?doi=10.1.1.37.9962&rep=rep1&type=pdf.986

29 Doron Goldstein and Michael Langberg. The dense k subgraph problem. arXiv preprint987

arXiv:0912.5327, 2009.988

https://doi.org/10.1145/3188745.3188806
http://dx.doi.org/10.1145/3188745.3188806
https://doi.org/10.1145/3188745.3188804
http://dx.doi.org/10.1145/3188745.3188804
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.9962&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.9962&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.9962&rep=rep1&type=pdf

J. Chuzhoy, M. Dalirrooyfard, V. Grinberg, and Z. Tan 17:23

30 Tesshu Hanaka. Computing densest k-subgraph with structural parameters. arXiv preprint989

arXiv:2207.09803, 2022.990

31 Johan Håstad. Some optimal inapproximability results. Journal of the ACM (JACM),991

48(4):798–859, 2001.992

32 Ken-ichi Kawarabayashi and Anastasios Sidiropoulos. Polylogarithmic approximation for993

minimum planarization (almost). In 58th IEEE Annual Symposium on Foundations of994

Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 779–788,995

2017. URL: https://doi.org/10.1109/FOCS.2017.77, doi:10.1109/FOCS.2017.77.996

33 Ken-ichi Kawarabayashi and Anastasios Sidiropoulos. Polylogarithmic approximation for euler997

genus on bounded degree graphs. In Proceedings of the 51st Annual ACM SIGACT Symposium998

on Theory of Computing, pages 164–175. ACM, 2019.999

34 Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the hardness of approximating the1000

chromatic number. Combinatorica, 20(3):393–415, 2000.1001

35 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the1002

thiry-fourth annual ACM symposium on Theory of computing, pages 767–775, 2002.1003

36 Subhash Khot. Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite1004

clique. SIAM Journal on Computing, 36(4):1025–1071, 2006.1005

37 Subhash Khot, Dor Minzer, Dana Moshkovitz, and Muli Safra. Small set expansion in the1006

Johnson graph. Electronic Colloquium on Computational Complexity (ECCC), 25:78, 2018.1007

https://eccc.weizmann.ac.il/report/2018/078.1008

38 Subhash Khot, Dor Minzer, and Muli Safra. On independent sets, 2-to-2 games, and Grassmann1009

graphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,1010

STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 576–589, 2017. URL: https:1011

//doi.org/10.1145/3055399.3055432, doi:10.1145/3055399.3055432.1012

39 Subhash Khot, Dor Minzer, and Muli Safra. Pseudorandom sets in Grassmann graph have1013

near-perfect expansion. In 59th IEEE Annual Symposium on Foundations of Computer1014

Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 592–601, 2018. URL: https:1015

//doi.org/10.1109/FOCS.2018.00062, doi:10.1109/FOCS.2018.00062.1016

40 Subhash Khot and Muli Safra. A two-prover one-round game with strong soundness. Theory1017

of Computing, 9:863–887, 2013. URL: https://doi.org/10.4086/toc.2013.v009a028, doi:1018

10.4086/toc.2013.v009a028.1019

41 G Kortsarz and D Peleg. On choosing a dense subgraph. In Proceedings of 1993 IEEE 34th1020

Annual Foundations of Computer Science, pages 692–701. IEEE Computer Society, 1993.1021

42 F. T. Leighton. Complexity issues in VLSI: optimal layouts for the shuffle-exchange graph and1022

other networks. MIT Press, 1983.1023

43 Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use in1024

designing approximation algorithms. Journal of the ACM (JACM), 46(6):787–832, 1999.1025

44 Bingkai Lin. The parameterized complexity of the k-biclique problem. Journal of the ACM1026

(JACM), 65(5):1–23, 2018.1027

45 Richard J Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM1028

Journal on Applied Mathematics, 36(2):177–189, 1979.1029

46 Pasin Manurangsi. Almost-polynomial ratio ETH-hardness of approximating densest k-1030

subgraph. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of1031

Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 954–961, 2017. URL:1032

http://doi.acm.org/10.1145/3055399.3055412, doi:10.1145/3055399.3055412.1033

47 Pasin Manurangsi. Inapproximability of maximum biclique problems, minimum k-cut and1034

densest at-least-k-subgraph from the small set expansion hypothesis. Algorithms, 11(1):10,1035

2018.1036

48 J. Matoušek. Lectures on discrete geometry. Springer-Verlag, 2002.1037

49 J. Pach and G. Tóth. Thirteen problems on crossing numbers. Geombinatorics, 9(4):194–207,1038

2000.1039

ITCS 2023

https://doi.org/10.1109/FOCS.2017.77
http://dx.doi.org/10.1109/FOCS.2017.77
https://eccc.weizmann.ac.il/report/2018/078
https://doi.org/10.1145/3055399.3055432
https://doi.org/10.1145/3055399.3055432
https://doi.org/10.1145/3055399.3055432
http://dx.doi.org/10.1145/3055399.3055432
https://doi.org/10.1109/FOCS.2018.00062
https://doi.org/10.1109/FOCS.2018.00062
https://doi.org/10.1109/FOCS.2018.00062
http://dx.doi.org/10.1109/FOCS.2018.00062
https://doi.org/10.4086/toc.2013.v009a028
http://dx.doi.org/10.4086/toc.2013.v009a028
http://dx.doi.org/10.4086/toc.2013.v009a028
http://dx.doi.org/10.4086/toc.2013.v009a028
http://doi.acm.org/10.1145/3055399.3055412
http://dx.doi.org/10.1145/3055399.3055412

17:24 A New Conjecture on 2-CSP’s with Implications to Densest k-Subgraph

50 R. B. Richter and G. Salazar. Crossing numbers. In L. W. Beineke and R. J. Wilson, editors,1040

Topics in Topological Graph Theory, chapter 7, pages 133–150. Cambridge University Press,1041

2009.1042

51 Marcus Schaefer. The graph crossing number and its variants: A survey. The electronic journal1043

of combinatorics, pages DS21–Sep, 2012.1044

52 Renata Sotirov. On solving the densest k-subgraph problem on large graphs. Optimization1045

Methods and Software, 35(6):1160–1178, 2020.1046

53 David Steurer. Subexponential algorithms for d-to-1 two-prover games and for certifying1047

almost perfect expansion. Available at https://citeseerx.ist.psu.edu/viewdoc/download?1048

doi=10.1.1.189.5388&rep=rep1&type=pdf, 2010.1049

54 P. Turán. A note of welcome. J. Graph Theory, 1:1–5, 1977.1050

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.189.5388&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.189.5388&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.189.5388&rep=rep1&type=pdf

	1 Introduction
	1.1 A More Detailed Overview of our Results and Techniques

	2 Preliminaries
	2.1 General Notation
	2.2 Problem Definitions and Additional Notation

	3 Conditional Hardness of Densest k-Subgraph
	3.1 Conjecture on Hardness of 2-CSP's
	3.2 Conditional Hardness of Densest k-Subgraph
	3.3 Proof of thm: DkS reduction main

	4 Reductions from Dense k-Coloring and (r,h)-Graph Partitioning to Densest k-Subgraph
	5 Reductions from Densest k-Subgraph to Dense k-Coloring and (r,h)-Graph Partitioning
	6 Reductions between (r,h)-Graph Partitioning and Maximum Bounded-Crossing Subgraph
	7 Acknowledgement

