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Abstract

In the decremental single-source shortest paths (SSSP)
problem, the input is an undirected graph G = (V,E)
with n vertices and m edges undergoing edge deletions,
together with a fixed source vertex s ∈ V . The goal
is to maintain a data structure that supports shortest-
path queries: given a vertex v ∈ V , quickly return
an (approximate) shortest path from s to v. The
decremental all-pairs shortest paths (APSP) problem is
defined similarly, but now the shortest-path queries are
allowed between any pair of vertices of V .

Both problems have been studied extensively since
the 80’s, and algorithms with near-optimal total update
time and query time have been discovered for them.
Unfortunately, all these algorithms are randomized and,
more importantly, they need to assume an oblivious
adversary – a drawback that prevents them from being
used as subroutines in several known algorithms for
classical static problems. In this paper, we provide new
deterministic algorithms for both problems, which, by
definition, can handle an adaptive adversary.

Our first result is a deterministic algorithm for the
decremental SSSP problem on weighted graphs with
O(n2+o(1)) total update time, that supports (1 + ε)-
approximate shortest-path queries, with query time
O(|P | ·no(1)), where P is the returned path. This is the
first (1 + ε)-approximation adaptive-update algorithm
supporting shortest-path queries in time below O(n),
that breaks the O(mn) total update time bound of the
classical algorithm of Even and Shiloah from 1981. Pre-
viously, Bernstein and Chechik [STOC’16, ICALP’17]
provided a Õ(n2)-time deterministic algorithm that sup-
ports approximate distance queries, but unfortunately
the algorithm cannot return the approximate shortest
paths. Chuzhoy and Khanna [STOC’19] showed an
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O(n2+o(1))-time randomized algorithm for SSSP that
supports approximate shortest-path queries in the adap-
tive adversary regime, but their algorithm only works in
the restricted setting where only vertex deletions, and
not edge deletions are allowed, and it requires Ω(n) time
to respond to shortest-path queries.

Our second result is a deterministic algorithm for
the decremental APSP problem on unweighted graphs
that achieves total update time O(n2.5+δ), for any con-
stant δ > 0, supports approximate distance queries in
O(log log n) time, and supports approximate shortest-
path queries in time O(|E(P )| · no(1)), where P is
the returned path; the algorithm achieves an O(1)-
multiplicative and no(1)-additive approximation on the
path length. All previous algorithms for APSP either
assume an oblivious adversary or have an Ω(n3) to-
tal update time when m = Ω(n2), even if an o(n)-
multiplicative approximation is allowed.

To obtain both our results, we improve and gener-
alize the layered core decomposition data structure in-
troduced by Chuzhoy and Khanna to be nearly optimal
in terms of various parameters, and introduce a new
generic approach of rooting Even-Shiloach trees at ex-
pander sub-graphs of the given graph. We believe both
these technical tools to be interesting in their own right
and anticipate them to be useful for designing future
dynamic algorithms that work against an adaptive ad-
versary.

1 Introduction

In the decremental single-source shortest path (SSSP)
problem, the input is an undirected graph G = (V,E)
with n vertices and m edges undergoing edge deletions,
together with a fixed source vertex s ∈ V . The goal
is to maintain a data structure that supports shortest-
path queries: given a vertex v ∈ V , quickly return
an (approximate) shortest path from s to v. We
also consider distance queries: given a vertex v ∈ V ,
return an approximate distance from s to v. The
decremental all-pairs shortest path (APSP) problem
is defined similarly, but now the shortest-path and
distance queries are allowed between any pair u, v ∈ V
of vertices. A trivial algorithm for both problems is
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to simply maintain the current graph G, and, given
a query between a pair u, v of vertices, run a BFS
from one of these vertices, to report the shortest path
between v and u in time O(m). Our goal therefore is
to design an algorithm whose query time – the time
required to respond to a query – is significantly lower
than this trivial O(m) bound, while keeping the total
update time – the time needed for maintaining the data
structure over the entire sequence of updates, including
the initialization — as small as possible. Observe that
the best query time for shortest-path queries one can
hope for is O(|E(P )|), where P is the returned path1.

Both SSSP and APSP are among the most well-
studied dynamic graph problems. While almost opti-
mal algorithms are known for both of them, all such
algorithms are randomized and, more importantly, they
assume an oblivious adversary. In other words, the
sequence of edge deletions must be fixed in advance
and cannot depend on the algorithm’s responses to
queries. Much of the recent work in the area of dynamic
graphs has focused on developing so-called adaptive-
update algorithms, that do not assume an oblivious ad-
versary (see e.g. [NS17, WN17, NSW17, CGL+19] for
dynamic connectivity, [BHI15, BHN16, BK19, Waj20]
for dynamic matching, and [BC16, BC17, FHN16,
Ber17, CK19, GWN20, BvdBG+20] for dynamic short-
est paths); we also say that such algorithms work
against an adaptive adversary. One of the motivat-
ing reasons to consider adaptive-update algorithms is
that several algorithms for classical static problems need
to use, as subroutines, dynamic graph algorithms that
can handle adaptive adversaries (see e.g. [ST83, Mad10,
CK19, CQ17]). In this paper, we provide new deter-
ministic algorithms for both SSSP and APSP which, by
definition, can handle adaptive adversary.

Throughout this paper, we use the Õ notation to
hide poly log n factors, and Ô notation to hide no(1)

factors, where n is the number of vertices in the input
graph. We also assume that ε > 0 is a small constant in
the discussion below.

SSSP. The current understanding of decremental
SSSP in the oblivious-adversary setting is almost com-
plete, even for weighted graphs. Forster, Henzinger,
and Nanongkai [FHN14a], improving upon the previ-
ous work of Bernstein and Roditty [BR11] and Forster
et al. [FHN14b], provided a (1 + ε)-approximation al-
gorithm, with close to the best possible total update

1Even though in extreme cases, where the graph is very sparse

and the path P is very long, O(|E(P )|) query time may be
comparable to O(m), for brevity, we will say that O(|E(P )|) query
time is below the O(m) barrier, as is typically the case. For

similar reasons, we will say that O(|E(P )|) query time is below
O(n) query time.

time of Ô(m logL), where L is the ratio of largest to
smallest edge length. The query time of the algorithm
is also near optimal: approximate distance queries can
be processed in Õ(1) time, and approximate shortest-
path queries in Õ(|E(P )|) time, where P is the returned

path. Due to known conditional lower bounds of Ω̂(mn)
on the total update time for the exact version of SSSP2,
the guarantees provided by this algorithm are close to
the best possible. Unfortunately, all these algorithms
are randomized and need to assume an oblivious adver-
sary.

For adaptive algorithms, the progress has been
slower. It is well known that the classical algorithm of
Even and Shiloach [ES81], that we refer to as ES-Tree
throughout this paper, combined with the standard
weight rounding technique (e.g. [Zwi98, Ber16]) gives
a (1 + ε)-approximate deterministic algorithm for SSSP
with Õ(mn logL) total update time and near-optimal
query time. This bound was first improved by Bernstein
[Ber17], generalizing a similar result of [BC16] for
unweighted graphs, to Õ(n2 logL) total update time.
For the setting of sparse unweighted graphs, Bernstein
and Chechik [BC17] designed an algorithm with total
update time Õ(n5/4

√
m) ≤ Õ(mn3/4), and Gutenberg

and Wulff-Nielsen [GWN20] showed an algorithm with

Ô(m
√
n) total update time.

Unfortunately, all of the above mentioned algo-
rithms only support distance queries, but they cannot
handle shortest-path queries. Recently, Chuzhoy and
Khanna [CK19] attempted to fix this drawback, and
obtained a randomized (1 + ε)-approximation adaptive-
update algorithm with total expected update time
Ô(n2 logL), that supports shortest-path queries. Un-
fortunately, this algorithm has several other drawbacks.
First, it is randomized. Second, the expected query
time of Õ(n logL) may be much higher than the de-
sired time that is proportional to the number of edges
on the returned path. Lastly, and most importantly,
the algorithm only works in the more restricted setting
where only vertex deletions are allowed, as opposed to
the more standard and general model with edge dele-
tions3. Finally, a very recent work by Bernstein et

2The bounds assume the Online Matrix-vector Multiplication

(OMv) conjecture [FHNS15], and show that in order to achieve
O(n2−δ) query time, for any constant δ > 0, the total update

time of Ω(n3−o(1)) is required in graphs with m = Θ(n2).
3We emphasize that the vertex-decremental version is known

to be strictly easier than the edge-decremental version for some
problems. For example, there is a vertex-decremental algorithm

for maintaining the exact distance between a fixed pair (s, t) of
vertices in unweighted undirected graphs using O(n2.932) total
update time [San05] (later improved to O(n2.724) in [vdBNS19]),

but the edge-decremental version requires Ω̂(n3) time when
m = Ω(n2) assuming the OMv conjecture [FHNS15]. A similar
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al. [BvdBG+20], that is concurrent to this paper, shows

(1 + ε)-approximate algorithms with Ô(m
√
n) total up-

date time in unweighted graphs and Õ(n2 logL) total
update time in weighted graphs that can return an ap-
proximate shortest path P in Õ(n) time (but not in time
proportional to |E(P )|). The algorithm is randomized
but works against an adaptive adversary.

As mentioned already, algorithms for approximate
decremental SSSP are often used as subroutines in algo-
rithms for static graph problems, including various flow
and cut problems that we discuss below. Typically, in
these applications, the following properties are desired
from the algorithm for decremental SSSP:

• it should work against an adaptive adversary, and
ideally it should be deterministic;

• it should be able to handle edge deletions (as
opposed to only vertex deletions);

• it should support shortest-path queries, and not
just distance queries; and

• it should have query time for shortest-path queries
that is close to O(|E(P )|), where P is the returned
path.

In this paper we provide the first algorithm for
decremental SSSP that satisfies all of the above require-
ments and improves upon the classical Ω(mn) bound
of Even and Shiloach [ES81]. The total update time of

the algorithm is Ô(n2 logL), which is almost optimal
for dense graphs.

Theorem 1.1 (Weighted SSSP) There is a deter-
ministic algorithm, that, given a simple undirected edge-
weighted n-vertex graph G undergoing edge deletions, a
source vertex s, and a parameter ε ∈ (1/n, 1), main-

tains a data structure in total update time Ô(n2( logL
ε2 )),

where L is the ratio of largest to smallest edge weights,
and supports the following queries:

• dist-query(s, v): in O(log log(nL)) time return an

estimate d̃ist(u, v), with distG(s, v) ≤ d̃ist(s, v) ≤
(1 + ε)distG(s, v); and

• path-query(s, v): either declare that s and v are
not connected in G in O(1) time, or return a s-v
path P of length at most (1 + ε)distG(s, v), in time

Ô(|E(P )| log logL).

Compared to the algorithm of [Ber17], our de-
terministic algorithm supports shortest-path, and not

separation holds for decremental exact APSP.

just distance queries, while having the same total up-
date time up to a subpolynomial factor. Compared
to the algorithm of [CK19], our algorithm handles the
more general setting of edge deletions, is deterministic,
and has faster query time. Compared to the work of
[BvdBG+20] that is concurrent with this paper, our al-
gorithm is deterministic and has a faster query time,
though its total update time is somewhat slower for
sparse graphs.

These improvements over previous works allow us
to obtain faster algorithms for a number of classical
static flow and cut problems; see the full version of
the paper for more details. Most of the resulting algo-
rithms are deterministic. For example, we obtain a de-
terministic algorithm for (1 + ε)-approximate minimum

cost flow in unit edge-capacity graphs in Ô(n2) time.
The previous algorithms by [LS14, AMV20] take time
Õ(min{m

√
n,m4/3}), that is slower in dense graphs.

APSP. Our understanding of decremental APSP is
also almost complete in the oblivious-adversary setting,
even in weighted graphs. Bernstein [Ber16], improving
upon the works of Baswana et al. [BHS07] and Roditty
and Zwick [RZ12], obtained a (1 + ε)-approximation
algorithm with Õ(mn logL) total update time, O(1)
query time for distance queries, and Õ(|E(P )|) query
time for shortest-path queries.4 These bounds are con-
ditionally optimal for small approximation factors5. An-
other line of work [BR11, FHN16, ACT14, FHN14a],
focusing on larger approximation factors, recently cul-
minated with a near-optimal result by Chechik [Che18]:
for any integer k ≥ 1, the algorithm of [Che18] provides

a ((2 + ε)k−1)-approximation, with Ô(mn1/k logL) to-
tal update time and O(log log(nL)) query time for dis-
tance queries and Õ(|E(P )|) query time for shortest-
path queries. This result is near-optimal because all
parameters almost match the best static algorithm of
Thorup and Zwick [TZ01]. Unfortunately, both algo-
rithms of Bernstein [Ber16] and of Chechik [Che18] need
to assume an oblivious adversary.

In contrast, our current understanding of adaptive-
update algorithms is very poor even for unweighted
graphs. The classical ES-Tree algorithm of Even and
Shiloach [ES81] implies a deterministic algorithm for
decremental exact APSP in unweighted graphs with
O(mn2) total update time and optimal query time of
O(|E(P )|) where P is the returned path. This run-
ning time was first improved by Forster, Henzinger, and
Nanongkai [FHN16], who showed a deterministic (1+ε)-

4Bernstein’s algorithm works even in directed graphs.
5Assuming the BMM conjecture [DHZ00, RZ11] or the OMv

conjecture [FHNS15], 1.99-approximation algorithms for decre-

mental APSP require Ω̂(n3) total update time or Ω̂(n) query time
in undirected unweighted graphs when m = Ω(n2).
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approximation algorithm with Õ(mn) total update time
and O(log log n) query time for distance queries. Re-
cently, Gutenberg and Wulff-Nilsen [GWN20] signifi-
cantly simplified this algorithm. Despite a long line of
research, the state-of-the-art in terms of total update
time remains Õ(mn), which can be as large as Θ̃(n3)
in dense graphs, in any algorithm whose query time is
below the O(n) bound. To highlight our lack of under-
standing of the problem, no adaptive algorithms that
attain an o(n3) total update time and query time below
O(n) for shortest-path queries are currently known for
any density regime, even if we allow huge approximation
factors, such as, for example, any o(n)-approximation6.

In this work, we break this barrier by providing
the first deterministic algorithm with sub-cubic total
update time, that achieves a constant multiplicative
and a subpolynomial additive approximation:

Theorem 1.2 (Unweighted APSP) There is a de-
terministic algorithm, that, given a simple unweighted
undirected n-vertex graph G undergoing edge deletions
and a parameter 1 ≤ k ≤ o(log1/8 n), maintains a data

structure using total update time of Ô(n2.5+2/k) and
supports the following queries:

• dist-query(u, v): in O(log n log log n) time return an

estimate d̃ist(u, v), where distG(u, v) ≤ d̃ist(u, v) ≤
3 · 2k · distG(u, v) + Ô(1); and

• path-query(u, v): either declare that u and v are not
connected in O(log n) time, or return a u-v path

P of length at most 3 · 2k · distG(u, v) + Ô(1), in

Ô(|E(P )|) time.

The additive approximation term in dist-query and
path-query is exp(O(k log3/4 n)) = Ô(1).

For example, by letting k be a large enough
constant, we can obtain a total update time of
Ô(n2.501), constant multiplicative approximation, and

exp(O(log3/4 n)) additive approximation.
We note that the concurrent work of [BvdBG+20]

on dynamic spanners that was mentioned above im-
plies a randomized Õ(1)-multiplicative approximation
adaptive-update algorithm for APSP with Õ(m) total
update time but it requires a large Õ(n) query time
even for distance queries; in contrast, our algorithm is
deterministic and has faster query times: Ô(|E(P )|) for
shortest-path and O(log n log log n) for distance queries.

6When we allow a factor-n approximation, one can use de-
terministic decremental connectivity algorithms (e.g. [HdLT01])

with Õ(m) total update time and O(logn) query time for dis-
tance queries.

Technical Highlights. Both our algorithms for
SSSP and APSP are based on the Layered Core Decom-
position (LCD) data structure introduced by Chuzhoy
and Khanna [CK19]. Informally, one may think of the
data structure as maintaining a “compressed” version
of the graph. Specifically, it maintains a decomposition
of the current graph G into a relatively small number
of expanders (called cores), such that every vertex of
G either lies in one of the cores, or has a short path
connecting it to one of the cores. The data structure
supports approximate shortest-path queries within the
cores, and queries that return, for every vertex of G, a
short path connecting it to one of the cores. Chuzhoy
and Khanna [CK19] presented a randomized algorithm
for maintaining the LCD data structure, as the graph
G undergoes vertex deletions, with total update time
Ô(n2). As our first main technical contribution, we im-
prove and generalize their algorithm in a number of
ways: first, our algorithm is deterministic; second, it
can handle the more general setting of edge deletions
and not just vertex deletions; we improve the total up-
date time to the near optimal bound of Ô(m); and we
improve the query times of this algorithm. We further
motivate this data structure and discuss the technical
barriers that we needed to overcome in order to obtain
these improvements in Section 3. We believe that the
LCD data structure is of independent interest and will
be useful in future adaptive-update dynamic algorithms.
Indeed, a near-optimal short-path oracle on decremen-
tal expanders, which is one of the technical ingredients
of our LCD data structure, has already found further
applications in other algorithms for dynamic problems
[BGS20].

Our second main contribution is a new generic
method to exploit the Even-Shiloach tree (ES-Tree)
data structure7. Many previous algorithms for SSSP
and APSP [BR11, FHN14a, FHN16, Che18] need to
maintain a collection T of several ES-Trees. One
drawback of this approach, is that, whenever the root
of an ES-Tree is disconnected due to a sequence of
edge deletions, we need to reinitialize a new ES-Tree,
leading to high total update time. To overcome this
difficulty, most such algorithms choose the locations
of the roots of the trees at random, so that they are
“hidden” from an oblivious adversary, and hence cannot
be disconnected too often. Clearly, this approach fails
completely against an adaptive adversary, that can
repeatedly delete edges incident to the roots of the trees.

In order to withstand an adaptive adversary, we
introduce the idea of “rooting an ES-Tree at an ex-

7Here, we generally include variants such as the monotone
ES-Tree.
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pander” instead. As an expander is known to be robust
against edge deletions even from an adaptive adversary
[NS17, NSW17, SW19], the adversary cannot discon-
nect the “expander root” of the tree too often, leading
to smaller total update time. The LCD data structure
naturally allows us to apply this high level idea, as it
maintains a relatively small number of expander sub-
graphs (cores). This leads to our algorithm for APSP in
the small distance regime. We also use this idea to im-
plement the short-path oracle on expanders. We believe
that our general approach of “rooting a tree at an ex-
pander” instead of “rooting a tree at a random location”
will be a key technique for future adaptive-update algo-
rithms. This idea was already exploited in a different
way in a recent subsequent work [BGS20].

Organization. We provide preliminaries in Sec-
tion 2. Section 3 focuses on our main technical contribu-
tion: the new LCD data structure. In this extended ab-
stract, we only describe the overview of this data struc-
ture. The details of its implementation, which is the
main technical contribution of this paper, can be found
in the full version of the paper. We exploit this data
structure to obtain our algorithms for SSSP and APSP
in Section 4 and Section 5, respectively. The new algo-
rithms for cut/flow problems that rely on our algorithm
for SSSP via known reductions appear in the full version
of the paper.

2 Preliminaries

All graphs considered in this paper are undirected and
simple, so they do not have parallel edges or self loops.
Given a graph G and a vertex v ∈ V (G), we denote by
degG(v) the degree of v in G. Given a length function
` : E(G) → R on the edges of G, for a pair u, v of
vertices in G, we denote by distG(u, v) the length of the
shortest path connecting u to v in G, with respect to
the edge lengths `(e). As the graph G undergoes edge
deletions, the notation degG(v) and distG(u, v) always
refer to the current graph G. For a path P in G, we
denote |P | = |E(P )|.

Given a graph G and a subset S of its vertices, let
G[S] be the subgraph of G induced by S. We denote
by δG(S) the total number of edges of G with exactly
one endpoint in set S, and we let EG(S) be the set
of all edges of G with both endpoints in S. Given
two subsets A,B of vertices of G, we let EG(A,B)
denote the set of all edges with one endpoint in A
and another in B. The volume of a vertex set S is
volG(S) =

∑
v∈S degG(v). If S is a set of vertices with

1 ≤ |S| < |V (G)|, then we may refer to S as a cut, and
we denote S = V (G) \ S. We let the conductance of

the cut S be ΦG(S) = δG(S)

min{volG(S),volG(S)} . We may

omit the subscript G when clear from context. We
denote vol(G) =

∑
v∈V (G) degG(v) = 2|E(G)|. Given a

graph G, we let its conductance Φ(G) be the minimum,
over all cuts S, of ΦG(S). Notice that 0 ≤ Φ(G) ≤ 1
always holds. We say that graph G is a ϕ-expander iff
Φ(G) ≥ ϕ.

Given a graph G, its k-orientation is an assignment
of a direction to each undirected edge of G, so that
each vertex of G has out-degree at most k. For a given
orientation of the edges, for each vertex u ∈ V (G),
we denote by in-degG(u) and out-degG(u) the in-degree
and out-degree of u, respectively. Note that, if G has
a k-orientation, then for every subset S ⊆ V of its
vertices, |EG(S)| ≤ k · |S| must hold, and, in particular,
|E(G)| ≤ k · |V (G)|. We say that a set F ⊆ E(G) of
edges has a k-orientation if the graph induced by F has
a k-orientation.

Decremental Connectivity/Spanning Forest.
We use the results of [HdLT01], who provide a determin-
istic data structure, that we denote by CONN-SF(G),
that, given an n-vertex unweighted undirected graph G,
that is subject to edge deletions, maintains a spanning
forest of G, with total update time O((m + n) log2 n),
where m is the number of edges in the initial graph
G. Moreover, the data structure supports connectivity
queries conn(G, u, v): given a pair u, v of vertices of G,
return “yes” if u and v are connected in G, and “no”
otherwise. The running time to respond to each such
query is O(log n/ log log n).

Even-Shiloach Trees. Suppose we are given a
graph G = (V,E) with integral lengths `(e) ≥ 1
on its edges e ∈ E, a source s, and a distance
bound D ≥ 1. Even-Shiloach Tree (ES-Tree) algorithm
maintains a shortest-path tree from vertex s, that
includes all vertices v with dist(s, v) ≤ D, and, for every
vertex v with dist(s, v) ≤ D, the distance dist(s, v).
Typically, ES-Tree only supports edge deletions (see, e.g.
[ES81, Din06, HK95]). However, as shown in [BC16,
Lemma 2.4], it is easy to extend the data structure to
also handle edge insertions in the following two cases:
either (i) at least one of the endpoints of the inserted
edge is a singleton vertex, or (ii) the distances from the
source s to other vertices do not decrease due to the
insertion. We denote the corresponding data structure
from [BC16] by ES-Tree(G, s,D). It was shown in
[BC16] that the total update time of ES-Tree(G, s,D),
including the initialization and all edge deletions, is
O(mD + U), where U is the total number of updates
(edge insertions or deletions), and m is the total number
of edges that ever appear in G.

Greedy Degree Pruning. We consider a simple
degree pruning procedure defined in [CK19]. Given a
graph H and a degree bound d, the procedure computes

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited



a vertex set A ⊆ V (H), as follows. Start with A =
V (H). While there is a vertex v ∈ A, such that
fewer than d neighbors of v lie in A, remove v from A.
We denote this procedure by Proc-Degree-Pruning(H, d)
and denote by A the output of the procedure. The
following observation was implicitly shown in [CK19];
for completeness, we provide its proof in the full version
of the paper.

Observation 2.1 Let A be the outcome of procedure
Proc-Degree-Pruning(H, d), for any graph H and integer
d. Then A is the unique maximal vertex set such that
every vertex in H[A] has degree at least d. That is, for
any subset A′ of V (H) where H[A′] has minimum degree
at least d, A′ ⊆ A must hold.

Consider now a graph H that undergoes edge
deletions, and let A denote the outcome of proce-
dure Proc-Degree-Pruning(H, d) when applied to the
current graph. Notice that, from the above observa-
tion, set A is a decremental vertex set, that is, ver-
tices can only leave the set, as edges are deleted from
H. We use the following algorithm, that we call
Alg-Maintain-Pruned-Set(H, d), that allows us to main-
tain the set A as the graph H undergoes edge deletions;
the algorithm is implicit in [CK19].

The algorithm Alg-Maintain-Pruned-Set(H, d) starts
by running Proc-Degree-Pruning(H, d) on the original
graph H. Recall that the procedure initializes A =
V (H), and then iteratively deletes from A vertices v
that have fewer than d neighbors in A. In the remainder
of the algorithm, we simply maintain the degree of
every vertex in H[A] as H undergoes edge deletions.
Whenever, for any vertex v, degH[A](v) falls below d, we
remove v from A. Observe that vertex degrees in H[A]
are monotonically decreasing. Moreover, each degree
decrement at a vertex v can be charged to an edge that
is incident to v and was deleted from H[A]. As each
edge is charged at most twice, the total update time is
O(|E(H)|+ |V (H)|). Therefore, we obtain the following
immediate observation.

Observation 2.2 The total update time of
Alg-Maintain-Pruned-Set is O(m + |V (H)|), where
m is the number of edges that belonged to graph H
at the beginning. Moreover, whenever the algorithm
removes some vertex v from set A, vertex v has fewer
than d neighbors in A in the current graph H.

3 Layered Core Decomposition

Our main technical contribution is a data structure
called Layered Core Decomposition (LCD), that im-
proves and generalizes the data structure introduced in
[CK19]. In order to define the data structure, we need

to introduce the notions of virtual vertex degrees, and a
partition of vertices into layers, which we do next.

Suppose we are given an n-vertex m-edge graph
G = (V,E) and a parameter ∆ > 1. We emphasize
that throughout this section, the input graph G is
unweighted, and the length of a path P in G is the
number of its edges. Let dmax be the largest vertex
degree in G. Let r be the smallest integer, such that
∆r−1 > dmax. Note that r ≤ O(log∆ n). Next,
we define degree thresholds h1, h2, . . . , hr, as follows:
hj = ∆r−j . Therefore, h1 > dmax, hr = 1, and for
all 1 < j ≤ r, hj = hj−1/∆. For convenience, we also
denote hr+1 = 0.

Definition. (Virtual Vertex Degrees and Layers)
For all 1 ≤ j ≤ r, let Aj be the outcome of
Proc-Degree-Pruning(G, hj), when applied to the

current graph G. The virtual degree d̃eg(v) of v in G is
the largest value hj such that v ∈ Aj. If no such value

exists, then d̃eg(v) = hr+1 = 0. For all 1 ≤ j ≤ r + 1,

let Λj = {v | d̃eg(v) = hj} denote the set of vertices
whose virtual degree is hj. We call Λj the jth layer.

Note that for every vertex v ∈ V (G), d̃eg(v) ∈
{h1, . . . , hr+1}. Also, Λ1 = ∅ since all vertex degrees
are below h1, and Λr+1, the set of vertices with virtual
degree 0, contains all isolated vertices. For all 1 ≤
j′ < j ≤ r + 1, we say that layer Λj′ is above layer

Λj . For convenience, we write Λ≤j =
⋃j
j′=1 Λj′ and

Λ<j ,Λ≥j ,Λ>j are defined similarly. Notice that Λ≤j =
Aj . For any vertex u, let deg≤j(u) = |EG(u,Λ≤j)|
denote the number of neighbors of u that lie in layer
j or above.

Intuitively, the partition of V (G) into layers is use-
ful because, in a sense, we can tightly control the de-
grees of vertices in each layer. This is summarized
more formally in the following three observations. The
first observation, that follows immediately from Obser-
vation 2.1, shows that every vertex in layer Λj has many
neighbors in layer j and above:

Observation 3.1 Throughout the algorithm, for each
1 ≤ j ≤ r + 1, for each vertex u ∈ Λj, deg≤j(u) ≥ hj.
Therefore, the minimum vertex degree in G[Λ≤j ] is
always at least hj.

As observed already, from Observation 2.1, over the
course of the algorithm, vertices may only be deleted
from Λ≤j = Aj . This immediately implies the following
observation:

Observation 3.2 As edges are deleted from G, for

every vertex v, d̃eg(v) may only decrease.
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Throughout, we denote by n≤j the number of
vertices that belonged to Λ≤j at the beginning of the
algorithm, before any edges were deleted from the input
graph. Observe that n≤jhj ≤ 2m by Observation 3.1.
The proof of the following observation appears in the
full version of the paper.

Observation 3.3 For all 1 ≤ j ≤ r, let E≥j be the
set of all edges, such that at any point of time at least
one endpoint of e lied in Λ≥j. Then E≥j has a (∆hj)-
orientation, and so |E≥j | ≤ ∆hjn. Moreover, the
total number of edges e, such that, at any point of the
algorithm’s execution, both endpoints of e lied in Λj, is
bounded by n≤jhj∆.

From Observation 3.1, all vertex degrees in G[Λ≤j ]
are at least hj , so, in a sense, graph G[Λ≤j ] is a high-
degree graph. One advantage of high-degree graphs is
that every pair of vertices lying in the same connected
component of such a graph must have a short path con-
necting them; specifically, it is not hard to show that, if
u, v are two vertices lying in the same connected com-
ponent C of graph G[Λ≤j ], then there is a path connect-
ing them in C, of length at most O(|V (C)|/hj). This
property of graphs G[Λ≤j ] is crucial to our algorithms
for SSSP and APSP, and one of the goals of the LCD
data structure is to support short-path queries: given
a pair of vertices u, v ∈ Λ≤j , either report that they
lie in different connected components of G[Λ≤j ], or re-
turn a path of length at most roughly O(|V (C)|/hj)
connecting them, where C is the connected component
of G[Λ≤j] containing u and v. Additionally, one can
show that a high-degree graph must contain a core de-
composition. Specifically, suppose we are given a sim-
ple n-vertex graph H, with minimum vertex degree at
least h. Intuitively, a core of H is a vertex-induced
sub-graph K ⊆ H, such that, for ϕ = Ω(1/ log n),
graph K is a ϕ-expander, and all vertex degrees in K
are at least ϕh/3. One can show that, if K is a core,
then its diameter is O(log n/ϕ), and it is (ϕh/3)-edge-
connected. A core decomposition of H is a collection
F = {K1, . . . ,Kt} of vertex-disjoint cores, such that,
for each vertex u /∈

⋃
K∈F V (K), there are at least 2h/3

edge-disjoint paths of length O(log n) from u to vertices
in
⋃
K∈F V (K). The results of [CK19] implicitly show

the existence of a core decomposition in a high-degree
graph, albeit with a much more complicated definition
of the cores and of the decomposition. For complete-
ness, in the full version of the paper, we formally state
and prove a theorem about the existence of a core de-
composition in a high-degree graph. Though we do not
need this theorem for the results of this paper, we feel
that it is an interesting graph theoretic statement in
its own right, that in a way motivates the LCD data

structure, whose intuitive goal is to maintain a layered
analogue of the core decomposition of the input graph
G, as it undergoes edge deletions.

Formally, the LCD data structure receives as in-
put an (unweighted) graph G undergoing edge dele-
tions, and two parameters ∆ ≥ 2 and 1 ≤ q ≤
o(log1/4 n). It maintains the partition of V (G) into
layers Λ1, . . . ,Λr+1, as described above, and addition-
ally, for each layer Λj , the data structure maintains a
collection Fj of vertex-disjoint subgraphs of the graph
Hj = G[Λj ], called cores (while we do not formally have
any requirements from the cores, e.g. we do not formally
require that a core is an expander, our algorithm will
in fact still ensure that this is the case, so the intuitive
description of the cores given above matches what our
algorithm actually does). Throughout, we use an addi-

tional parameter γ(n) = exp(O(log3/4 n)) = Ô(1). The
data structure is required to support the following three
types of queries:

• Short-Path(j, u, v): Given any pair of vertices u
and v from Λ≤j , either report that u and v lie
in different connected components of G[Λ≤j ], or
return a simple path P connecting u to v in G[Λ≤j ]

of length O(|V (C)|(γ(n))O(q)/hj) = Ô(|V (C)|/hj),
where C is the connected component of G[Λ≤j ]
containing u and v.

• To-Core-Path(u): Given any vertex u, return a
simple path P = (u = u1, . . . , uz = v) of length
O(log3 n) from u to a vertex v that lies in some
core in

⋃
j Fj . Moreover, path P must visit the

layers in a non-decreasing order, that is, if ui ∈ Λj
then ui+1 ∈ Λ≤j .

• Short-Core-Path(K,u, v): Given any pair of vertices
u and v, both of which lie in some core K ∈

⋃
j Fj ,

return a simple u-v path P in K of length at most
(γ(n))O(q) = Ô(1).

We now formally state one of our main technical
results - an algorithm for maintaining the LCD data
structure under edge deletions.

Theorem 3.1 (Layered Core Decomposition)
There is a deterministic algorithm that, given a sim-
ple unweighted n-vertex m-edge graph G = (V,E)
undergoing edge deletions, and parameters ∆ ≥ 2
and 1 ≤ q ≤ o(log1/4 n), maintains a parti-
tion (Λ1, . . . ,Λr+1) of V into layers, where for all
1 ≤ j ≤ r + 1, each vertex in Λj has virtual degree hj.
Additionally, for each layer Λj, the algorithm maintains
a collection Fj of vertex-disjoint subgraphs of the graph
Hj = G[Λj ], called cores. The algorithm supports
queries Short-Path(j, u, v) in time O(log n) if u and v
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lie in different connected components of G[Λ≤j ], and in

time O(|P |(γ(n))O(q)) = Ô(|P |) otherwise, where P is
the u-v path returned. Additionally, it supports queries
To-Core-Path(u) with query time O(|P |), where P is
the returned path, and Short-Core-Path(K,u, v) with

query time (γ(n))O(q) = Ô(1). For all 1 ≤ j ≤ h + 1,
once a core K is added to Fj for the first time,
it only undergoes edge- and vertex-deletions, un-
til K = ∅ holds. The total number of cores ever
added to Fj throughout the algorithm is at most

Ô(n∆/hj). The total update time of the algorithm is

Ô(m1+1/q∆2+1/q(γ(n))O(q)) = Ô(m1+1/q∆2+1/q).

For intuition, it is convenient to set the parameters
∆ = 2 and q = log1/8 n, which is also the setting that we
use in algorithms for SSSP and for APSP in the large-
distance regime. For this setting, (γ(n))O(q) = Ô(1),

and the total update time of the algorithm is Ô(m).
Optimality. The guarantees of the LCD data

structure from Theorem 3.1 are close to optimal in sev-
eral respects. First, the total update time of Ô(m) and
the query time for Short-Core-Path and To-Core-Path are
clearly optimal to within a subpolynomial in n factor.
The length of the path returned by Short-Path queries
is almost optimal in the sense that there can exist a
path P in a connected component C of G[Λ≤j ] whose

length is Ω(|V (C)|/hj); the query time of Ô(|P |) is al-
most optimal as well. The bound on the total number
of cores ever created in Λj is also near optimal. This
is because, even in the static setting, there exist graphs
with minimum degree hj that require Ω̃(n/hj) cores in
order to guarantee the desired properties of a core de-
composition.

Comparison with the Algorithm of [CK19] and
Summary of Main Challenges. The data structure
from [CK19] supports the same set of queries, but has
several significant drawbacks compared to the results
of Theorem 3.1. First, the algorithm of [CK19] is
randomized. Moreover, it can only handle vertex
deletions, as opposed to the more general and classical
setting of edge deletions (which is also required in
some applications to static flow and cut problems).
Additionally, the total update time of the algorithm
of [CK19] is Ô(n2), as opposed to the almost linear

running time of Ô(m) of our algorithm. For every index
j, the total number of cores ever created in Λj can be

as large as Ô(n2/h2
j ) in the algorithm of [CK19], as

opposed to the bound of Ô(n/hj) that we obtain; this
bound directly affects the running of our algorithm for
APSP. Lastly, the query time for Short-Path(j, u, v) is

only guaranteed to be bounded by Ô(|V (C)|) in [CK19],

where C is a connected component of Λ≤j to which u

and v belong, as opposed to our query time of Ô(|P |),
where P is the u-v path returned. This faster query time
is essential in order to obtain the desired query time of
Ô(|P |) in our algorithms for SSSP and APSP. Next,
we describe some of the challenges to achieving these
improvements, and also sketch some ideas that allowed
us to overcome them.

Vertex deletions versus edge deletions. The
algorithm of [CK19] maintains, for every index 1 ≤
j ≤ r, a variation of the core decomposition (that
is based on vertex expansion) in graph G[Λj ]. This
decomposition can be computed in almost linear time
Ô(|E(Λj)|) = Ô(nhj), which is close to the best time
one can hope for, creating an initial set Fj of at

most Ô(n/hj) cores. Since every core K ∈ Fj has
vertex degrees at least hj/n

o(1), the decomposition can
withstand up to hj/(2n

o(1)) vertex deletions, while
maintaining all its crucial properties. However, after
hj/(2n

o(1)) vertex deletions, some cores may become
disconnected, and the core decomposition structure may
no longer retain the desired properties. Therefore, after
every batch of roughly hj/(2n

o(1)) vertex deletions, the
algorithm of [CK19] recomputes the core decomposition
Fj from scratch. Since there may be at most n vertex-
deletion operations throughout the algorithm, the core
decomposition Fj only needs to be recomputed at most

Ô(n/hj) times throughout the algorithm, leading to the

total update time of Ô(n/hj) · Ô(|E(Λj)|) = Ô(n2).
The total number of cores that are ever added to Fj
over the course of the algorithm is then bounded by
Ô(n/hj) · Ô(n/hj) = Ô(n2/h2

j ).
Consider now the edge-deletion setting. Even if we

are willing to allow a total update time of Ô(n2), we
cannot hope to perform a single computation of the
decomposition Fj in time faster than linear in |E(Λj)|,
that is, O(nhj). Therefore, we can only afford at
most O(n/hj) such re-computations over the course
of the algorithm. Since the total number of edges
in graph G[Λj ] may be as large as Θ(nhj), our core
decomposition must be able to withstand up to h2

j edge
deletions. However, even after just hj edge deletions,
some vertices of Λj may become disconnected in graph
G[Λ≤j ], and some of the cores may become disconnected
as well. In order to overcome his difficulty, we first
observe that it takes hj/n

o(1) edge deletions before a
vertex in Λj becomes “useless”, which roughly means
that it is not well-connected to other vertices in Λj .
Similarly to the algorithm of [CK19], we would now
like to recompute the core decomposition Fj only after
hj/(2n

o(1)) vertices of Λj become useless, which roughly
corresponds to h2

j/n
o(1) edge deletions. Additionally, we
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employ the expander pruning technique from [SW19] in
order to maintain the cores so that they can withstand
this significant number of edge deletions. As in [CK19],

this approach can lead to Ô(n2) total update time,
ensuring that the total number of cores that are ever
added to set Fj is at most Ô(n2/h2

j ).
Obtaining faster total update time and fewer

cores. Even with the modifications described above,
the resulting total update time is only Ô(n2), while
our desired update time is near-linear in m. It is not
hard to see that recomputing the whole decomposi-
tion Fj from scratch every time is too expensive, and

with the Ô(m) total update time we may only afford

to do so at most Ô(1) times. In order to overcome
this difficulty, we further partition each layer Λj into
sublayers Λj,1,Λj,2, . . . ,Λj,Lj

whose sizes are geomet-
rically decreasing (that is, |Λj,`| ≈ |Λj,`−1|/2 for all
`). The core decompositions Fj,` will be computed
in each sub-layer separately, and the final core de-
composition for layer j that the algorithm maintains
is Fj =

⋃
` Fj,`. In general, we guarantee that, for

each `, |Λj,`| ≤ n≤j/2
`−1 always holds, and we recom-

pute the core decomposition Fj,` for sublayer at Λj,`
at most Ô(2`) times. We use Observation 3.3 to show
that |E(Λj,`)| ≤ hj∆ · n≤j/2`−1 = O(m/2`) must hold.
Therefore, the total time for computing core decom-
positions within each sublayer is Ô(m). As there are
O(log n) sublayers within a layer, the total time for com-

puting the decompositions over all layers is Ô(m). This
general idea is quite challenging to carry out, since, in
contrast to layers Λ1, . . . ,Λr+1, where vertices may only
move from higher to lower layers throughout the algo-
rithm, the vertices of a single layer can move between its
sublayers in a non-monotone fashion. One of the main
challenges in the design of the algorithm is to design
a mechanism for allowing the vertices to move between
the sublayers, so that the number of such moves is rel-
atively small.

Improving query times. The algorithm of
[CK19] supports Short-Core-Path(K,u, v) queries, that
need to return a short path inside the core K connect-
ing the pair u, v of its vertices, in time Õ(|V (K)|) +

Ô(1), returning a path of length Ô(1); in contrast

our algorithm takes time Ô(1). The query time of
Short-Core-Path(K,u, v) in turn directly influences the
query time of Short-Path(u, v) queries, which in turn is
critical to the final query time that we obtain for SSSP
and APSP problems. Another way to view the problem
of supporting Short-Core-Path(K,u, v) queries is the fol-
lowing: suppose we are given an expander graph K that
undergoes edge- and vertex-deletions (in batches). We
are guaranteed that after each batch of such updates,

the remaining graph K is still an expander, and so every
pair of vertices in K has a path of length O(poly log n)
connecting them. The goal is to support “short-path”
queries: given a pair u, v of vertices of K, return a path
of length Ô(1) connecting them. The problem seems
interesting in its own right, and, for example, it plays
an important role in the recent fast deterministic ap-
proximation algorithm for the sparsest cut problem of
[CGL+19]. The algorithm of [CK19], in order to pro-
cess Short-Core-Path(K,u, v) query, simply perform a
breadth-first search in the core K to find the required
u-v path, leading to the high query time. Instead, we
develop a more efficient algorithm for supporting short-
path queries in expander graphs, that is similar in spirit
and in techniques to the algorithm of [CGL+19]. This
new data structure has already found further applica-
tions to other problems [BGS20].

For Short-Path(u, v) queries, the guarantees of
[CK19] are similar to our guarantees in terms of the
length of the path returned, but their query process-
ing time is too high, and may be as large as Ω̃(n) in the

worst case. We improve the query time to Ô(|P |), where
P is the returned path, which is close to the best pos-
sible bound. This improvement is necessary in order to
obtain faster algorithms for several applications to cut
and flow problems that we discuss. The improvement
is achieved by exploiting the improved data structure
that supports Short-Core-Path queries within the cores,
and by employing a minimum spanning tree data struc-
ture on top of the core decomposition, instead of using
dynamic connectivity as in the algorithm of [CK19].

Randomized versus Deterministic Algo-
rithm. While the algorithm of [CK19] works against
an adaptive adversary, it is a randomized algorithm.
The two main randomized components of the algo-
rithm are: (i) an algorithm to compute a core de-
composition; and (ii) data structure that supports
Short-Core-Path(K,u, v) queries within each core. For
the first component, we exploit the recent fast de-
terministic algorithm for the Balanced Cut problem
of [CGL+19]. For the second component, as dis-
cussed above, we design a new deterministic algorithm
that support Short-Core-Path(K,u, v) queries within the
cores. These changes lead to a deterministic algorithm
for the LCD data structure.

Using the LCD Data Structure for SSSP and APSP
With our improved implementation of the LCD data
structure, using the same approach as that of [CK19],
we immediately obtain the desired algorithm for SSSP,
proving Theorem 1.1.

Our algorithm for APSP in the large-distance
regime exploits the LCD data structure in a way similar
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to that of the algorithm for SSSP: We use the LCD data
structure in order to “compress” the dense parts of the
graph. In the sparse part, instead of maintaining a sin-
gle ES-Tree, as in the algorithm for SSSP, we maintain
the deterministic tree cover of [GWN20] (which simpli-
fies the moving ES-Tree data structure of [FHN16]).

Our algorithm for APSP in the small-distance
regime uses a tree cover approach, similar to previous
work [BR11, FHN14a, FHN16, Che18]. The key differ-
ence is that we root each ES-Tree at one of the cores
maintained by the LCD data structure (recall that each
core is a high-degree expander), instead of rooting it at
a random vertex.

The proof of Theorem 3.1, which is the key technical
contribution of this paper can be found in the full
version of the paper. However, the statement of this
theorem is sufficient in order to obtain our results for
SSSP and APSP, that are discussed in Section 4 and
Section 5, respectively.

4 SSSP

This section is dedicated to the proof of Theorem 1.1.
The main idea is identical to that of [CK19], who
use the framework of [Ber17], combined with a weaker
version of the LCD data structure. The improvements
in the guarantees that we obtain follow immediately by
plugging the new LCD data structure from Section 3
into their algorithm. As is the standard practice in such
algorithms, we treat each distance scale separately. We
prove the following theorem that allows us to handle a
single distance scale.

Theorem 4.1 There is a deterministic algorithm, that,
given a simple undirected n-vertex graph G with weights
on edges that undergoes edge deletions, together with a
source vertex s ∈ V (G) and parameters ε ∈ (1/n, 1) and
D > 0, supports the following queries:

• dist-queryD(s, v): in time O(1), either correctly
report that distG(s, v) > 2D, or return an estimate

d̃ist(s, v). Moreover, if D ≤ distG(s, v) ≤ 2D, then

distG(s, v) ≤ d̃ist(s, v) ≤ (1 + ε)distG(s, v) must
hold.

• path-queryD(s, v): either correctly report that
distG(s, v) > 2D in time O(1), or return a s-v path

P in time Ô(|P |). Moreover, if D ≤ distG(s, v) ≤
2D, then the length of P must be bounded by
(1 + ε)distG(s, v). Path P may not be simple, but
an edge may appear at most once on P .

The total update time of the algorithm is Ô(n2/ε2).

We provide a proof of Theorem 4.1 below, after we

complete the proof of Theorem 1.1 using it, via standard
arguments.

We will sometimes refer to edge weights as edge
lengths, and we denote the length of an edge e ∈ E(G)
by `(e). We assume that the minimum edge weight is
1 by scaling, so the maximum edge weight is L. For
all 0 ≤ i ≤ dlog(Ln)e, we maintain a data structure
from Theorem 4.1 with the distance parameter Di = 2i.
Therefore, the total update time of our algorithm is
bounded by Ô(n2( logL

ε2 )), as required.
In order to respond to a query dist-query(s, v),

we perform a binary search on the values Di, and
run queries dist-queryDi

(s, v) in the corresponding data
structure. Clearly, we only need to perform at most
O(log log(Ln)) such queries, in order to respond to
query dist-query(s, v).

In order to respond to path-query(s, v), we first run
the algorithm for dist-query(s, v) in order to identify a
distance scale Di, for which Di ≤ distG(s, v) ≤ 2Di

holds. We then run query path-queryDi
(s, v) in the

corresponding data structure.
In order to complete the proof of Theorem 1.1, it

now remains to prove Theorem 4.1, which we do in the
remainder of this section.

Recall that we have denoted by `(e) the
length/weight of the edge e of G. We use standard
edge-weight rounding to show that we can assume that
D = d4n/εe and that all edge lengths are integers be-
tween 1 and 4D. In order to achieve this, we dis-
card all edges whose length is greater than 2D, and
we set the length of each remaining edge e to be
`′(e) = d4n`(e)/(εD)e. For every pair u, v of vertices,
let dist′(u, v) denote the distance between u and v with
respect to the new edge length values. Notice that for
all u, v, 4n

εDdist(u, v) ≤ dist′(u, v) ≤ 4n
εDdist(u, v) + n,

since the shortest s-v path contains at most n edges.
Moreover, if dist(u, v) ≥ D, then n ≤ dist(u, v) · nD , so
dist′(u, v) ≤ 4n

εDdist(u, v)+ n
Ddist(u, v) ≤ 4n

εDdist(u, v)(1+
ε/4). Notice also that, if D ≤ dist(u, v) ≤ 2D, then⌈

4n
ε

⌉
≤ dist′(u, v) ≤ 4

⌈
4n
ε

⌉
. Therefore, from now on

we can assume that D = d4n/εe, and for simplicity,
we will denote the new edge lengths by `(e) and the
corresponding distances between vertices by dist(u, v).
From the above discussion, all edge lengths are integers
between 1 and 4D. It is now enough to prove Theo-
rem 4.1 for this setting, provided that we ensure that,
whenever D ≤ dist(s, v) < 4D holds, we return a path
of length at most (1+ ε/2)dist(s, v) in response to query
path-query(v).

The Algorithm. Let m denote the initial number
of edges in the input graph G. We partition all edges
of G into λ = blog(4D)c classes, where for 0 ≤ i ≤ λ,
edge e belongs to class i iff 2i ≤ `(e) < 2i+1. We denote
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the set of all edges of G that belong to class i by Ei.
Fix an index 1 ≤ i ≤ λ, and let Gi be the sub-graph
of G induced by the edges in Ei. We view Gi as an
unweighted graph and maintain the LCD data structure
from Theorem 3.1 on Gi with parameter ∆ = 2 and q =
log1/8 n using total update time Ô(m1+1/q∆2+1/q) =

Ô(m). Recall that γ(n) = exp(O(log3/4 n)).

We let α = (γ(n))O(q) = Ô(1) be chosen such that,
in response to query Short-Path(j, u, v), the LCD data
structure must return a path of length at most |V (C)| ·
α/hj , where C denotes the connected component of
graph G[Λ≤j ] containing u and v. We use the parameter
τi = 8nλα

εD · 2i that is associated with graph Gi. This
parameter is used to partition the vertices of G into
a set of vertices that are heavy with respect to class
i, and vertices that are light with respect of class i.

Specifically, we let Ui =
{
v ∈ V (Gi) | d̃egGi

(v) ≥ τi
}

be the set of vertices that are heavy for class i, and we
let U i = V (Gi) \ Ui be the set of vertices that are light
for class i.

Next, we define the heavy and the light graph for
class i. The heavy graph for class i, that is denoted by
GHi , is defined as Gi[Ui]. In other words, its vertex set
is the set of all vertices that are heavy for class i, and
its edge set is the set of all class-i vertices whose both
endpoints are heavy for class i. The light graph for class
i, denoted by GLi , is defined as follows. Its vertex set is
V (Gi), and its edge set contains all edges e ∈ Ei, such
that at least one endpoint of e lies in U i. Notice that
we can exploit the LCD data structure to compute the
initial graphs GHi and GLi , and to maintain them, as
edges are deleted from G.

Our algorithm exploits the LCD data structure in
two ways. First, observe that, from Observation 3.3,
for all 1 ≤ i ≤ λ, the total number of edges that
ever belong to the light graph GLi over the course of
the algorithm is bounded by O(nτi). Additionally, we
will exploit the Short-Path queries that the LCD data
structure supports.

Let ji be the largest integer, such that hji ≥ τi
(recall that hj is the virtual degree of vertices in layer
Λj). Given a query Short-Path(ji, u, v) to the LCD data
structure on Gi, where u and v lie in the same connected
component C of GHi , the data structure must return

a simple u-v path in C, containing at most |V (C)|α
τi

edges. Abusing the notation, we denote this query by
Short-Path(C, u, v) instead.

Let GL =
⋃λ
i=1G

L
i be the light graph for the graph

G. Next, we define an extended light graph ĜL, as
follows. We start with ĜL = GL; the vertices of GL are
called regular vertices. Next, for every 1 ≤ i ≤ λ, for
every connected component C of GHi , we add a vertex

vC to ĜL, that we call a special vertex, or a supernode,
and connect it to every regular vertex u ∈ V (C) with
an edge of length 1/4.

For all 1 ≤ i ≤ λ, we use the CONN-SF data
structure on graph GHi , in order to maintain its con-
nected components. The total update time of these
connectivity data structures is bounded by O(mλ) ≤
O(m logD).8 The following observation follows imme-
diately from the assumption that all edge lengths in G
are at least 1.

Observation 4.1 Throughout the algorithm, for every
vertex v ∈ V (G), distĜL(s, v) ≤ distG(s, v).

The following theorem was proved in [CK19]; the
proof follows the arguments from [Ber17] almost exactly.

Theorem 4.2 (Theorem 4.4 in [CK19]) There is a
deterministic algorithm, that maintains an approximate
single-source shortest-path tree T of graph ĜL from
the source s, up to distance 8D. Tree T is a sub-
graph of ĜL, and for every vertex v ∈ V (ĜL), with
distĜL(s, v) ≤ 8D, the distance from s to v in T is
at most (1 + ε/4)distĜL(s, v). The total update time of

the algorithm is Õ
(
nD
ε + |E(G)|+

∑
e∈E

D
ε`(e)

)
, where

E(G) is the set of edges that belong to G at the beginning
of the algorithm, and E is the set of all edges that are
ever present in the graph ĜL.

Recall that D = Θ(n/ε). Since, for all 1 ≤ i ≤ λ,
the total number of edges of Ei ever present in ĜL is
bounded by O(nτi) = O

(
n · 8nλα

εD · 2i
)

= Ô(n · 2i) from
Observation 3.3, and since the total number of edges
incident to the special vertices that are ever present
in ĜL is bounded by O(nλ log n) = Õ(n), we get that
the running time of the algorithm from Theorem 4.2 is
bounded by:

Õ

(
n2

ε2
+

λ∑
i=1

|Ei|D
ε · 2i

)
= Ô

(
n2

ε2

)
.

As other components take Ô(m) time, the total update

time of the algorithm for Theorem 4.1 is Ô(n2/ε2), as re-
quired. It remains to show how the algorithm responds
to queries path-queryD(s, v) and dist-queryD(s, v).

8We note that our setting is slightly different from that
of [Ber17], who used actual vertex degrees and not their virtual
degrees in the definitions of the light and the heavy graphs. Our

definition is identical to that of [CK19], though they did not define
the virtual degrees explicitly. However, they used Procedure
Proc-Degree-Pruning in order to define the heavy and the light

graphs, and so their definition of both graphs is identical to ours,
except for the specific choice of the thresholds τi).
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Responding to path-queryD(s, v). Given a query
path-queryD(s, v), we start by computing the unique
simple s-v path P in the tree T given by Theorem 4.2.
If vertex v is not in T , then clearly distG(s, v) > 2D and
so we report distG(s, v) > 2D. From now, we assume
v ∈ T . Next, we transform the path P in ĜL into an
s-v path P ∗ in the original graph G as follows.

Let vC1
, . . . , vCz

be all special vertices that appear
on the path P . For 1 ≤ k ≤ z, let uk be the
regular vertex preceding vCk

on P , and let u′k be the
regular vertex following vCk

on P . If Ck is a connected
component of a heavy graph GHi of class i, we use the
query Short-Path(Ck, uk, u

′
k) in the LCD data structure

for graph Gi in order to to obtain a simple uk-u′k path

Qk contained in Ck, that contains at most |V (Ck)|α
τi

(unweighted) edges. Then, we replace the vertex vCk

with the path Qk on path P . As we can find the path
P in time O(|P |), by following the tree T , and since
the query time to compute each path Qk is bounded by
|Qk| · (γ(n))O(q) = Ô(|Qk|), the total time to compute

path P ∗ is bounded by Ô(|E(P ∗)|).
We now bound the length of the path P ∗. Recall

that, by Observation 4.1, path P has length (1 +
ε/4)distĜL(s, v) ≤ (1 + ε/4)distG(s, v). For each 1 ≤
i ≤ λ, let Ci = {Ck | vCj

∈ P and Ck is a
connected component of GHi }. Let Qi be the set of
all corresponding paths Qk of Ck ∈ Ci. We can bound
the total length of all path in Qi as follows:∑

Q∈Qi

`(Q) ≤
∑
Ck∈Ci

|Qk| · 2i+1

≤
∑
Ck∈Ci

|V (Ck)|α
τi

· 2i+1

≤
∑
Ck∈Ci

|V (Ck)| · εD
4nλ

≤ εD

4λ

(we have used the fact that τi = 8nλα
εD · 2i, and

that all components in Ci are vertex-disjoint). Summing
up over all λ classes, the total length of all paths
Qk corresponding to the special vertices on path P
is at most εD/4. We conclude that `(P ∗) ≤ `(P ) +
εD/4. If distG(s, v) ≥ D, we have that `(P ∗) ≤
(1+ε/4)distG(s, v)+εdistG(s, v)/4 = (1+ε/2)distG(s, v).
Notice that path P ∗ may not be simple, since a vertex
may belong to several heavy graphs GHi . However, for
every edge e ∈ E(G), there is a unique index i such
that e ∈ Gi, and the sets of edges of the heavy graph
GHi and the light graph GLi are disjoint from each other.

In particular, if e ∈ E(GHi ), then e 6∈ ĜL. Since path
P is simple, all graphs C1, . . . , Cz are edge-disjoint from

each other, and their edges are also disjoint from E(ĜL).
We conclude that an edge may appear at most once on
P ∗.

Responding to dist-queryD(s, v). Given a query
dist-queryD(s, v), we simply return dist′(s, v) =
distT (s, v)+εD/4 in time O(1). Recall that dist′(s, v) =
distT (s, v) + εD/4 ≥ `(P ∗) ≥ distG(s, v) (here, P ∗ is
the path that we would have returned in response to
query path-queryD(s, v), though we only use this path
for the analysis and do not compute it expliclty). As
before if distG(s, v) ≥ D, then, from Observation 4.1,
dist′(s, v) ≤ (1 + ε/2)distG(s, v).

5 APSP

In this section, we prove Theorem 1.2 by combin-
ing two algorithms. We use the function γ(n) =

exp(O(log3/4 n)) from Theorem 3.1.
The first algorithm, summarized in the next theo-

rem, is faster in the large-distance regime:

Theorem 5.1 (APSP for large distances) There
is a deterministic algorithm, that, given parameters
0 < ε < 1/2 and D > 0, and a simple unweighted undi-
rected n-vertex graph G that undergoes edge deletions,
maintains a data structure using total update time of
Ô
(
n3/(ε3D)

)
and supports the following queries:

• dist-queryD(u, v): either correctly declare that
distG(u, v) > 2D in O(log n) time, or return an
estimate dist′(u, v) in O(log n) time. If D ≤
distG(u, v) ≤ 2D, then distG(u, v) ≤ dist′(u, v) ≤
(1 + ε)distG(u, v) must hold.

• path-queryD(u, v): either correctly declare that
distG(u, v) > 2D in O(log n) time, or return a u-

v path P of length at most 9D in Ô(|P |) time. If
D ≤ distG(u, v) ≤ 2D, then |P | ≤ (1 + ε)distG(u, v)
must hold.

The second algorithm is faster for the short-distance
regime.

Theorem 5.2 (APSP for small distances) There
is a deterministic algorithm, that, given parameters
1 ≤ k < o(log1/8 n) and D > 0, and a simple un-
weighted undirected n-vertex graph G that undergoes
edge deletions, maintains a data structure using total
update time Ô(n2+3/kD) and supports the following
queries:

• dist-queryD(u, v): in time O(1), either correctly es-
tablish that distG(u, v) > 2D, or correctly establish
that dist(u, v) ≤ 2k · 3D + (γ(n))O(k).

• path-queryD(u, v): either correctly establish that
distG(u, v) > 2D in O(1) time, or return a u-v path
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P of length at most 2k · 3D + (γ(n))O(k), in time
O(|P |) + (γ(n))O(k).

We prove Theorems 5.1 and 5.2 below, after we
complete the proof of Theorem 1.2 using them. Let
ε = 1/4, and D∗ = n0.5−1/k. For 1 ≤ i ≤

⌈
log1+ε n

⌉
,

let Di = (1 + ε)i. For all 1 ≤ i ≤
⌈
log1+ε n

⌉
,

if Di ≤ D∗, then we maintain the data structure
from Theorem 5.2 with the value D = Di, and the
input parameter k, and otherwise we maintain the data
structure from Theorem 5.1 with the bound D = Di

and the parameter ε. Since, from the statement of
Theorem 1.2, k ≤ o(log1/8 n) holds, it is easy to verify
that the total update time for maintaining these data
structures is bounded by Ô(n2.5+2/k).

Given a query dist-query(u, v), we perform a binary
search on indices i, in order to find an index for which
distG(u, v) > 2Di and distG(u, v) < 2k · 3Di+1 +
(γ(n))O(k) hold, by querying the data structures from

Theorems 5.2 and 5.1. We then return d̃ist(u, v) = 2k ·3·
Di+1+(γ(n))O(k) as a response to the query. Notice that

we are guaranteed that d̃ist(u, v) ≤ 2k · 3 · distG(u, v) +

Ô(1), as required. As there are O(log n) possible values
of Di, the query time is O(log n log log n).

Given a query path-query(u, v), we start by check-
ing whether u and v are connected, for example by run-
ning dist-queryD(u, v) query with D = (1 + ε)n on the
data structure from Theorem 5.1. If u and v are not
connected, then we can report this in time O(log n).
Otherwise, we perform a binary search on indices i ex-
actly as before, to find an index for which distG(u, v) >
2Di and distG(u, v) < 2k · 3Di+1 + (γ(n))O(k) hold.
Then, we use query in the appropriate data structure,
path-queryDi+1

(u, v) and obtain a u-v path P of length

at most 2k ·3Di+1+(γ(n))O(k) ≤ 2k ·3·distG(u, v)+Ô(1),

in time Ô(|P |).

5.1 The Large-Distance Regime The goal of this
section is to prove Theorem 5.1. The algorithm easily
follows by combining our algorithm for SSSP with the
algorithm of [GWN20] for APSP (that simplifies the
algorithm of [FHN16] for the same problem).

Data Structures and Update Time Our starting
point is an observation of [GWN20], that we can assume
w.l.o.g. that throughout the edge deletion sequence,
the graph G remains connected. Specifically, we will
maintain a graph G∗, starting with G∗ = G. Whenever
an edge e is deleted from G, as part of the input update
sequence, if the removal of e does not disconnect the
graph G, then we delete e from G∗ as well. Otherwise,
we ignore this edge deletion operation, and edge e
remains in G∗. It is easy to see that in the latter

case, edge e is a bridge in G∗, and will remain so
until the end of the algorithm. It is also immediate
to verify that, if u, v are two vertices that lie in the
same connected component of G, then distG(u, v) =
distG∗(u, v). Moreover, if P is any (not necessarily
simple) path connecting u to v in graph G∗, such that
an edge may appear at most once on P , then P is also
a u-v path in graph G.

Throughout the algorithm, we use two parameters:
Rc = εD/8 and Rd = 4D. We maintain the following
data structures.

• Data structure CONN-SF(G) for dynamic connec-
tivity. Recall that the data structure has total
update time Õ(m), and it supports connectivity
queries conn(G, u, v): given a pair u, v of vertices
of G, return “yes” if u and v are connected in G,
and “no” otherwise. The running time to respond
to each such query is O(log n/ log log n).

• A collection S ⊆ V (G) of source vertices, with
|S| ≤ O(n/Rc) ≤ O(n/(εD));

• For every source vertex s ∈ S, the data structure
from Theorem 4.1, in graph G∗, with source vertex
s, distance bound Rd, and accuracy parameter
ε = 1/4.

Recall that the data structure from Theorem 4.1
has total update time Ô(n2/ε2). Since we will maintain
O(n/(εD)) such data structures, the total update time

for maintaining them is Ô(n3/(ε3D)).
Consider now some source vertex s ∈ S, and the

data structure from Theorem 4.1 that we maintain for
it. Since graph G is unweighted, all edges of G belong
to a single class, and so the algorithm will only maintain
a single heavy graph (instead of maintaining a separate
heavy graph for every edge class), and a single light
graph. In particular, this ensures that at any time
during the algorithm’s execution, all cores in

⋃
j Fj

are vertex-disjoint. In order to simplify the notation,
we denote the extended light graph that is associated
with graph G∗ by ĜL; recall that this graph does not
depend on the choice of the vertex s. Recall that, from
Observation 4.1, throughout the algorithm, for every
vertex v ∈ V (G∗), distĜL(s, v) ≤ distG∗(s, v) holds.
Additionally, the data structure maintains an ES-Tree,
that we denote by τ(s), in graph ĜL, that is rooted at
the vertex s, and has depth Rd. We say that the source
s covers a vertex v ∈ V (G) iff the distance from v to s
in the tree τ(s) is at most Rc.

Our algorithm will maintain, together with each
vertex v ∈ V (G), a list of all source vertices s ∈ S
that cover v, together with a pointer to the location
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of v in the tree τ(s). We also maintain a list of all
source vertices s′ ∈ S with v ∈ τ(s′), together with
a pointer to the location of v in τ(s′). These data
structures can be easily maintained along with the trees
τ(s) for s ∈ S. The total update time for maintaining
the ES-Trees subsumes the additional required update
time.

We now describe an algorithm for maintaining the
set S of source vertices. We start with S = ∅.
Throughout the algorithm, vertices may only be added
to S, but they may never be deleted from S. At
the beginning, before any edge is deleted from G, we
initialize the data structure as follows. As long as some
vertex v ∈ V (G) is not covered by any source, we select
any such vertex v, add it to the set S of source vertices,
and initialize the data structure τ(v) for the new source
vertex v. This initialization algorithm terminates once
every vertex of G is covered by some source vertex in
S. As edges are deleted from G and distances between
vertices increase, it is possible that some vertex v ∈
V (G) stops being covered by vertices of S. Whenever
this happens, we add such a vertex v to the set S of
source vertices, and initialize the corresponding data
structure τ(v). We need the following claim.

Claim 5.1 Throughout the algorithm, |S| ≤ O(n/Rc)
holds.

Proof. For a source vertex s ∈ S, let C(s) be the set of
all vertices at distance at most Rc/2 from vertex s in
graph ĜL. From the algorithm’s description, and since
the distances between regular vertices in the graph ĜL

may only grow over the course of the algorithm, for
every pair s, s′ ∈ S of source vertices, distĜL(s, s′) ≥ Rc
holds throughout the algorithm, and so C(s)∩C(s′) = ∅.
Since graph G∗ is a connected graph throughout the
algorithm, so is graph ĜL. It is then easy to verify
that, if |S| ≥ 2, then for every source vertex s ∈ S,
|C(s)| ≥ Ω(|Rc|) (we have used the fact that graph G is
unweighted, and so, in graph ĜL, all edges have lengths
in {1/4, 1}). It follows that |S| ≤ O(n/Rc).

Responding to path-queryD(x, y) queries. Sup-
pose we are given a query path-queryD(x, y), where x, y
are two vertices of G. Recall that our goal is to ei-
ther correctly establishes that distG(x, y) > 2D, or to
return an x-y path P in G, of length at most 9D. We
also need to ensure that, if D ≤ distG(x, y) ≤ 2D, then
|P | ≤ (1 + ε)distG(x, y).

Our first step is to use query conn(G, x, y) in data
structure CONN-SF(G) in order to check whether x and
y lie in the same connected component of G. If this
is not the case then we report that x and y are not
connected in G. Therefore, we assume from now on that

x and y are connected in G. Recall that the running
time for query conn(G, x, y) is O(log n/ log log n).

Recall that our algorithm ensures that there is
some source vertex s ∈ S that covers x. Therefore,
distĜL

(s, x) ≤ Rc. It is also easy to verify that
distĜL(x, y) ≤ distG∗(x, y) must hold. Therefore, if
distG(x, y) ≤ 2D, y ∈ τ(s) must hold. We can find
the source vertex s that covers x and check whether
y ∈ τ(s) in time O(1) using the data structures that we
maintain. If y 6∈ τ(s), then we are guaranteed that
distG(x, y) > 2D. We terminate the algorithm and
report this fact.

Therefore, we assume from now on that y ∈ τ(s).
We compute the unique simple x-y path P in the tree
τ(s), by retracing the tree from x and y until we find
their lowest common ancestor; this can be done in
time O(|P |). The remainder of the algorithm is similar
to that for responding to queries for the SSSP data
structure. We denote by vC1

, . . . , vCz
the sequence of

all special vertices that appear on the path P . For
1 ≤ k ≤ z, let uk be the regular vertex preceding vCk

on
P , and let u′k be the regular vertex following vCk

on P .
We then use queries Short-Path(Ck, uk, u

′
k) to the LCD

data structure in order to obtain a simple uk-u′k path
Qk contained in Ck. Then, we replace the vertex vCk

with the path Qk on path P . As in the analysis of the
algorithm for SSSP, the running time of this algorithm
is bounded by Ô(|E(P ∗)|), and the length of the path
P ∗ is bounded by |P |+ εRd ≤ distG(x, y) + 4εD. Since
|P | ≤ 2Rd ≤ 8D, this is bounded by 9D. Moreover,
if D ≤ distG(x, y) ≤ 2D, then we are guaranteed
that the length of P ∗ is at most (1 + 4ε)distG(x, y).
The running time of the algorithm is O(log n) if it
declares that distG(x, y) > 2D, and it is bounded by

Ô(|P ∗|) if a path P ∗ is returned. We note that every
edge may appear at most once on path P ∗. Indeed,
an edge of G∗ may belong to the heavy graph, or to
the extended light graph ĜL, but not both of them.
Therefore, an edge of P may not lie on any of the paths
in {Q1, . . . , Qz}. Moreover, since path P is simple, the
connected components C1, . . . , Ck of the heavy graph
are all disjoint, and so the paths Q1, . . . , Qz must he
disjoint from each other. Therefore, every edge may
appear at most once on path P ∗. As observed before,
this means that P ∗ is contained in the graph G.

Responding to dist-queryD(x, y). The algorithm
is similar to that for path-queryD(x, y). As before, our
first step is to use query conn(G, x, y) in data structure
CONN-SF(G) in order to check whether x and y lie in
the same connected component of G. If this is not the
case then we report that x and y are not connected in
G. Therefore, we assume from now on that x and y are
connected in G. Recall that the running time for query

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited



conn(G, x, y) is O(log n/ log log n).
As before, we find a source s that covers vertex x,

and check whether y ∈ τ(s), in time O(1). If this is not
the case, then we correctly report that distG(x, y) > 2D,
and terminate the algorithm. Otherwise, we return an
estimate dist′(x, y) = distĜL(x, s) + distĜL(y, s) + 4εD.
This can be done in time O(1), by reading the distance
labels of x and y in tree τ(s). From the above argu-
ments, we are guaranteed that there is an x-y path P ∗

in G, whose length is at most dist′(x, y), so distG(x, y) ≤
dist′(x, y) must hold. Notice that distĜL(y, s) ≤
distĜL(x, s)+distĜL(x, y) ≤ Rc+distG(x, y). Therefore,
dist′(x, y) ≤ 2Rc+4εD+distG(x, y) ≤ 8εD+distG(x, y).
Therefore, if distG(x, y) ≥ D, then dist′(x, y) ≤ (1 +
8ε)distG(x, y) must hold.

In order to obtain the guarantees required in The-
orem 5.1, we use the parameter ε′ = ε/8, and run the
algorithm described above while using ε′ instead of ε.
It is easy to verify that the resulting algorithm provides
the desired guarantees.

5.2 The Small-Distance Regime In this section,
we prove Theorem 5.2. Recall that we are given a
simple unweighted graph G undergoing edge deletions,
a parameter k ≥ 1 and a distance scale D. We set
∆ = n1/k and q = 10k.

Our data structure is based on the LCD data struc-
ture from Theorem 3.1. We invoke the algorithm from
Theorem 3.1 on the input graph G, with parameters
∆ and q. Recall that the algorithm maintains a parti-
tion of the vertices of G into layers Λ1, . . . ,Λr+1, and
notice that r ≤ k + 1. Let α = (γ(n))O(q) be cho-
sen such that, in response to the Short-Core-Path and
To-Core-Path queries, the length of the path returned
by the LCD data structure is guaranteed to be at most
α. For every index 1 < j ≤ r, we define two distance
parameters: Rdj called a distance radius and Rcj called
a covering radius as follows:

Rdj = 2r−j(3D + 2αk) and Rcj = Rdj − 2D.

Note that Rdj ≤ 2k−1 · 3D + 2kαk = O(D · (γ(n))O(k))
for all j > 1. (As Λ1 = ∅, we only give the bound for all
j > 1). Recall that the LCD data structure maintains a
collection Fj of cores for each level j > 1. We need the
following key concept:

Definition. A vertex v ∈ Λj is a far vertex iff
distG(v,Λ<j) > Rdj . A core K ∈ Fj is a far
core iff all vertices in K are far vertices, that is,
distG(V (K),Λ<j) > Rdj .

Observe that once a core K becomes a far core, it
remains a far core, until it is destroyed. This is because
distances in G are non-decreasing, and both Λ<j and

V (K) are decremental vertex sets by Theorem 3.1. At
a high level, our algorithm can be described in one
sentence:

Maintain a collection of ES-Trees of depth Rdj rooted
at every far core in

⋃
j Fj .

Below, we describe the data structure in more detail
and analyze its correctness.

5.2.1 Maintaining Far Vertices and Far Cores
In this subsection, we show an algorithm that maintains,
for every vertex of G, whether it is a far vertex. It also
maintains, for every core of

⋃
j Fj , whether it is a far

core. Fix a layer 1 < j ≤ r. Let Zj be a graph, whose
vertex set is V (G), and edge set contains all edges that
have at least one endpoint in set Λ≥j . Equivalently,
E(Zj) contains all edges incident to vertices with virtual
degree at most hj . We construct another graph Z ′j
by adding a source vertex sj to Zj , and adding, for
every vertex v ∈ Λ<j , an edge (s, v) to this graph. We

maintain an ES-Tree T̂j in graph Z ′j , with root sj , and

distance bound (Rdj + 1). Observe that v ∈ Λj is a far

vertex iff v /∈ V (T̂j).
Notice that graph Z ′j , in addition to undergo-

ing edge deletions, may also undergo edge insertions.
Specifically, when a vertex x is moved from from Λ<j to
Λ≥j (that is, its virtual degree decreases from above hj
to at most hj), then we may need to insert all edges that
are incident to x into Z ′j . Note that edges connecting
x to vertices in Λ≥j already belong to Z ′j , so we only
need to insert edges connecting x to vertices of Λ<j . We
insert all such edges Z ′j first, and only then delete the
edge (sj , x) from Z ′j . Observe that, for each such edge
e = (x, y) ∈ E(x,Λ<j), inserting e into Z ′j may not de-
crease the distance from sj to x, or the distance from sj
to y, as both these distances are currently 1 and cannot
be further decreased. It then follows that the insertion
of the edge e does not decrease the distance of any ver-
tex from sj . Therefore, the edge insertions satisfy the
conditions of the ES-Tree data structure.

As the total number of edges that ever appear in Z ′j
is O(nhj∆) by Observation 3.3, the total update time

for maintaining the data structure T̂j is bounded by

O(nhj∆R
d
j ) = O(n2+1/kD(γ(n))O(k)) ≤ Ô(n2+1/kD)

(we have used the fact that hj = ∆r−j , ∆ = n1/k, and
r ≤ k + 1).

The above data structure allows us to maintain,
for every vertex of G, whether it is a far vertex. For
every core K ∈

⋃
j Fj , we simply maintain the number

of vertices of K that are far vertices. This allows us
to maintain, for every core K ∈

⋃
j Fj , whether it

is a far core. The time that is required for tracking
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this information is clearly subsumed by the time for
maintaining T̂j . Therefore, the total time that is needed
to maintain the information about far vertices and far
cores, over all layers j, is bounded by Ô(n2+1/kD).

5.2.2 Maintaining ES-Trees Rooted at Far Cores
In this section, we define additional data structures that
maintain ES-Trees that are rooted at the far cores, and
analyze their total update time. Fix a layer 1 < j ≤ r.
Let K ∈ Fj be a core in layer j, that is a far core. Let
ZKj be the graph obtained from Zj by adding a source
vertex sK , and adding, for every vertex v ∈ V (K), an
edge (sK , v). Whenever a core K is created in layer j,
we check if K is a far core. If this is the case, then
we initialize an ES-Tree TK in graph ZKj , with source

sK , and distance bound (Rdj + 1). We maintain this
data structure until core K is destroyed. Additionally,
whenever an existing core K becomes a far core for
the first time, we initialize the data structure TK , and
maintain it until K is destroyed.

Observe that graph ZKj may undergo both edge
insertions and deletions. As before, an edge may be
inserted into ZKj only when some vertex x is moved from
Λ<j to Λ≥j (recall that vertices may only be removed
from a core K after it is created). When vertex x moves
from Λ<j to Λ≥j , we insert all edges connecting x to
vertices of Λ<j into the graph ZKj . We claim that the
insertion of such edges may not decrease the distance
from sK to any vertex v ∈ V (TK). In order to see this,
observe that, since vertex x initially belonged to Λ<j ,
and core K was a far core, distG(V (K), x) > Rdj . As
edges are deleted from G and K, distG(V (K), x) may
only grow. Therefore, when vertex x is moved to Λ≥j ,
its distance from the vertices of K remains greater than
Rdj , and so distZK

j
(sK , x) > Rdj + 1. As the depth of

TK is Rdj + 1, inserting the edges of E(x,Λ<j) does not
affect the distances of the vertices that belong to the
tree TK from its root sK .

Since, from by Observation 3.3, the total number
of edges that may ever appear in ZKj is O(nhj∆), the
total time required for maintaining the ES-Tree TK is
O(nhj∆) · (Rdj + 1). By Theorem 3.1, the total number
of cores that are ever created in set Fj over the course of

the entire algorithm the algorithm is at most Ô(n∆/hj).
Therefore, the total update time that is needed in order
to maintain trees TK for cores K ∈ Fj is bounded by:

O(nhj∆R
d
j ) · Ô(n∆/hj)

= Ô(n2+2/kD(γ(n))O(k))

= Ô(n2+2/kD).

Summing this bound over all layers increases it by only
factor O(log n).

5.2.3 Total update time We now bound the total
update time of the algorithm. Recall that the total
update time of the LCD data structure is bounded
by Ô(m1+1/q∆2+1/q ≤ Ô(mn3/k), as q = 10k and
∆ = n1/k. Each of the remaining data structures takes
total update time at most Ô(n2+2/kD). Therefore,
the total update time of the algorithm is bounded by
Ô(n2+3/kD).

5.2.4 Responding to Queries For any vertex v ∈
Λ≥j , we say that v is covered by an ES-Tree TK iff
distZj

(V (K), v) ≤ Rcj (i.e. distZK
j

(sK , v) ≤ Rcj + 1). For

each v ∈ Λ≥j , we maintain a list of all ES-Trees TK
that cover it. Within the list of v, we maintain the core
K ∈ Fjv from the smallest layer index jv such that TK
covers v. These indices can be explicitly maintained
using the standard dictionary data structure such as
balanced binary search trees. The time for maintaining
such lists for all vertices is clearly subsumed by the time
for maintaining the ES-Trees.

Responding to path-queryD(u, v). Given a pair
of vertices u and v, let Ku be the core from smallest
level ju such that TKu

covers u and let Kv be the core
from smallest level jv such that TKvcovers v. Assume
w.l.o.g. that ju ≤ jv. If v /∈ TKu , then we report that
distG(u, v) > 2D. Otherwise, compute the unique u-v
path P in the tree TKu

. This can be done in time in
time O(|P | log n), as follows. We maintain two current
vertices u′, v′, starting with u′ = u and v′ = v. In
every iteration, if the distance of u′ from the root of
TKu in tree TKu is less than the distance of v′ from the
root, we move v′ to its parent in the tree; otherwise,
we move u′ to its parent. We continue this process,
until we reach a vertex z that is a common ancestor of
both u and v′. We denote the resulting u-v path by
P . Notice that so far the running time of the algorithm
is O(|E(P )|). Next, we consider two cases. First, if z
is not the root of the tree TKu

, then P is a path in
graph G, and we return P . Otherwise, the root of the
tree sKu

lies on path P . We let a and b be the vertices
lying immediately before and immediately after sKu in
P . We compute Q = Short-Core-Path(Ku, a, b) in time
(γ(n))O(q). Finally, we modify the path P by replacing
vertex sKu

with the path Q, and merging the endpoints
a, b of Q with the copies of these vertices on path P .
The resulting path, that we denote by P ′, is a u-v path
in graph G. We return this path as the response to the
query. It is immediate to verify that the query time is
O(|E(P )| log n) + (γ(n))O(q) = Ô(|P |).

We now argue that the response of the algorithm to
the query is correct.

Let P ∗ be the shortest path between u and v in
graph G. Let x be a vertex of P ∗ that minimizes the
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index j∗ for which x ∈ Λj∗ ; therefore, V (P ∗) ⊆ Λ≥j∗ .
We start with the following crucial observation.

Lemma 5.1 There is a far core K ′ in some level Λj′ ,
with 1 < j′ ≤ j∗, such that distZj′ (V (K ′), x) ≤ Rcj′−D.

Proof. Let x1 = x. We gradually construct a path
connecting x1 to a vertex in a far core K ′, as follows.
First, using query To-Core-Path(x) of the LCD data
structure, we can obtain a path of length at most α,
connecting x1 to a vertex a1 lying in some core K1,
such that, if K1 ∈ Fj1 , then j1 ≤ j∗. If K1 is a far
core, then we are done. Otherwise, there is a vertex
b1 in K1 which is not a far vertex. By using a query
Short-Core-Path(K1, a1, b1) of the LCD data structure,
we obtain a path of length at most α connecting a1 to b1
inside the core K1. As b1 is not a far vertex, there must
be some vertex x2 ∈ Λ<j1 , for which distZj1

(b1, x2) ≤
Rdj1 . We repeat the argument for x2 and subsequent
vertices xi, until we reach a vertex that lies in some far
core K ′. Note that, if K ′ ∈ Fj′ , then j′ > 1 must hold,
as Λ1 = ∅. Observe that, for each i, the constructed
paths that connect xi and ai, or connect ai to bi, or
connect bi to xi+1, all lie inside Zj′ . By concatenating
all these paths, we obtain a path in Zj′ , connecting x
to a core of K ′. The length of the path is bounded by:

(2α+Rdj∗) + (2α+Rdj∗−1) + · · ·+ (2α+Rdj′+1) + α

≤ Rdj∗ +Rdj∗−1 + · · ·+Rdj′+1 + 2αk

= (3D + 2αk)(1 + 2 + · · ·+ 2r−(j′+1)) + 2αk

= (3D + 2αk)(2r−j
′
− 1) + 2αk

= Rdj′ − 3D

= Rcj′ −D

We conclude that that distZj′ (V (K ′), x) ≤ Rcj′ − D.

We assume w.l.o.g. that x is closer to u than v,
that is, distG(u, x) ≤ distG(v, x). Assume that P ∗ has
length at most 2D. As x lies on P ∗ and V (P ∗) ⊆ Λ≥j∗ ,
we get that distZj∗ (u, x) ≤ 2D

2 = D. As Zj∗ is
a subgraph of Zj′ , we conclude that distZj′ (u, x) ≤
distZj∗ (u, x) ≤ D. Using the triangle inequality to-
gether with Lemma 5.1, we get that distZj′ (u, V (K ′)) ≤
distZj′ (u, x) + distZj′ (x, V (K ′)) ≤ Rcj′ . In other words,
tree TK′ must cover u. Recall that we have let Ku be
the core lying in smallest level ju, such that TKu

covers
u. Therefore, ju ≤ j′ which implies that V (P ∗) ⊆ Λ≥ju .
Therefore, path P ∗ is contained in Zju . Moreover, as
Rdju = Rcju + 2D and |P ∗| ≤ 2D, vertex v must be con-
tained in TKu as well. If this is not the case, then we
can conclude that |P ∗| > 2D. The same argument ap-
plies if the index jv of the layer Λjv to which the core
Kv belongs is smaller than ju.

Let P be the unique u-v path in the tree TKu
.

Clearly, |P | ≤ distTKu
(sKu

, u) + distTKu
(sKu

, v) ≤
2Rdju ≤ 2k · 3D + (γ(n))O(k). If the root vertex sKu of
the tree does not lie on the path P , then path P is a u-v
path in graph G, whose length is bounded by 2k · 3D+
(γ(n))O(k); the algorithm then returns P . Otherwise,
the algorithm replaces the vertex sKu

with the path Q
returned by the query Short-Core-Path(Ku, a, b) to the
LCD data structure, where a and b are the vertices of
P appearing immediately before and after sKu

on it.
As |Q| ≤ α, the length of returned path is bounded by
2Rdju + α ≤ 2k · 3D + (γ(n))O(k).

Responding to dist-queryD(u, v). The algorithm
for responding to dist-queryD(u, v) is similar. As before,
we let Ku be the core from smallest level ju such
that TKu

covers u, and we let Kv be the core from
smallest level jv such that TKv

covers v. Assume
w.l.o.g. that ju ≤ jv. If v /∈ TKu

, then we report
that distG(u, v) > 2D. Otherwise, we declare that
dist(u, v) ≤ 2k · 3D + (γ(n))O(k). The correctness of
this algorithm follows immediately from the analysis of
the algorithm for responding to path-queryD(u, v). The
algorithm can be implemented to run in time O(1) if
we store, together with every vertex v ∈ V (G), the list
of the cores that cover v, sorted by the index j of the
set Fj to which the core belongs. It is easy to see that
time that is required to maintain this data structure
is subsumed by the total update time of the algorithm
that was analyzed previously.
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