
Hardness of the Undirected Edge-Disjoint Paths Problem with Congestion

Matthew Andrews∗ Julia Chuzhoy† Sanjeev Khanna‡ Lisa Zhang∗

Abstract

In the Edge-Disjoint Paths problem with Congestion
(EDPwC), we are given a graph with n nodes, a set of ter-
minal pairs and an integer c. The objective is to route as
many terminal pairs as possible, subject to the constraint
that at most c demands can be routed through any edge in
the graph. When c = 1, the problem is simply referred to as
the Edge-Disjoint Paths (EDP) problem. In this paper, we
study the hardness of EDPwC in undirected graphs.

We obtain an improved hardness result for EDP, and
also show the first polylogarithmic integrality gaps and
hardness of approximation results for EDPwC. Specif-
ically, we prove that EDP is (log

1
2−ε n)-hard to ap-

proximate for any constant ε > 0, unless NP ⊆
ZPTIME(npolylog n). We also show that for any conges-

tion c = o(log log n/ log log log n), there is no (log
1−ε
c+1 n)-

approximation algorithm for EDPwC, unless NP ⊆
ZPTIME(npolylog n). For larger congestion, where c ≤
η log log n/ log log log n for some constant η, we obtain su-
perconstant inapproximability ratios. All of our hardness
results can be converted into integrality gaps for the mul-
ticommodity flow relaxation. We also present a separate
elementary direct proof of this integrality gap result.

Finally, we note that similar results can be obtained for
the All-or-Nothing Flow (ANF) problem, a relaxation of
EDP, in which the flow unit routed between the source-sink
pairs does not have follow a single path, so the resulting
flow is not necessarily integral. Using standard transforma-
tions, our results also extend to the node-disjoint versions of
these problems as well as to the directed setting.

1 Introduction

In the edge-disjoint paths (EDP) problem we are given a
graph G = (V,E) and a set {(s1, t1), (s2, t2), . . . , (sk, tk)}

∗Bell Laboratories, Lucent Technologies, Murray Hill, NJ.
{andrews,ylz}@research.bell-labs.com

†CSAIL, MIT and Dept. of CIS, University of Pennsylvania, cju-
lia@csail.mit.edu

‡Dept. of CIS, University of Pennsylvania, Philadelphia PA. san-
jeev@cis.upenn.edu. Supported in part by an NSF Career Award CCR-
0093117.

of pairs of vertices called terminals. The objective is to con-
nect as many pairs as possible via edge-disjoint paths. Even
highly restricted cases of EDP correspond to well-studied
important optimization problems. For instance, EDP on
trees of height one is equivalent to the graph matching prob-
lem. EDP and its variants also have a host of applications
to network routing, resource allocation, and VLSI design.
It is then not surprising that EDP is one of the most well-
studied problems in combinatorial optimization. In directed
graphs, the problem becomes NP-hard even when we are
given only two source-sink pairs [16]. In undirected graphs,
the seminal work of Robertson and Seymour [28] gives
a polynomial time algorithm for any constant number of
pairs. These results are suggestive of the inherent differ-
ences between the undirected and directed versions of EDP.
However, the tractability of undirected EDP with constant
number of pairs does not hold once the number of pairs is
allowed to grow as a function of the input size. In particular,
the problem is NP-hard even on planar graphs [17].

Consequently, much of the recent work on EDP has fo-
cused on understanding the polynomial-time approxima-
bility of the problem. While constant or poly-logarithmic
approximation algorithms are known for restricted classes
of graphs such as trees, meshes, and expanders [4, 12,
15, 18, 22, 23], the approximability of EDP in gen-
eral graphs is not well understood. The best approxi-
mation algorithm for EDP in directed graphs has a ra-
tio of Õ(min(n2/3,

√
m)) [11, 24, 25, 30, 31] where n

and m denote the number of vertices and edges respec-
tively in the input graph. For undirected graphs and di-
rected acyclic graphs, this factor improves to an O(

√
n)-

approximation ratio [10]. In directed graphs, the approx-
imation ratio is matched by an Ω(m

1
2−ε)-hardness due to

Guruswami et al. [19]. In contrast, only APX-hardness
was known for undirected EDP until the recent work in
[1] which showed an Ω(log

1
3−ε n) hardness, unless NP ⊆

ZPTIME(npolylog n).
In this paper we study EDP together with a natural gen-

eralization, edge-disjoint paths with congestion (EDPwC),
in which the goal is to route as many terminal pairs as
possible subject to the constraint that at most c paths are
routed through any edge. For constant congestion c ≥ 2,
there exists an O(n1/c) approximation [5, 6, 25]. When

the congestion is allowed to be O(log n/ log log n) we get a
constant approximation via randomized rounding [26]. For
planar graphs, when congestion 2 is allowed, an O(log n)-
approximation has recently been derived [8, 9]. We note
that the performance of an approximation algorithm for ED-
PwC is measured with respect to an optimal solution with
no congestion.

Another related problem is the all-or-nothing (ANF)
flow problem where for each routed pair, it suffices to pro-
vide a unit of (not necessarily integral) flow. Thus ANF is
a relaxation of EDP. Recent work has shown that in undi-
rected graphs, ANF is O(log2 n)-approximable [7, 9]. The
Ω(log

1
3−ε n) hardness result in [1] extends to ANF as well.

We also study the variant of ANF where congestion is al-
lowed, referred to as ANF with Congestion (ANFwC).

Our results: This paper represents a merging of the two
papers [3, 13]. The main result of these papers is the fol-
lowing theorem.

Theorem 1 For any constant ε > 0 and any conges-
tion c = o(log log n/ log log log n), there is a constant

γc such that there is no (log
1−ε
γc n)-approximation algo-

rithm for undirected EDPwC and ANFwC, unless NP ⊆
ZPTIME(npolylog n). In addition, there is a matching in-
tegrality gap of the multicommodity flow relaxation.

The constructions used in [3, 13] to establish the above
theorem are quite different. We present in this paper both
proofs as our constructions may be of independent in-
terest. For EDP with no congestion, both [3, 13] give
γ1 = 2 in Theorem 1. For larger values of c =
o(log log n/ log log log n), the construction in [3] yields
γc = c + 1 while γc = 3

2c + 1
2 in [13]. When c ≤

η log log n/ log log log n for some constant η, our construc-
tions imply a superconstant inapproximability ratio.

We note that an immediate consequence of Theorem 1
is that for any integer i, the gap between 1/i-integral mul-
ticommodity flow (i.e. each flow path carries a multiple
of 1/i units of flow) and fractional multicommodity flow
is super-constant in undirected graphs. To our knowledge,
prior to our work, it was not known if there was a super-
constant gap even between half-integral flow and fractional
flow in directed or undirected graphs. We present a simple
family of instances that directly establish these integrality
gap results.

We note that similar results have been obtained indepen-
dently in [20].

Overview of Techniques: We start by giving an overview
of the hardness result for the simplest setting, namely,
EDP with no congestion. We show here that EDP is
Ω(log

1
2−ε n)-hard, building on the framework of [1]. The

construction in [13], hereafter referred to as the CK con-
struction, establishes this result by directly working with

the PCP characterization of NP due to [29], thus avoiding
an intermediate step taken by [1] of creating an indepen-
dent set instance. The high-level idea of the reduction is as
follows. Given an instance φ of 3SAT, we construct a graph
Gφ which contains a sufficiently large collection of edge-
disjoint paths for each accepting configuration u of the ver-
ifier on φ. These paths are referred to as the canonical paths
of u. The canonical path collections for any two accepting
configurations u and v that disagree on some proof bit are
made to “randomly intersect” with each other to encode this
conflict. The random intersections ensure that the resulting
graph has “high girth”. The construction in [3], hereafter
referred to as the AZ construction, is similar except that in-
stead of using a PCP it uses the Raz two-prover interactive
proof system [27] as its starting point, building on the ideas
of [2].

The graph Gφ serves as the input graph for an EDP in-
stance and the source-sink pairs are simply the end-points
of the canonical path collections. The pairs that are routed
along canonical paths conflict with high probability when-
ever the underlying configurations are in conflict with each
other. However, these conflicts can be avoided if pairs
choose paths that are not canonical. The high girth prop-
erty ensures that on average, a non-canonical path is much
longer than a canonical path and thus consumes much more
of the routing capacity of the graph. As a result, whenever
φ is not satisfiable, with high probability, a much smaller
fraction of pairs can be routed in the graph Gφ. This gap
enables us to establish our hardness result.

One property of the above graph Gφ in the PCP-based
CK construction is that at most two canonical paths pass
through any edge. These two paths correspond to accept-
ing interactions that differ on some bit of the PCP proof.
In order to prove hardness of EDPwC using similar ideas
we need a larger number of canonical paths to pass through
an edge. The CK construction achieves this by recursively
building a sequence of instances G1, G2, ... such that Gi is
a hard instance for EDP with congestion 2i − 1. In par-
ticular the base case is a hard instance for EDP. The AZ
construction uses the fact that each query in this proof sys-
tem has multiple possible answers. We can take a canonical
path that corresponds to each possible answer and let these
paths all pass through the same edge. We then show that
any solution to EDPwC that routes a large number of ter-
minal pairs with small congestion can be translated into a
pair of provers that convince the verifier to accept with high
probability. The hardness of EDPwC follows from the error
probability of the proof system.

Organization: We present the CK and the AZ hardness
constructions in Sections 2 and 3, respectively. While the
integrality gap result follows from the hardness construc-
tions, we present a much simpler direct proof of this result
in Section 2.

2. The CK Construction

Our starting point is a PCP characterization of NP,
proved by Samorodnitsky and Trevisan in [29]. We briefly
summarize the construction here. Let φ be an instance of
3SAT on n variables. For any constant k > 0, the ST con-
struction gives a PCP verifier that uses r = O(log n) ran-
dom bits to generate q = k2 locations to probe in the proof.
The verifier reads these q bits in the given proof Π and de-
cides whether or not φ is satisfiable. Given a random string
r of the verifier, let b1(r), . . . , bq(r) be the indices of the
proof bits read. A configuration is (r, a1, . . . , aq), where
a1, . . . , aq ∈ {0, 1} are values of Πb1(r), . . . ,Πbq(r). We
say that a configuration (r, a1, . . . , aq) is accepting, if, for a
random string r of the verifier and the values a1, . . . , aq of
proof bits Πb1(r), . . . ,Πbq(r), the verifier accepts. If φ is a
YES-INSTANCE (i.e., φ is satisfiable), there exists a proof Π
such that the probability that the verifier accepts is at least
1/2. Otherwise, if φ is a NO-INSTANCE (i.e., it is non-
satisfiable), for all proofs Π, the verifier accepts with prob-
ability at most 2−k2

. Abusing the notation, we will denote
by r both the random string of the verifier and the number
of random bits (i.e., the length of the string).

For our reductions, we would assume that this protocol
is independently repeated λ = 2β log log n

k2 = O(log log n)
times where β >> k2 is a large constant. The verifier
now accepts iff the original verifier accepts in each proto-
col repetition. The resulting PCP has the following proper-
ties. Let R denote the set of all possible random string, then
|R| = 2λr, where λr = O(log n log log n). The number
of query bits is q = λk2 = O(log log n). W.l.o.g., assume
that the verifier reads exactly q bits of proof for every ran-
dom string. A YES-INSTANCE is accepted with probability
at least 2−λ while a NO-INSTANCE is accepted with prob-
ability at most 2−λk2

. For each random string, there are
2λ(2k−1) accepting configurations. For every random string
r, for every j : 1 ≤ j ≤ q, the number of accepting config-
urations where the value of Πbj(r) = 0 equals the number
of accepting configurations where Πbj(r) = 1. For each
proof bit Πj let Zj be the set of all the accepting configura-
tions in which bit Πj participates with value 0, and let Oj

be the set of all the accepting configurations in which Πj

participates with value 1. We denote nj = |Zj | = |Oj |.
Then nj ≥ 2λr/2. Let C denote the set of all the accepting
configurations, |C| ≤ 2λr · 22λk.

2.1. Hardness of Approximating EDP

We start by establishing that EDP is hard to approximate
to within a factor of Ω(log1/2−ε N) for any ε > 0. This con-
struction will also serve as a building block for establishing
hardness of EDPwC. The starting point of our reduction is
a PCP verifier for 3SAT as summarized above. Let φ be an

instance of 3SAT on n variables. Consider a PCP verifier
V for φ as described in the preceding section. We will use
V to construct an EDP instance on a graph Gφ such that if
φ is satisfiable, at least PY I pairs can be routed, and if φ is
unsatisfiable, with high probability, only PY I/ log1/2−ε N
pairs can be routed; here N = npolylog(n) denotes the size
of Gφ. Recall that k is a large constant, and λ = 2β log log n

k2 .
The gap between the yes and the no instances in the PCP
construction is close to 2λk2

= log2β n. In our construc-
tion, we will make the gap between the yes and the no in-
stances close to 2λk2

, while the graph size N will be close

to 222λk2

, thus proving Ω(log
1
2−ε N)-hardness.

We construct our graph in two steps. First, we construct,
for each proof bit Πi, a gadget denoted by G(i). In the
second step, we create the final graph, by connecting all the
gadgets representing the proof bits, and by adding source
and sink pairs.

2.1.1 The Bit Gadget

We will use two parameters M and X to describe the gad-
get. Consider some proof bit Πi. We now show how to
construct a corresponding gadget G(i). Recall that Zi, Oi

are the collection of all the accepting configurations, in
which the value of Πi is 0 or 1, respectively, with |Zi| =
|Oi| = ni. For each configuration α ∈ Zi ∪ Oi, for each
m : 1 ≤ m ≤ M + 1, there are X vertices vx,m(α, i),
for 1 ≤ x ≤ X , called level m vertices, representing this
configuration.

Additionally, for each m : 1 ≤ m ≤ M , we have
Xni edges, called special edges at level m, and denoted
by (`a,m, ra,m), 1 ≤ a ≤ Xni. We also denote the set
of left endpoints of these edges by Lm(i) = {`a,m}Xni

a=1 ,
and the set of right endpoints of these edges by Rm(i) =

{ra,m}Xni

a=1 .
Finally, we show how to connect the vertices represent-

ing the configurations with the special edges. This is done
by the means of regular edges, as follows. Consider level
m vertices, for 1 ≤ m ≤ M . We have Xni level m ver-
tices, representing configurations in Zi (denote this set of
vertices by Zm(i)), and Xni level m vertices, representing
configurations in Oi (these vertices are denoted by Om(i)).
We perform a random matching between Zm(i) and Lm(i),
and also we perform a random matching between Om(i)
and Lm(i). Additionally, for each m : 2 ≤ m ≤ M + 1,
we perform random matchings between Zm(i) and Rm−1,
and between Om(i) and Rm−1. The edges participating in
these matchings are added to the gadget as regular edges
(see Figure 1).

This concludes the definition of bit gadget. We now de-
fine, for each configuration α ∈ Zi ∪ Oi, a collection of X
edge-disjoint paths, called canonical paths, representing α
in gadget G(i). A canonical path Px(α, i), for 1 ≤ x ≤ X ,

R
andom

M
atching

Z2(i)

R
andom

M
atching

L2(i) R2(i) L3(i)

Z1(i)

R
andom

M
atching

R
andom

M
atching

O4(i)

Z4(i)

Xni

M
at
ch

in
g

R1(i)L1(i)

R
an

do
m

M
at
ch

in
g

M
at
ch

in
g

O2(i)

R
an

do
m

M
at
ch

in
g

R
andom

M
atching

R3(i)

Level 1 Level 2 Level 3

R
an

do
m

R
an

do
mR

andom
M
atching

O3(i)

Z3(i)

O1(i)

Figure 1. Gadget representing proof bit Πi for M = 3

is defined as: (vx,1(α, i), `a1,1(i), ra1,1(i), vx1,2(α, i), . . . ,
`aM ,M (i), raM ,M (i), vxM ,M+1(α, i)). The indices xm, am

for 1 ≤ m ≤ M are determined by the corresponding
matchings. Therefore, we have X edge-disjoint paths repre-
senting α in gadget Gi. Moreover, for all the configurations
in Zi, their Xni canonical paths are edge disjoint. The same
is true for all the configurations in Oi.

Let 1 ≤ m ≤ M , and consider the collection of special
edges at level m. Each such edge participates in exactly
one canonical path representing a configuration in Zi, and
exactly one canonical path representing a configuration in
Oi. Thus, the set of special level m edges defines a ran-
dom matching between the paths representing the configu-
rations in Zi and the paths representing the configurations in
Oi. In total, gadget Gi defines M random matchings (one
matching for each level) between these two sets of paths,
and these random matchings are completely independent.
Observe that the length of each canonical path is 3M , and
the degree of every vertex is at most 3.

Bit Gadget Analysis Set ∆ = M
8 log M , so that M ≥

8∆ log ∆ holds. Consider the gadget representing some
proof bit Πi. Let P0 be the set of canonical paths repre-
senting configurations in Zi, and let P1 be the set of canon-
ical paths representing configurations in Oi. Recall that
|P0| = |P1| = Xni.

We say that the gadget is bad if there is a pair of subsets
A ⊆ P0, B ⊆ P1, where |A| = |B| = Xni

∆ , such that all
the paths in A ∪ B are edge disjoint. We say that bad event
B1 happens, if at least one of the gadgets is bad. The proof
of the lemma below is similar to a lemma in [1].

Lemma 2 The probability that gadget G(i) is bad is at
most e−n.

Corollary 1 The probability that bad event B1 happens is
at most 1

poly(n) .

2.1.2 The Final Instance

Let α be some accepting configuration, and let i1, i2, . . . , iq
be the indices of proof bits participating in α, with q ≤ λk2.
Consider bit gadget G(ij), for some 1 ≤ j ≤ q. There
are X level 1 vertices representing α in Z1(ij) ∪ O1(ij),
denote them by Vj = {v1,1(α, ij), . . . , vX,1(α, ij)}.
There are also X level M + 1 vertices representing
α in ZM+1(ij) ∪ OM+1(ij), denote them by Uj =
{v1,M+1(α, ij), . . . , vX,M+1(α, ij)}.

We add a set of X source vertices representing configu-
ration α, S(α) = {s1(α), . . . , sX(α)}, and X destination
vertices T (α) = {t1(α), . . . , tX(α)} (we show how to di-
vide them into pairs later).

We perform a random matching between S(α) and V1,
and also a random matching between T (α) and Uq . Addi-
tionally, for each j : 1 ≤ j < q, we perform a random
matching between Uj and Vj+1. All the edges in the ran-
dom matchings are added to the graph as regular edges.

For each configuration α, we define X canonical paths
Px(α), 1 ≤ x ≤ X , representing α, as follows. Let
i1, . . . , iq be the indices of the proof bits participating in
α, q ≤ λk2. For each x : 1 ≤ x ≤ X , we have
Px(α) = (sx(α), Px1

(α, j1), . . . , Pxq
(α, jq), tx′), where

x1, . . . , xq, x
′ are determined according to the correspond-

ing matchings.
The graph has the following properties: (i) the length of a

canonical path is at most 4Mλk2; (ii) for each configuration
α, there are X edge-disjoint canonical paths representing α;
and (iii) the degree of each vertex is at most 3.
Graph size: observe that each graph vertex and edge partic-
ipate in at least one canonical path. The number of canoni-
cal paths is: X ·2λr ·2λ(2k−1), and the length of each canon-
ical path is at most 4Mλk2. It remains to specify the values
of the parameters M and X . We will use M = 2λ(k2+k) =

poly log n, and X = 222λ(k2+4k)

= 2poly log n. Therefore,
the size of the graph is bounded by: N ≤ X · 2λr ·M · 22λk

≤ X · 2O(log n log log n) · 2O(log log n) · 2O(log log n) ≤ X ·
2O(log n log log n).

The source-sink pairs are defined as follows: For

���

�������	��

��� � �	� �	�

��� � ��� ��� � ���

���

��� � � � ��� � � ���� � �! 	� � ��� � � �

��� � �! "� � ��� � � �

���

�����	�	��

#$�� � �	� �	�

��� � ��� ��� � %��

���

��� � � � ��� � % ���� � �! 	� � ��� � � �

��� � �& "��� ��� � � �

��� � �& "� � �'� � % �

��� � �! 	�(� ��� � %��

���

�����	�	��

��� � �	� �	�

) ��� �'�

) �&� �'�

��� � ��� ��� � � �

���

��� � � � ��� � � �

�����	�	��

*�� � �	� �	�

+���� �'�

+(��� �,�
- � � � � - � � � � - � � %��

Figure 2. Source-sink pairs for a configuration α.

each accepting configuration α, the canonical paths
P1(α), . . . , PX(α) define a matching between the sources
and the destinations corresponding to α. We use this match-
ing to define the source-destination pairs. Let P denote the
set of all the canonical paths.

2.1.3 Yes Instance: φ is Satisfiable

In the YES-INSTANCE , there is a PCP proof, for which
the acceptance probability is at least 2−λ. For each random
string r satisfied by this proof, we can choose all the canon-
ical paths representing the corresponding accepting config-
uration. All the paths thus chosen are edge disjoint, and
the number of chosen paths is at least PY I ≥ X2λr−λ ≥

|P|
22λk·2λ .

2.1.4 No Instance: φ is Unsatisfiable

Suppose we have a no instance, and a collection P ′ of
edge disjoint source-sink paths. We will show that |P ′| can
roughly be bounded by |P|

2λk2 . We partition P ′ into three

subsets, as follows. Let g = 22λ(k2+k). A non-canonical
path is called long if its length is more than g. Otherwise,
it is called short. Let P1 ⊆ P ′ be the subset of canonical
paths, P2,P3 ⊆ P ′ be the subsets of long and short non-
canonical paths, respectively. We bound the size of each
subset separately.

Canonical Paths: Assume B1 does not happen. Then in
each bit gadget Gi, either the number of paths representing
Zi is less than niX/∆, or the number of paths representing
Oi is less than niX/∆. Therefore, if we remove at most
∑

i niX/∆ paths from P ′, we obtain a new collection P ′
1

of canonical paths, such that in each gadget G(i), we have
only paths from Zi or only paths in Oi. We can thus define
a PCP proof as follows: the value of bit Πi is 0 iff paths rep-
resenting Zi are present in P ′

1, and it is 1 otherwise. Since
we are in a NO-INSTANCE , and there are X paths repre-
senting each configuration, |P ′

1| ≤ X · 2λr/2λk2

, which is
at most PY I/2

λk2−λ.

On the other hand,
∑

i ni can be bounded by |C|q ≤
2λr+2λkλk2. Also, recall that ∆ = M

8 log M = 2λ(k2+k)

8λ(k2+k) .

Thus
∑

i
Xni

∆ ≤ X2λr+2λkλk2

∆ ≤ X2λr

2λk2
−2λk

when k is
sufficiently large. We can now bound |P1 \ P ′

1| ≤
X2λr

2λk2
−2λk

≤ PY I/2
λk2−2λk−λ. Summing up, |P1| ≤

2PY I/2
λk2−2λk−λ.

Long Non-Canonical Paths: The length of a non-
canonical path is at least g. The total number of edges in our
graph is at most |P| · 4Mλk2. Therefore, the size of P2 is

bounded by |P|·4M ·λk2

g . We will show that g
4M ·λk2 ≥ 2λk2

.

Recall that g = 22λ(k2+k), while M = 2λ(k2+k), and thus
4Mλk2 · 2λk2 ≤ 4λk2 · 22λk2+kλ ≤ 22λ(k2+k) ≤ g. So
|P2| ≤ |P|

2λk2 ≤ PY I

2λk2
−2λk−λ

.

Short Non-Canonical Paths: Suppose there is a short non-
canonical path P ∈ P3 connecting some source and desti-
nation pair (s, t). This path must form a cycle of length at
most g+4Mλk2 ≤ 2g with the canonical s− t path. More-
over, at least one edge on the cycle participates in P . Let
K denote the number of cycles of length at most 2g in our
graph. Then |P3| ≤ 2g · K. Our goal is to show that with
high probability, K is small. The proof of the claim below
is similar a claim in [1].

Lemma 3 With probability at least 2
3 , K ≤ 24λrg .

We say that the bad event B2 happens if K > 24λrg .
Assuming B2 does not happen, we get: |P3| ≤ 2g ·
24λrg ≤ 25λrg = 25λr·22λ(k2+k) ≤ 222λ(k2+3k)+log log n

since
r = O(log n). Recall that λ = β log log n/k2 for very
large constant β >> k2, and thus we can assume that

λk ≥ log log n, and |P3| ≤ 222λ(k2+4k) ≤ X ≤ PY I/2
λk2

.

2.1.5 Putting it Together

If the events B1 and B2 do not happen, then |P ′| =

|P1| + |P2| + |P3| ≤ PY I/2
λ(k2−3k), and thus the gap

is Ω(2λ(k2−3k)). Recall that N = X · 2O(log n log log n) =

222λ(k2+4k)+O(log n log log n) ≤ 222λ(k2+5k)

. Therefore, the

gap is log
1
2−ε N , where ε is a constant that depends on k

and can be made arbitrarily small by choosing k to be suffi-
ciently large.

Now suppose at least one of the events B1 or B2 does
happen. Then |P ′| may be much larger than the above
bound even though φ is not satisfiable. But the probabil-
ity of B1 ∪ B2 is at most 1/poly n + 1/3 ≤ 1/2. Thus a
log

1
2−ε N -approximation algorithm for EDP would give us

a co-RPTIME(npolylog(n)) algorithm for 3SAT. Since 3SAT
is in NP, we can use a standard result to convert this into
a ZPTIME(npolylog(n)) algorithm for 3SAT, giving us our
main result.

2.2. Hardness of EDP with Congestion

We will now establish hardness of approximating EDP
with congestion c ≥ 2. We will focus here on the case
when c is any constant. As earlier, we perform a reduc-
tion from 3SAT using the PCP characterization presented
above. The parameters q, λ, and r stay the same when c
is a constant. Towards the end, we briefly describe how
the parameters change when c is allowed to be as large as
(log log n)/(log log log n)2, and we also sketch how to ex-
tend these results to ANFwC.

In what follows, let z be the least integer such that
c < 2z . We will iteratively define sample spaces of EDP in-
stances, namely H1, H2, ..., Hz , such that the sample space
Hi is defined in terms of Hi−1 for 2 ≤ i ≤ z. We will prove
that if φ is a YES-INSTANCE , then any instance of Hz has a
collection of edge disjoint paths in Hz of size at least PY I ,
while if φ is a NO-INSTANCE , then with high probability, at
most PNI source-sink pairs can be routed with congestion
at most 2z−1. We show that for any constant ε : 0 < ε < 1,
PY I/PNI ≥ (log N)(1−ε)/(3

2 2z−1), where N is the size of
instance Hz .

2.2.1 Construction

We will use as our building block the bit gadget in Sec-
tion 2.1.1. We will vary the parameters M,X based on
the sample space Hi. The sample space H1 is same as in
Section 2.1, except that instead of parameters M,X , we
use new parameters M1, X1, which are specified later. For
each accepting configuration α, let P1

α denote the set of X1

canonical paths representing α in H1. For i ≥ 2, we gener-
ate an instance of Hi by connecting together several random
instances of Hi−1. Graph Hi will contain a set of regular
edges and a set of special edges, whose sizes are the same
for all the instances of Hi. An instance of Hi contains X1

source-sink pairs for each ordered i-tuple (α1, . . . , αi) of
accepting configurations, and for each pair a canonical path
is defined. Let ηi denote the number of canonical paths in
any instance of Hi, ηi = |C|iX1. In order to define the re-

cursive construction of Hi, we need first to define the notion
of concatenation of instances of Hi−1.

Concatenation of EDP Instances: Suppose G1, G2 are
two instances of Hi−1, for some i ≥ 2. Then concaten-
tation of G1 and G2 is a new instance G defined as fol-
lows. Let (α1, . . . , αi−1) be an ordered (i − 1)-tuple of
accepting configurations. Recall that each instance of Hi−1

contains X1 source-sink pairs representing (α1, . . . , αi−1).
Let S1, T1 and S2, T2 be the corresponding sets of source
and sink vertices in G1 and G2, respectively. We randomly
unify the vertices in T1, S2 in a pairwise manner. Consider
any two source-sink pairs (s1, t1) and (s2, t2) correspond-
ing to (α1, . . . , αi−1) in G1 and G2, respectively, such that
t1 and s2 are unified in G. Then (s1, t2) becomes a source-
sink pair for graph G, and its canonical path is defined as
a concatenation of the two canonical paths in G1 and G2.
Observe that in graph G, the number of source-sink pairs
remains |C|i−1X1, the same as in G1 and G2. We define a
concatenation of arbitrary number of instances of Hi−1 in a
similar fashion.

Definition of Hi: An instance of Hi is constructed by a
recursive composition of instances of Hi−1 and bit gadgets.
We will use parameter Mi, Xi for constructing Hi. For i ≥
2, we define Mi = M3

1 M2...Mi−1. We also define Xi =
(|C|qMi−1Xi−1)/2 for i ≥ 2. By our choice of parameters,
we ensure that the number of special edges in an instance of
Hi−1 is Xi.

• For each accepting configuration α, and for each j :
1 ≤ j ≤ q, we build an instance Bi−1(α, j) of Hi−1.
Each of these instances is constructed independently.

• For each accepting configuration α, we de-
fine a graph Gi(α) to be the concatenation of
Bi−1(α, 1), . . . , Bi−1(α, q). A source-sink pair in the
concatenated graph correponding to an (i − 1)-tuple
(α1, . . . , αi−1) can now be viewed as a pair that
corresponds to the i-tuple (α1, . . . , αi−1, α) in Gi(α).

• For each proof bit Πj , we build a bit gadget Gi(j) rep-
resenting it, with parameters Mi, Xi.

• The above two parts are composed together as fol-
lows. Consider some accepting configuration α, and
let a1, . . . , aq be the corresponding query bits. Fix
some j : 1 ≤ j ≤ q.

On one hand, we have a bit gadget Gi(aj), which
contains Xi canonical paths corresponding to α. Let
Sj , Tj denote the set of sources and destinations of
these paths. For each source s ∈ Sj , let f(s) ∈ Tj

denote its corresponding destination.

On the other hand, graph Gi(α) contains as sub-graph
instance Bi−1(α, j) of Hi−1, which has Xi special
edges. Let A denote this set of special edges, and let
L and R denote the sets of their left and right end-
points. We remove these edges from our graph. In-
stead, we unify vertices in L and Sj (in pairwise man-
ner), and we unify vertices in R and Tj , as follows.
Let e = (`, r) ∈ A, and assume we unified ` with
some source s ∈ Sj . We then unify r and f(s).

Source-sink pairs of the new instance are the union of the
source-sink pairs in graphs Gi

α for α ∈ C. The set of special
edges in the new instance of Hi is the union of the special
edges in bit gadgets Gi(j), for all proof bits j. All the other
edges are regular. Notice that the number of special edges
in Hi is indeed Xi+1: Recall that for each configuration
α ∈ C, graph Gi(α) is a concatenation of q instances of
Hi−1, each of them containing Xi special edges. Each such
special edge is replaced by a canonical path in Gi(j) for
some proof bit j. A canonical path of a bit gadget has Mi

special edges, and each special edge is shared by two such
paths. Therefore, the total number of special edges in Hi is
|C|qXi

Mi

2 = Xi+1.
Also, note that the total number of canonical paths that

go through a special edge in any instance of Hi is exactly
2i.
Size of an instance of Hz: We will set the base parameters

as M1 = 2λk2

and X1 = 22λk2(3
2
2z

−1)+λk

. Let us now
bound Mi. It is easy to see that M2 = M3

1 , and for all

i : 2 < i ≤ z, Mi = M2
i−1 = M

3
4 2i

1 . Therefore, for all

2 < i ≤ z, we have Mi = 2λk2 3
4 2i

< 2λk22i

.
Let Ni denote the size of an instance of Hi, and let `i

denote the length of each canonical paths in an instance of
Hi. Recall that ηi = |C|iX1 is the number of canonical
paths in Hi. Clearly, Ni ≤ `iηi.

To bound `1, recall that each canonical path traverses q
gadgets, and length of a canonical path inside each gadget
is at most 3M1. So, `1 ≤ 4qM1. The recursive formula
for `i, where i > 1 is calculated as follows. A canonical
path in Hi consists of q canonical paths in Hi−1. Addition-
ally, each special edge of Hi−1 is replaced with a canon-
ical path in gadget Gi(j) (where j is some proof bit in-
dex). The length of the canonical path inside Gi(j) is at
most 3Mi, and the number of special edges on path `i is
at most q`i−1. Therefore, `i ≤ q`i−1 + q`i−1 · 3Mi ≤
4qMi`i−1 ≤ (4q)iM1M2 · · ·Mi ≤ (4q)iM

3
4 2i+1−2
1 . Thus

the size Nz of an instance of Hz can be bounded as

Nz ≤ `zηz ≤ |C|zX1(4q)
zM

3
42z+1−2
1 ≤ X12

2λrz when
z = O(log log log n).

Notice that X1 = 22λk2(3
2
2z

−1)+λk

. As r = O(log n), the
overall construction size is O(npoly log n).

2.2.2 Yes Instance: φ is Satisfiable

In the YES-INSTANCE , there is a PCP proof, for which
the acceptance probability is at least 2−λ. For each random
string r satisfied by this proof, let c(r) be the corresponding
accepting configuration. The proof of the following lemma
is omitted due to lack of space.

Lemma 4 If φ is a YES-INSTANCE , then for each i :
1 ≤ i ≤ z, graph Hi contains a collection of PY I =
|C|iX1/2

(2λk+λ)i edge-disjoint canonical paths.

2.2.3 No Instances: φ is Unsatisfiable

Assume φ is a NO-INSTANCE . As before, we will bound
the number of canonical paths (P1), long non-canonical
paths (P2), and short canonical paths (P3) in any solution
that has congestion at most 2z − 1.
Canonical Paths: Recall that in order to construct our fi-
nal graph Hz , we construct, for each proof bit Πj , for each
i : 1 ≤ i ≤ z, many instances of bit gadget Gi(j), with
parameter Mi. We define a parameter ∆i = Mi

8 log Mi
, which

replaces the parameter ∆ in the definition of a bad gadget.
Let B1 be the (bad) event that any of these bit gadgets is
bad. The following is a simple corollary of Lemma 2.

Corollary 2 The probability of the bad event B1 is bounded
by 1

poly n .

Theorem 5 If event B1 does not occur, then for each i : 1 ≤
i ≤ z, any collection of more than |C|i·(9q2)i·X1

M1
canonical

paths in graph Hi, causes congestion of 2i.

Proof: The proof is by induction on i. For each i, we
bound the maximum number of canonical paths, for which
congestion is less than 2i. The analysis of the base case,
where i = 1 is similar to the analysis presented in Sec-
tion 2.1. Recall that the number of canonical paths in any
solution with congestion 1 is at most X1

∆1

∑

j nj + 2λrX1

2λk2 ≤
|C|qX1·8 log M1

M1
+ |C|X1

2λk2 ≤ |C|qX1·8λk2

M1
+ |C|X1

2λk2 ≤ |C|(9q2)X1

M1
.

Assume now the theorem holds for i − 1, and consider
Hi. Let Pi

1 be any collection of canonical paths in Hi, such
that their congestion is less than 2i. We partition the set
Pi

1 as follows: for each configuration α ∈ C, let Qi
α be the

paths of P i
1 that correspond to paths in Gi(α).

Definition: Let α ∈ C be an accepting configuration.

We say that α is congested iff |Qi
α| ≥ 2 |C|i−1·(9q2)i−1·X1

M1
.

We now proceed in two steps. First, we prove that if α is
congested, then for each j : 1 ≤ j ≤ q, many of the special
edges in Bi−1(α, j) have congestion 2i−1. The second step
is proving that the number of congested configurations is
small (otherwise the overall congestion is 2i).

Lemma 6 Suppose α is congested and event B1 does not
occur. Then for each j ∈ {1..q}, at least Xi

M2
1 M2···Mi−1

spe-

cial edges in instance Bi−1(α, j) of Hi−1, have congestion
2i−1.

Lemma 7 If φ is a NO-INSTANCE and the event B1 does
not occur, then in any solution of Hi with congestion at most

2i − 1, no more than 2i+1|C|q2

M1
configurations can be con-

gested.

We are now ready to bound the number of canonical
paths in P1 = Pi

1. Each congested configuration con-
tributes at most |C|i−1X1 paths to P1, and by Lemma 7,
we have at most (2i+1|C|q2)/M1 congested configura-
tions. Each non-congested configuration contributes at

most 2 |C|i−1·(9q2)i−1·X1

M1
paths. Thus, |P i

1| ≤ |C|i−1X1 ·
2i+1|C|q2

M1
+ 2 |C|i−1·(9q2)i−1·X1

M1
· |C| ≤ 2i+1|C|iq2X1

M1
+

2 |C|i·(9q2)i−1·X1

M1
≤ |C|iX1(9q2)i

M1
.

Since P1 = Pz
1 , we get PY I

|P1|
≥ 2λk2

(9q2)z·2(2λk+λ)z ≥
2λk2−2λkz−λz−3z log(λk) ≥ 2λk2−3λkz .
Long Non-Canonical Paths: Recall that the length of
each canonical path in an instance of Hz is `z ≤
(4q)zM

3
4 (2z+1−2)
1 ≤ (4q)z2λk2 3

4 (2z+1−2). A non-canonical
path is called long if its length is at least g = `zγ where
γ = 2λk2

. Otherwise, it is called short. Let P2 denote
the set of long non-canonical paths in any solution that has
congestion less than c. Each edge in our final graph partici-
pates in at least one canonical path. Thus, the total number
of edges is at most ηz`z . As the congestion on each edge
is less than 2z , we have that |P2| ≤ 2zηz`z

g = 2z|C|zX1

γ ≤
PY I

2z2(2λk+λ)z

2λk2 ≤ PY I

2λ(k2
−3kz)

.
Short Non-Canonical Paths: We next bound the size of
P3, the set of short non-canonical paths in our solution.
Suppose there is a short non-canonical path P ∈ P3 con-
necting some source and destination pair (s, t). This path
must form a cycle of length at most g + `z ≤ 2g with the
canonical s− t path. Moreover, at least one edge on the cy-
cle lies on P . Let K denote the number of cycles of length
at most 2g in our graph. Then |P3| ≤ 2cg · K (since con-
gestion is at most c). Our goal is to show that with high
probability, K is small. The proof of the following lemma
is similar to Lemma 3.

Lemma 8 With probability at least 2
3 , K ≤ 3|C|(2g+2)z .

We say that the bad event B2 occurs if
K > 3|C|(2g+2)z . If B2 does not happen, then
we have: |P3| ≤ 2cg · (3|C|(2g+2)z) ≤ |C|3gz ≤
2(λ(r+2k)z)·(4q)z2λk2(3

4
2z+1

−2)·2λk2

≤ 22λk2(3
4
2z+1

−1)+λk ≤
X1 ≤ PY I

2λ(k2
−3kz)

.

2.2.4 Putting it Together

If the events B1 and B2 do not happen, the gap between the
yes and the no instances is Ω(2λ(k2−3kz)). For any ε′ >
0, we can choose sufficiently large k such that the gap is
(log Nz)

(1−ε′)/(3
4 2z+1−1) = (log Nz)

(1−ε′)/(3
2 c+ 1

2) and the
size of the instance is bounded by npolylog(n).

When c is allowed to grow up to log log n
(log log log n)2 for any

ε > 0, the gap term Ω(2λ(k2−3kz)) yields the desired gap
only when we allow k to grow to z = log log log n. Fol-
lowing [21], it can be shown that using r = O(k2 log n)
random bits, we can get once again completeness at least
1/2 and soundness at most 1/2k2

. To keep the construc-
tion size bounded by (npolylog(n)), we now choose λ to be a
large constant. The rest of the proof remains similar to the
one presented above.
Extension to ANFwC: To show the hardness of ANFwC,
classify each routed pair to be of type A or B based on
how much flow is routed on canonical versus non-canonical
paths. It is type A if more than a (c − 1)/c-fraction of the
flow is routed on the pair’s canonical path, and type B oth-
erwise. It is easy to see that no more than c type A pairs can
traverse a special edge without causing a congestion greater
than c−1. Thus essentially the same analysis as given above
for P1 applies. For type B pairs, we proceed as above for
P2 and P3 noting that for each routed pair, we have only
1/c-fraction of the flow to be supported.

2.3. A Simple Integrality Gap Construction

We will construct, for each integral c ≤
O((log log n)/(log log log n)), an EDPwC instance of size
O(n log n) for which the integrality gap of the multicom-
modity flow relaxation is Ω((log n

(log log n)2)1/c)/c) when con-
gestion is restricted to be strictly less than c. Our construc-
tion will use two parameters, β1 = 1

4 (log n
150(log log n)2)1/c

and β2 = 6(2β1)
c−1 ln β1. The integrality gap of our EDP

instance will be Ω(β1/c).

2.3.1 Auxiliary Hypergraph Construction

Our starting point is a random hypergraph H with vertex set
V (H) = {v1, . . . , vn}, and β2n hyper-edges, h1, . . . , hnβ2

.
Each hyper-edge hi, for 1 ≤ i ≤ nβ2 is a c-tuple of vertices,
chosen randomly and independently. Our EDP instance will
be derived from the hypergraph H .

We now establish some properties of H . Let S ⊆ V (H)
be a subset of vertices of size n/β1. We say that S is bad if
it contains none of the nβ2 hyper-edges. We say that event
E1 happens, iff there is at least one bad subset S ⊆ V (H) of
size n/β1. Also, given a vertex v ∈ V (H), we say that it is
a high-degree vertex, if it participates in more than 100β2c
hyper-edges in H . We say that event E2 happens, if the

number of high-degree vertices in H is greater than n/β1.
The proof of the lemma below is straightforward.

Lemma 9 The probability that either event E1 or E2 occurs
is at most 1/2.

2.3.2 The EDPwC Instance

The construction of the EDPwC instance G is based on
hyper-graph H defined above. For each vertex v ∈ V (H),
graph G contains a source and sink pair (s(v), t(v)). Ad-
ditionally, for each hyper-edge hi : 1 ≤ i ≤ β2n, it
contains two vertices `i, ri, which are connected by a spe-
cial edge. Consider now some vertex v ∈ V , and as-
sume it participates in hyper-edges hi1 , hi2 , . . . , hik

, where
i1 < i2 < · · · < ik. We add the following regular
edges to graph G: (s(v), `i1), (rik

, t(v)), and for each
j : 1 ≤ j ≤ k − 1, we add a regular edge (rij

, `ij+1
).

We define a canonical path corresponding to v as follows:
P (v) = (s(v), `i1 , ri1 , . . . , `ik

, rik
, t(v)).

Let g > 2 be some fixed integer, and let Kg be the total
number of cycles of length at most g in G. We say that event
E3 happens, if Kg > (6β2c)

g+1.

Lemma 10 The probability that E3 happens is at most 1
4 .

With probability at least 1/4, none of the events E1, E2,
and E3 happen; we assume this from now on.

2.3.3 Integrality Gap Analysis

The fractional solution can route at least n
c units of flow, by

sending 1
c units of flow on each canonical path. On the other

hands, if events E1, E2, and E3 do not occur, then we can
show that no integral solution can route more than 4n/β1.
Thus the integrality gap is at least β1

4c , giving us the desired
bound.

3. The AZ Construction

The AZ construction uses a reduction from the Raz ver-
ifier for MAX3SAT(5) and builds an EDPwC instance in
a similar manner to the hardness example for the Conges-
tion Minimization problem presented in [2]. A 3SAT(5) for-
mula has n variables and 5n/3 clauses where each variable
appears in exactly 5 distinct clauses and each clause con-
tains exactly 3 literals. The MAX3SAT(5) problem aims
to find an assignment that maximizes the number of satis-
fied clauses. A 3SAT(5) formula is called a yes-instance
if it is satisfiable; it is called a no-instance if no assign-
ment satisfies more than a 1 − ε fraction of the clauses for
some constant ε > 0. It follows from the PCP theorem
that it is NP-hard to distinguish between yes-instances and
no-instances. Given a 3SAT(5) instance φ we show that if
φ is a yes-instance then many demands can be routed on
edge-disjoint paths. If φ is a no-instance then with high

probability we can only route a small number of demands
unless some edge has congestion higher than c. From now
on, we use w, instead of c, to denote the congestion para-
meter since we use c to denote “clauses” in φ. In order to
avoid confusion with the size of φ we shall use N and M
to denote the number of nodes and edges in the EDPwC in-
stance. Most of the proofs in the section are deferred to the
full version [3].

3.1 Construction

Raz verifier. A Raz verifier with ` repetitions is defined
as follows [27]. A verifier interacts with 2 provers, a clause
prover (c-prover) and a variable prover (v-prover). Given a
3SAT(5) formula φ, the verifier sends the c-prover a clause
query (c-query) that consists of ` clauses c1, . . . , c` chosen
uniformly at random. It also sends the v-prover a variable
query (v-query) that consists of one variable v1, . . . , v` cho-
sen uniformly at random from each of the ` clauses. The
c-prover sends back the assignment of every variable in
clauses c1, . . . , c` and the v-prover sends back the assign-
ment of the variables v1, . . . , v`. The verifier accepts φ if
all the ` clauses are satisfied and the two provers give con-
sistent assignment to the ` variables. The verifier rejects φ
otherwise.

Suppose φ has n variables, then φ has 5n/3 clauses.
Clearly, a Raz verifier with ` repetitions has Qc := (5n/3)`

distinct c-queries each of which has Ac := 7` answers. It
also has Qv := n` distinct v-queries each of which has
Av := 2` answers. Since the verifier only queries vari-
ables that appear in a c-query, the number of distinct clause-
variable query pairs is R := (5n)`. Each clause appears in
R/Qc = 3` c-v query pairs and each variable appears in
R/Qv = 5` c-v query pairs. It is clear that for each answer
to a c-query there is exactly one answer to a v-query that
would cause the verifier to accept (since the assignment to
the variable in the answer to the v-query must match the cor-
responding assignment in the answer to the c-query). Hence
for each c-v pair there are F := 7` accepting interactions.

Theorem 11 [27] There is a universal constant α > 1 such
that if φ is a yes-instance there is a proof system in which
the verifier always accepts; if φ is a no-instance the verifier
accepts with probability less than α−`.

Given a 3SAT(5) formula φ we first construct the two-
prover interactive proof system and represent it in a graph
that we call the proof system graph, P . We then transform
this proof system graph into an EDPwC instance on a graph
that we call the transformed graph, T .

In defining these two graphs, we do not use the conven-
tion of specifying their node sets and edge sets. Instead we
first specify a set of paths that exist in the graph. We then
add edges to the graph to ensure that these paths are real-
izable. Our graph construction involves many parameters

center edges

answer edges
answer edges

c−blob (u v w v x)

c−blob (u v w v o)

u=1, w=1, o=0

u=1, w=0, o=0

u=1, w=0, o=1

u=0, w=0, o=0

u=0, w=0, x=0

u=1, w=1, x=0

u=1, w=1, x=1

u=1, w=0, x=0

u=1, w=0, x=1

u=0, w=1, x=0

u=0, w=1, x=1

u=0, w=0, o=1

z=0

u=0

u=1

v−blob (u)

v−blob (v)

v−blob (x)

x=1

u=0, w=1, o=0

u=0, w=1, o=1

v−blob (o)

y=1

y=0

o=0

o=1

t

r,101,1,1

t

t

t

t

t

r,011,0,1

demand edges

demand edges

r,110,1,1

r,100,1,1

r,010,0,1

r,000,0,1

r,111,1,1

t

t

t

t

t

t

t r’,000,0,1

t

r’,001,0,1

r’,010,0,1

r’,011,0,1

r’,100,1,1

r’,101,1,1

r’,110,1,1

r’,000,0,1s

r’,110,1,1

s r’,001,0,1

r’,010,0,1

r’,011,0,1

r’,100,1,1

r’,101,1,1

s

s

s

s

r,110,1,1

r,100,1,1

r,010,0,1

s

s

s

s

r,000,0,1

s

s

s

s

r,111,1,1

r,011,0,1

r,101,1,1

Figure 3. Graph P for a proof system, φ = (u ∨ w ∨ x̄) ∧ (ū ∨ w ∨ o), ` = 1 and Y = 1. The figure shows
14 out of 42 demands.

which we define at the end of this section. Throughout the
paper we use subscript c and v when discussing quantities
pertaining to clause and variable, and we omit the subscript
when we do not distinguish them.

Proof System Graph P . In the proof system graph P ,
for each possible answer a we have an answer edge which
we also denote a. For each query q we group together all
the possible answers to q and refer to this group as a query
blob which we also denote q. A clause query blob (c-blob)
contains Ac edges that we call answer edges and a variable
query blob (v-blob) contains Av answer edges. We use r
to denote a c-v query pair. For each accepting interaction
(r, ac, av) we have Y demands dr,ac,av,y , 1 ≤ y ≤ Y , each
of which has a source node sr,ac,av,y , a destination node
tr,ac,av,y and routes one unit of flow. 1 Demand dr,ac,av,y

has a special path p that we refer to as a canonical path.
This path starts at node sr,ac,av,y , passes through edges

ac, av and ends at node tr,ac,av,y . In order for this to be pos-
sible, we place a center edge between ac and av , a demand
edge between sr,y and av , and a demand edge between ac

1In [2] demands corresponded to c-v query pairs in the proof system.
Each demand is associated with multiple canonical paths and each canon-
ical path corresponded to an accepting interaction. In this construction
for EDPwC, each demand corresponds to an accepting interaction and has
only a single canonical path.

and tr,y . We allow parallel demand edges and center edges
so that no two canonical paths share a common edge other
than answer edges.

Let us use an example to illustrate the above construction
of P , shown in Figure 3. Let the repetition parameter ` = 1.
Let φ = (u ∨ w ∨ x̄) ∧ (ū ∨ w ∨ o). For a query pair r that
queries clause u ∨w ∨ x̄ and variable u, there are 7 accept-
ing interactions, namely the 7 satisfying assignments for the
clause and the assignment of u consistent with the clause.
Suppose Y = 1. We define one demand dr,ac,av,1 for each
of the 7 accepting interactions. Each of these demands has
an associated canonical path. These 7 canonical paths are
shown in solid lines in Figure 3. The demand for query pair
r′ that queries clause ū ∨ w ∨ o and variable u also has 7
demands. The associated canonical paths share the answer
edges in the v-blob u with canonical paths associated with
r. The canonical paths for r′ are shown in dotted lines in
Figure 3. We did not draw 4 × 7 = 28 other demands and
their canonical paths.

If Y > 1 then for each accepting interaction (r, ac, av)
we define Y demands, each of which has its own source
node, destination node and canonical path. The canonical
paths for these Y demands share the answer edges in c-blob
u ∨ w ∨ x̄ and v-blob u, but have distinct center edges and
demand edges.

c−blob (u v w v x)

c−blob (u v v v o)

v−blob (o)

v−blob (u)

v−blob (w)

v−blob (x)

:

corresponding v−blob in T

p4

p5

p5

p6

p6p4

p1

p1

p2

p2

p3

p3

p7

p7

p5

p6

p7

p3
v−blob (u) in P

p1

p2

p4

σr,111,1,2,z

σr,111,1,3,z

σr,111,1,1,z−1

σr,111,1,2,z−1

σr,111,1,3,z−1 σr,111,1,1,z

σ nodes for other
accepting interactions

σr,111,1,1,z

σr,111,1,2,z

σr,111,1,3,z

Figure 4. (Left) An illustration of property T-1. (Upper left) Using the example shown in Figure 3, seven paths
p1, . . . , p7 go through the answer edge u = 1 for the blob for variable u in graph P . (Lower left) Image edges in each
of the Z corresponding v-blobs in T are created via random bipartite matching. Paths p1, . . . , p7 are randomly mapped
to distinct image edges in each blob.

(Right) Level z of the transformed graph T . Consider qc = u ∨ w ∨ x̄ and qv = u. Let ac = 111 represent
u = w = x = 1 and let av = 1 represent u = 1. Let (r, ac, av) be an accepting interaction. For Y = 3, the figure
shows the canonical paths of 3 demands dr,ac,av,y , where 1 ≤ y ≤ Y . For the canonical path shown in solid line,
y2z−2 = 1, y2z−1 = 2 and y2z = 2. (Fewer than the actual number of image edges are shown in each blob.)

The following property P-1 holds for graph P . To see
this, we note that for a fixed clause and a fixed variable, the
number of satisfying assignments for the clause for which
the variable is set to 1 is either 3 or 4 and the number of
satisfying assignments for which the variable is set to 0 is
also either 3 or 4.
P-1. Consider the set of demands that correspond to the
same c-v query pair and the same y. No two demands from
the set can share a common answer edge ac in a c-blob. At
most 4` demands from the set can share an answer edge av

in a v-blob.
Among all demands, exactly Ic := Y R/Qc canoni-

cal paths share each answer edge ac and at most Iv :=
4`Y R/Qv canonical paths share each answer edge av .

EDPwC Instance on Transformed Graph T . We now
construct an EDPwC instance on the transformed graph T .
The graph T consists of Z levels. Each level of T consists
of Qc c-blobs and Qv v-blobs and they correspond one-to-
one to those in P . We use bq,z to denote the blob at level
z of T that corresponds to query blob q of P , Each c-blob
(resp. v-blob) in T consists of a random bipartite match-
ing between Ic (resp. Iv) left nodes and Ic (resp. Iv) right
nodes. We use the term image edge to refer to the edges
in these random matchings. For each accepting interaction

(r, ac, av), we also have 2 groups of intermediate nodes σ
at each level z, one group situated between blobs bqc,z and
bqv,z and the other situated between bqv,z and bqc,z+1. Each
group consists of Y nodes of the form σr,ac,av,y,z where
y = 1, . . . , Y .

Like P , we have Y demands dr,ac,av,y , 1 ≤ y ≤ Y ,
for each accepting interaction (r, ac, av), and each de-
mand has one canonical path. The canonical path for de-
mand dr,ac,av,y in T goes through 2Z + 1 intermediate
nodes and we denote them σr,ac,av,y0,0, σr,ac,av,y2z−1,z and
σr,ac,av,y2z,z , for 1 ≤ z ≤ Z. The node σr,ac,av,y0,0 also
acts as the source and σr,ac,av,y2Z ,2Z as the destination of
the demand.

We specify the edge set in T by describing the mapping
of each canonical path from P to T . The essence of the
mapping is that any two canonical paths sharing an answer
edge in a blob q in P are mapped to distinct image edges in
the corresponding blobs bq,z , 1 ≤ z ≤ Z, in T . This prop-
erty is summarized later on in property T-1. The intermedi-
ate nodes σ are introduced so that there is some randomness
when connecting two consecutive image edges on a canoni-
cal path. In particular, the Y canonical paths corresponding
to the same accepting interaction (r, ac, av) go through a
random permutation after going through every query blob

in T . We quantify this randomness in property T-2. and ex-
ploit this property to prove the high-girth property of T in
Theorem 18.

In the following we describe the canonical paths. We
walk along the canonical path for each demand from left
to right. Demand dr,ac,av,y starts with its source node
sr,ac,av,y on the left, which is also σr,ac,av,y0,0. This σ-
node goes to a random left node of the blob bqc,1 (or more
generally blob bqc,z at level z). This left node is chosen
subject to the constraint that no two canonical paths that
share a common answer edge ac in P can go to the same
left node in bqc,1 (or more generally bqc,z). This is always
possible due to property P-1 and the fact that bqc,z has Ic left
nodes. We add an edge between the chosen σ-node and the
chosen left node. The canonical path then passes through
the image edge incident to the chosen left node. To proceed
from the right node in bqc,z we consider the Y demands cor-
responding to the same accepting interaction (r, ac, av). We
put a random bipartite matching between the Y right nodes
in bqc,z that these Y demands go through and the Y σ-nodes
of the form σr,ac,av,y,z , where 1 ≤ y ≤ Y , that are to the
right of bqc,z . This matching defines node σr,ac,av,y2z−1,z

for demand dr,ac,av,y .
From σr,ac,av,y2z−1,z , demand dr,ac,av,y goes through

blob bqv,z in a similar manner. That is, it goes to a ran-
dom left node of the blob bqv,z , which is chosen subject to
the constraint that no two canonical paths that share a com-
mon answer av in P can go to the same left node in bqv,z .
The canonical path then passes through the image edge in-
cident to this left node. To proceed from the right node in
bqv,z we consider the Y demands corresponding to the same
accepting interaction (r, ac, av). Again, we put a random
bipartite matching between the Y right nodes in bqv,z that
these Y demands go through and the Y σ-nodes of the form
σr,ac,av,y,z , where 1 ≤ y ≤ Y , that are to the right of bqv,z .

After passing through all Z levels, the canonical path for
demand dr,ac,av,y ends at the node σr,ac,av,y2Z ,Z , which we
make the destination node of the demand dr,ac,av,y . See
Figure 4 (Right) for an illustration of the canonical path for
one demand. Graph T has the following two properties:

T-1 Consider any answer ac to query qc. The Ic de-
mands in P that are routed through the answer edge ac have
canonical paths in T pass through distinct image edges in
bqc,z . Similarly for any answer edge av , the at most Iv de-
mands in P that are routed through av have canonical paths
in T that pass through distinct image edges in bqc,z .

T-2 Consider all the edges that could potentially exist in
T before the random choices are made. The probability that
any such edge exists in T is at most 1/Y . Moreover, con-
sider any potential edge e. If any fixed set of g edges exist
in T and none are to the right of e, then the probability that
e exists is at most 1/(Y − g).

Parameters. Given a 3SAT (5) formular φ with n vari-
ables, let ` be the Raz verifier repetition parameter. We use
the following additional parameters in constructing graphs
P and T .

Qc = (5n/3)` no. of c-blobs in P and per level in T ;

no. of c-queries (1)

Qv = n` no. of v-blobs in P and per level in T ;

no. of v-queries (2)

Ac = 7` no. of answer edges per c-blob in P ;

no. of answers to a c-query (3)

Av = 2` no. of answer edges per v-blob in P ;

no. of answers to a v-query (4)

Ic = Y · 3` no. of image edges per c-blob in T (5)

Iv = Y · 20` no. of image edges per v-blob in T (6)

R = (5n)` no. of c-v query pairs (7)

F = 7` no. of accepting interactions

per c-v query pair (8)

Dc = Y · 3` DcF = no. of demands per c-blob

in P and T (9)

Dv = Y · 5` DvF = no. of demands per v-blob

in P and T (10)

FY R no. of demands

In order to define Y , the number of demands per c-v ac-
cepting interaction, and Z, the number of levels in T , we
introduce two new parameters, k and h. The free parameter
h ≥ 2 is used to define the concept of heavy blobs in P . The
Raz repetition parameter ` and the congestion parameter w
are defined in terms of h. The parameter k is related to the
length of non-canonical paths in T .

h def. of heavy blob in P (11)

w = h − 1 max allowed congestion (12)

` = h−1 log log n Raz repetition parameter (13)

β = α`/(h − 1)2 def. of heavy edge in P (14)

Z = (2β · 8`)h no. of levels in T (15)

k = Z
√

Z noncanonical path length in T(16)

Y = k · (Ac + 1)k · 3(24 · 7`ZR)k+1

no. of demands per c-v query pair (17)

Let M be the number of edges in T . We have Y RZ im-
age edges from c-blobs and Y RZ · 4` image edges from v-
blobs. Canonical paths do not share common edges outside
blobs in T and there are 7`(4Z)Y R such edges. Therefore,

M = Y RZ + Y RZ · 4` + 7`(4Z)Y R. (18)

Note that we choose h such that `h = log log n. This
ensures that Z = polylog()n and hence M = npolylog n.

3.2 Analysis

At a high level our proof proceeds as follows. We use a
solution to the EDPwC instance on T to determine whether
the original 3SAT(5) instance φ (that defined the proof sys-
tem) is a yes-instance or a no-instance. We first argue,

Lemma 12 If φ is a yes-instance then Y R demands can be
routed in T on edge-disjoint paths.

In this case, the two provers can agree on a satisfying as-
signment for φ and this assignment defines one accepting
interaction per query pair. Each accepting interaction cor-
responds to Y demands and we include these Y R demands
in the solution. Note that this satisfying assignment also de-
fines one answer edge per query blob in P such that the
canonical paths for these Y R demands only go through
these chosen edges. By property T-1, these canonical paths
are mapped to distinct image edges in every blob of T .
Therefore, we have chosen Y R demands that have edge-
disjoint canonical paths in T .

No-instance. We concentrate on the case that φ is a no-
instance. If many demands are routed along canonical paths
in a solution to the EDPwC instance on T , we show that
these demands must be routed through a large number of
answer edges in some blob in P . Otherwise, a small number
of answer edges would be used in every blob and we could
use them to define a pair of provers that would violate the
error probability of the proof system defined in Theorem 11.
(In the extreme example in which only one answer edge is
used in every query blob in P , these edges define the two
provers.) This property is summarized in Lemma 13.

We first define some terminologies. Note that our ran-
dom construction defines a random mapping M between
canonical paths in P and canonical paths in T . Consider
a solution T to the EDPwC instance on T and let us fo-
cus on the demands that are routed along their canonical
paths under T . We let P = P(T ,M) be the corresponding
canonical paths in P under the random mapping M. We
use T = T (P,M) to denote the inverse mapping. We de-
fine an answer edge a in a blob q in P to be heavy if at
least D/(βA) canonical paths go through a under P . In
other words, an edge is heavy if of all canonical paths that
go through a blob in P a fraction of at least 1/(βAF) go
through the edge. We say a query blob is heavy if it has at
least h heavy answer edges under P . We note that heavy
edges and heavy blobs in P are defined under a particular
solution. If a solution T routes more than 3Y R/β demands
on canonical paths, then we call it a canonical solution for
T .

Lemma 13 If T is a canonical solution, P has a heavy blob
under P(T ,M).

In the following, we use property T-1 to show that for
a heavy blob in P , one of the Z corresponding blobs in T

necessarily has congestion at least h with high probability.
Therefore, if congestion is less than h on all edges, only a
small number of demands can be routed on canonical paths.
For this purpose we define a set of bad events. Let q be a
heavy query blob in P , let H = {a1, . . . , ah} be a set of h
answer edges and let Eai

, for 1 ≤ i ≤ h, be a set of D/βA
canonical paths in P that pass through the answer edge ai.
Let B(q, Ea1

, . . . , Eah
) be the bad event that under M, the

images of the paths in Ea1
, . . . , Eah

in T create congestion
less than h.

The bad event B(q, Ea1
, . . . , Eah

) is related to the fol-
lowing balls-and-bins game. We are given I bins and we
throw ni balls into ni distinct bins during the ith round
where ni ≤ I . What is the maximum number of balls in
a bin at the end of A rounds? Here, A represents the num-
ber of edges in q and I represents the number of edges in
a blob in T that corresponds to q. The ni’s represent the
number of demands that are routed along the ith answer
edge in q. In particular, na1

, . . . , nah
represent the counts

for heavy edges and are at least D/(βA). The bad event
B(q, Ea1

, . . . , Eah
) happens when the maximum number

of balls in a bin at the end of A rounds is smaller than h.

Lemma 14 The probability that every bin has fewer than h

balls is at most e−(2βAa)−hD where a = I/D.

By construction, a = 4` for a v-blob and a = 1 for a c-blob.
Lemma 14 and the choice of Z immediately imply that,

Corollary 15 For fixed q, Ea1
, . . . , Eah

, the probability
that B(q, Ea1

, . . . , Eah
) occurs is at most

e−(2βAc)
−hDcZ ≤ e−Dc if q is a c-blob,

e−(2βAv4`)−hDvZ ≤ e−Dv if q is a v-blob.

This probability is with respect to the random mapping M.

We now count the number of bad events. If q is a v-blob
then at most Dv4` canonical paths pass through any an-
swer edge in q. Therefore, an upper bound on the total
number of events of the form B(q, Ea1

, . . . , Eah
) for a v-

blob q is Qv

(

Av

h

)(

Dv4`

Dv/(βAv)

)h
which can be shown to be

eo(Dv). A similar calculation shows that an upper bound on
the total number of events of the form B(q, Ea1

, . . . , Eah
)

for a c-blob q is Qc

(

Ac

h

)(

Dc

Dc/(βAc)

)h
which can be

shown to be eo(Dc). By a union bound, the probability
that some event B(q, Ea1

, . . . , Eah
) happens is at most

e−DcQc

(

Ac

h

)(

Dc

Dc/(βAc)

)h
+ e−DvQv

(

Av

h

)(

Dv4`

Dv/(βAv)

)h
≤

1/poly(n).
Now suppose that under mapping M no such bad event

occurs. For any heavy solution P in P , by definition we can
find a query blob q with h answer edges such that for each
such edge D/(βA) demands are routed on a canonical path
that passes through the edge. Since no bad event occurs, the
images of these canonical paths in T create congestion at

least h. In other words, the canonical solution T (P,M) in
T has congestion at least h. We have therefore shown,

Lemma 16 With probability 1−1/poly(n) every heavy so-
lution P corresponds to a solution T (P,M) in which the
congestion is at least h in T .

Lemma 13 states that if T is a canonical solution then
P(T ,M) must be a heavy solution in P . Therefore,
by Lemma 16, with high probability over the choice
of M, T must have congestion at least h since T =
T (P(T ,M),M). Recall that a solution is canonical if
more than 3Y R/β demands are routed along canonical
paths. In summary,

Theorem 17 With probability 1−1/poly(n), every canon-
ical solution T has congestion at least h.

We now show not many demands can be routed on non-
canonical paths. We make use of Property T-2 and a lemma
similar to the Erdös-Sachs theorem [14] and show T is al-
most a high-girth graph. The proof of the following theorem
resembles that for the hardness example in [1].

Theorem 18 With probability 2
3 , the maximum number of

demands that can be routed on non-canonical paths is
o(Y R/β).

Wrapping Up Let the congestion w in EDPwC be h− 1.
For a yes-instance we can route at least Y R demands with
congestion 1 in T . For a no-instance we have shown in
Theorem 17 that at most 3RY/β demands can be routed
along canonical paths with congestion at most w, and in
Theorem 18 that o(RY/β) demands can be routed along
non-canonical paths with congestion at most w. There-
fore Ω(β) is the gap between the yes-instance and no-
instance. From its definition in (14) we rewrite β as β =

log n
log α
h−1 −

2 log(h−1)
log log n using `h = log log n. We denote the

exponent of β by b. We now express β in terms of M , the
size of the EDPwC instance. From the definitions of M , Y
and Z, we have log M = Θ(log Y), log Y = Z

√
Z·o(

√
Z),

and Z = (2β)h8`h. Plugging in the definition of β in (14),
Z = (log n)hb+4. Therefore, log M < (log n)2(hb+4)+ε

for any constant ε > 0. This implies that the gap β >

(log M)
1
2

b
bh+4−ε, for any constant ε > 0. For any constant

congestion w, h = w + 1 is a constant. Since α > 1 is a
universal constant, the exponent of log M is some positive
constant as well. Therefore, for any constant congestion,
we have derived a polylogarithmic gap.

Note that since M = npolylog n, our randomized
reduction can be performed in time npolylog n. We
have therefore shown hardness under the assumption that
NP 6⊆ coRTIME(npolylog n). A standard result states
that if NP ⊆ coRTIME(npolylog n) then NP ⊆
ZPTIME(npolylog n). In summary,

Theorem 19 For any constant w, there exists a constant
γw such that EDPwC with congestion w has no (logγw M)-
approximation unless NP ⊆ ZPTIME(npolylog n).

We note that the hardness result directly translates into
an integrality gap since for all instances (including no-
instances), if we route a 1/7` fraction of each demand then
the congestion on any edge is at most 1. Therefore, for no-
instances we can fractionally route 7`Y R/7` with conges-
tion 1 but the maximum number of demands that we can
route integrally with congestion w is at most O(Y R/β).

We also note that essentially the same analysis can be
used to show hardness of ANFwC. Instead of classifying
demands depending on whether or not they are routed on
canonical paths, we classify demands depending on whether
or not more than a (1 − 1

h2) of the demand is routed along
its canonical path. We omit the details.

3.3 Improvement

We now show how to obtain the improved inapproxima-
bility ratio stated in Theorem 1. Note that the value of Z is
critical to this ratio. A smaller value of Z gives a smaller
value of M and hence a better ratio. The value of Z is set
to

Z = max{(2βAc)
h, (2βAv4`)h} = (2β · 8`)h

so that Corollary 15 can ensure that a bad event
B(q, Ea1

, . . . , Eah
) happens with small enough probabil-

ity. In the following we offer 2 modifications, one is to
remove the factor 4` and the other to reduce the number of
answer edges to each query. The first is accomplished by
introducing new intermediate nodes ρ with desired proper-
ties; and the second is accomplished by introducing multi-
ple provers instead of 2 provers in the proof system.

Modified Construction: ρ-nodes. We first aim to remove
the factor 4` in the definition of Z. Recall that 4` comes
from property P-1: at most 4` demands from the same query
pair but different accepting interactions may share a com-
mon answer edge in a v-blob in P . In the following mod-
ification we allow some such demands to share a common
answer edge in T . (However, we still enforce that demands
corresponding to different query pairs, and demands cor-
responding to the same accepting interaction, go through
distinct image edges in T .)

Our modification is accomplished by introducing new
intermediate nodes ρ to replace the σ-nodes. Each c-blob
bqc,z at level z in T is surrounded by two groups of ρ-nodes,
one to the left and one to the right. The nodes are of the
form ρr,ac,y,z where r is a query pair that involves query qc

and ac is a possible answer in an accepting interaction un-
der r. Similarly, each v-blob is surrounded by 2 groups of
ρ-nodes one to the left and one to the right. The nodes are
of the form ρr,av,y,z . See Figure 5 for an illustration.

Consider the ρ-nodes that are to the left of a v-blob bqv,z .
We connect these nodes to bqv,z as follows. Each fixed
answer av to query qv defines 5`Y ρ-nodes of the form
ρr,av,y,z to the left of qv , where y = 1, . . . , Y and r is a
query pair that has av as part of an accepting interaction.
There are Iv left nodes in bqv,z , where Iv is redefined by
Iv = 5`Y . We put a random bipartite matching between
these 5`Y ρ-nodes and the left nodes in the blob. To con-
nect bqv,z to the ρ-nodes to its right, we consider each fixed
query pair r and each fixed possible answer av that is part
of an accepting interaction under query pair r. This fixed
r and fixed av define Y right nodes in bqv,z and Y ρ-nodes
to the right of bqv,z . We put a random bipartite matching
between them. In a similar manner, we connect a c-blob to
the ρ-nodes surrounding it.

We now connect two neighboring groups of ρ-nodes.
Without loss of generality, let us connect the right group
of bqc,z to the left group of bqv,z . We consider each fixed
accepting interaction (r, ac, av). At level z, there are Y ρ-
nodes of the form ρr,ac,y,z and Y of the form ρr,av,y,z . We
put a random bipartite matching between them. Connecting
the right group of bqv,z to the left group of bqc,z+1 is similar.

In this modified graph T the canonical path for demand
dr,ac,av,y starts at the source node ρr,ac,y,1. There is only
one edge leaving the source node, which is already defined
by a random matching. The demand follows this edge to
a left node in bqc,1 (more generally bqc,z at level z). The
demand then reaches a right node in bqc,z following the ran-
dom matching within bqc,z . This right node is connected to
multiple ρ-nodes to the right of bqc,z . However, only one ρ-
node has the correct subscript for demand dr,ac,av,y , namely
(r, ac, y2z, z) for some y2z in [1, Y]. This is the node where
the demand goes. This node is also connected to multiple
ρ-nodes to the left of bqv,z . Again, only one has the correct
subscript, namely (r, av, y′

2z−1, z) for some y′
2z−1 in [1, Y].

In a similar manner, the demand goes through the blob bqv,z

until it gets to a ρ-node to the right of the last blob bqv,Z .
This last node is the destination node of demand dr,ac,av,y .

Further Modification: Multiple Provers. In this section
we look at how to reduce the number of answer edges Ac

and Av by introducing multiple provers. Suppose we have
λ clause provers and λ variable provers, for some parameter
λ. All of the clause provers are sent all of the ` clauses in
the query. The ith clause prover, where 1 ≤ i ≤ λ, is only
asked to provide a satisfying assignment for `/λ of them,
clauses (i − 1)`/λ + 1 through i`/λ. Similarly, all of the
variable provers are sent all of the ` variables in the query
but the ith prover is only asked to provide a satisfying as-
signment for `/λ of them, variables (i− 1)`/λ + 1 through
i`/λ. The verifier creates a single clause answer by concate-
nating all the answers from the λ clause provers and a single
variable answer by concatenating all the answers from the
λ variable provers. The verifier declares φ satisfiable if and

only if the concatenated clause answer is consistent with the
concatenated variable answer. It is immediate that the error
probability is still less than α−` for the universal constant
α defined in Theorem 11. Each accepting interaction can
now be expressed as (r, a1

c , . . . , a
λ
c , a1

v, . . . , aλ
v), where for

1 ≤ i ≤ λ, ai
c represents the answer from the ith clause

prover and ai
v represents the answer from the ith variable

prover. Since we now have more than 2 provers we shall
refer to r as a query-sequence rather than a query-pair.

The graph P is now constructed in a similar manner
as before. Each prover has its own blob which contains
answers representing satisfying assignment. For example,
each clause blob has 7`/λ answers and each variable blob
has 2`/λ answer edges. The canonical paths for accepting
interactions now pass through 2λ blobs, one for each answer
in the accepting interaction.

The graph T is also constructed in a similar manner as
before. It has Z levels each of which contains blobs with
one-to-one correspondence to those in P . Each blob in T
is surrounded by 2 groups of ρ-nodes as described in the
previous section. The key feature of the new construction is
that the number of answer edges per clause query in P has
decreased from 7` to 7`/λ and the number of answer edges
per variable query in P has decreased from 2` to 2`/λ. The
edges between the ρ-nodes to the right of bqi

c,z and the ρ-
nodes to the left of bqi+1

c ,z are defined in a similar manner.
This modified construction allows us to prove the follow-

ing Theorem. All proofs can be found in [3].

Theorem 20 For any constant ε > 0 and any congestion

w = o(log log M/ log log log M) there is no log
1−ε
w+1 M -

approximation algorithm for EDPwC and ANFwC unless
NP ⊆ ZPTIME(npolylog n). For larger congestions
w ≤ η log log M/ log log log M for some constant η, the
inapproximability ratios are superconstant.

Acknowledgements
The second and the third authors thank Madhu Sudan for

many useful discussions.

References

[1] M. Andrews and L. Zhang. Hardness of the undirected edge-
disjoint paths problem. Proc. of STOC, 2005.

[2] M. Andrews and L. Zhang. Hardness of the undirected con-
gestion minimization problem. Proc. of STOC, 2005.

[3] M. Andrews and L. Zhang. Hardness of the edge-
disjoint paths problem with congestion. http://cm.bell-
labs.com/˜andrews/pub.html, 2005.

[4] Y. Aumann and Y. Rabani. An O(log k) approximate min-
cut max-flow theorem and approximation algorithm. SIAM
Journal on Computing, 27(1):291–301, February 1998.

[5] Y. Azar and O. Regev. Strongly Polynomial Algorithms for
the Unsplittable Flow Problem. IPCO 2001: 15-29.

c−blob (u v w v x)

v−blob (u)

ρr,1,1,z

ρr,1,2,z

ρr,1,3,z

ρr′,111,3,z

ρr′,111,2,z

ρr′,111,1,z

ρr,111,3,z

ρr,111,2,z

ρr,111,1,z

ρr,111,3,z

ρr,111,2,z

ρr,111,1,z

Figure 5. Consider qc = u ∨ w ∨ x̄ and qv = u. Let ac = 111 representing u = w = x = 1 and av = 1
representing u = 1. Let (r, ac, av) be an accepting interaction, and let r′ be another query pair that
includes ac in accepting interactions. (Figure not shown all possible query pairs.) For Y = 3, the
figure shows how we connect qc to the ρ-nodes surrounding it, and how we connect the right ρ-nodes
of qc to the left ρ-nodes of qv.

[6] A. Baveja and A. Srinivasan. Approximation algorithms
for disjoint paths and related routing and packing problems.
Mathematics of Operations Research, Vol. 25, pp. 255–280,
2000.

[7] C. Chekuri, S. Khanna, and F. B. Shepherd. The All-or-
Nothing Multi-commodity Flow Problem. Proc. of STOC,
June 2004.

[8] C. Chekuri, S. Khanna, and F. B. Shepherd. Edge Disjoint
Paths in Planar Graphs. Proc. of FOCS, 2004.

[9] C. Chekuri, S. Khanna, and F. B. Shepherd. Multicommodity
Flow, Well-linked Terminals, and Routing Problems Proc. of
STOC, 2005.

[10] C. Chekuri, S. Khanna, and F. B. Shepherd. An O(
√

n)-
approximation for EDP in Undirected Graphs and Directed
Acyclic Graphs. Manuscript, 2005.

[11] C. Chekuri and S. Khanna. Edge Disjoint Paths Revisited.
Proc. of SODA, 2003.

[12] C. Chekuri, M. Mydlarz, and F. B. Shepherd. Multicommod-
ity Demand Flow in a Tree and Packing Integer Programs.
Submitted. Preliminary version in Proc. of ICALP, 2003.

[13] J. Chuzhoy and S. Khanna. New hardness results for undi-
rected edge disjoint paths, http://www.cis.upenn.edu/ san-
jeev/postscript/edpwchardness.ps.gz 2005.

[14] P. Erdös and H. Sachs. Reguläre graphen gegebener Tail-
lenweite mit minimaler Knotenzahl. Wiss. Z. Uni. Halle-
Wittenburg (Math. Nat.), 12:251–257, 1963.

[15] A. Frank. Edge-disjoint paths in planar graphs. J. of Combi-
natorial Theory, Ser. B., No. 2 (1985), 164-178.

[16] S. Fortune, J. Hopcroft and J. Wyllie. The directed subgraph
homeomorphism problem. Theoretical Computer Science,
Vol. 10, No. 2 (1980), pp. 111–121.

[17] M. R. Garey and D. S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-completeness. Freeman,
1979.

[18] N. Garg, V. Vazirani, M. Yannakakis. Primal-Dual Ap-
proximation Algorithms for Integral Flow and Multicut in
Trees. Algorithmica, 18(1):3-20, 1997. Preliminary version
appeared in Proc. of ICALP, 1993.

[19] V. Guruswami, S. Khanna, R. Rajaraman, F. B. Shepherd,
and M. Yannakakis. Near-Optimal Hardness Results and Ap-
proximation Algorithms for Edge-Disjoint Paths and Related
Problems. To appear in JCSS. Preliminary version appeared
in Proc. of STOC, 1999.

[20] V. Guruswami and K. Talwar. Hardness of low congestion
routing in undirected graphs. Manuscript, 2005.

[21] J. Hastad, A. Wigderson. Simple Analysis of Graph Tests for
Linearity and PCP. Random Structures and Algorithms, Vol
22, no. 2, pp 139-160, 2003.

[22] J. M. Kleinberg and É. Tardos. Approximations for the dis-
joint paths problem in high-diameter planar networks. Jour-
nal of Computer and System Sciences, 57:61–73, 1998. Pre-
liminary version in the Proc. of STOC, 1995.

[23] J. M. Kleinberg and É. Tardos. Disjoint Paths in Densely
Embedded Graphs. Proc. of FOCS, pp. 52–61, 1995.

[24] J. M. Kleinberg. Approximation algorithms for disjoint paths
problems. PhD thesis, MIT, Cambridge, MA, May 1996.

[25] S. G. Kolliopoulos and C. Stein. Approximating Disjoint-
Path Problems Using Greedy Algorithms and Packing Inte-
ger Programs. IPCO 1998: 153-168.

[26] P. Raghavan and C. D. Thompson. Randomized rounding:
A technique for provably good algorithms and algorithmic
proofs. Combinatorica, 7:365–374, 1987.

[27] R. Raz. A parallel repetition theorem. SIAM Journal on
Computing, 27(3):763–803, 1998.

[28] N. Robertson and P. D. Seymour. Outline of a disjoint
paths algorithm. In B. Korte, L. Lovász, H. J. Prömel, and
A. Schrijver, Eds., Paths, Flows and VLSI-Layout. Springer-
Verlag, Berlin, 1990.

[29] A. Samorodnitsky and L. Trevisan. A PCP characterization
of NP with optimal amortized query complexity. In Proceed-
ings of the 32nd Annual ACM Symposium on theory of Com-
puting, 2000.

[30] A. Srinivasan. Improved approximations for edge-disjoint
paths, unsplittable flow, and related routing problems. Proc.
of the FOCS, pp. 416–425, 1997.

[31] K. Varadarajan and G. Venkataraman. Graph Decomposition
and a Greedy Algorithm for Edge-disjoint Paths. Proc. of
SODA, 2004.

