TTIC 31230, Fundamentals of Deep Learning
David McAllester, Winter 2018

Information Theory



Logistic Regression as a Major Advance

OF = arngnin E@,y)NTrain (y — f@(@)z

Switched to

Qolylr) = soffiax fo(ylz)

P* = argqr)nin E(yy)~Train  — log Qo(y|z)



Binary Classification

We have a population distribution over (z, y) withy € {—1,1}.

We compute a single number fg(x) where

for fop(x) > 0 predict y =1

for fo(x) < 0 predict y = —1



Softmax for Binary Classification

1
Qolylr) = - /)
ouf ()

eyl (@) L o=y f(z)

1
1+ 6—2yf($)

= = m(y|x) = 2y f(x) is the margin

4



Logistic Regression for Binary Classification

P* = arg;)nin E(y yy~Train 111/ Qa(ylz)

arg;)nin E(4 y)~Train 1 (1 + e—m(y\:c))

In (1 + e_m@'x)) ~ 0 for m(y|z) >> 1

In (1 + e_m<y|x>) ~ —m(y|r) for m(y|lr) << —1



Log Loss vs. Hinge Loss

Log loss:

O* = argqr)nin E(y yy~Train — I Qa(ylz)

= argmin E, ) Ty, I (1 + e_m@‘x)) binary case
(p )

Hinge Loss:
®* = argmin L max(0,1 — m(y|x))

x,y)~Train
g y)

m(y|lr) = min f(y|z) — f(y|v)

Y7y



Log Loss vs. Hinge Loss
We will show that log loss is a consistent probability estimator.

For log loss, and for infinite training data, Q*(y|x) is the true
population conditional probability.

Hinge loss is a consistent classifier but not a consistent proba-
bility estimator.

[ ytle) =1
fA(glr) =0 fory #y*



Entropy
Consider a probability distribution Pop on a finite set S.

Consider a code C' assigning a bit string code word C'(y1, ..., yg)
to each possible batch of B elements with y; ~ Pop.

Source coding theorem: As B — oo the optimal coding uses
exactly

H(Pop) — EyNPop — logs POp(?/)
bits per batch element.



Prefix Free Codes
Let S be a finite set.
Let C be assignment of a bit string C'(y) to each y € S.

C' is called prefiz-free if for x # y we have that C(x) is not a
prefix of C(y).

A concatenation of sequence of prefix-free code words can be
uniquely segmented (parsed) back into a sequence of code
words.



Prefix-Free Codes as Trees and as Probabilities

A prefix-free code defines a binary branching tree — branch
on the first code bit, then the second, and so on.

The leaves of this tree are labeled with the elements of S.

The code defines a probability distribution on S by randomly
selecting branches.

We have Qo (y) = 2~ 1€WI.

10



The Source Coding Theorem

(1) There exists a prefix-free code C' such that
C(y)| <= (—loga Pop(y)) + 1

and hence

EyNPop‘C(y)‘ < H(Pop) +1

(2) For any prefix-free code C

Ly Pop |C(y)| = H(Pop)

11



Code Construction

We construct a code by iterating over y € S in order of de-
creasing probability (most likely first).

For each y select a code word C(y) (a tree leaf) with length
(depth)

C(y)| = [—loga Pop(y)]|

and where C'(y) is not an extension of (under) any previously
selected code word.

12



Code Existence Proof

At any point before coding all elements of S we have

Z 2~ 1CWI < Z Pop(y) < 1

y€Defined y€Defined

Therefore there exists an infinite descent into the tree that
misses all previous code words.

Hence there exists a code word C'(x) not under any previous
code word with |C'(z)| = [—logy Pop(y)].

Furthermore C'(x) is at least as long as all previous code words
and hence C(x) is not a prefix of any previously selected code
word.

13



Huffman Coding
Maintain a list of trees 17, ..., Th.

Inititally each tree is just one root node labeled with an element

of S.

Each tree T} has a weight equal to the sum of the probabilities
of the nodes on the leaves of that tree.

Repeatedly merge the two trees of lowest weight into a single
tree until all trees are merged.

14



Optimality of Huffman Coding

Theorem: The Huffman code 1" for Pop is optimal — for
any other tree T" we have d(T"; Pop) < d(T": Pop).

Proof: The algorithm maintains the invariant that there ex-
ists an optimal tree including all the subtrees on the list.

To prove that a merge operation maintains this invariant we
consider any tree containing the given subtrees.

Consider the two subtrees T; and T); of minimal weight. With-
out loss of generality we can assume that 7; is at least as deep
as 1.

Swapping the sibling of T; for T} brings 7; and T} together
and can only improve the average depth.

15



Optimality of Huffman Coding

Why the swap operation cannot increase entropy. ...

16



Back to Log Loss
Log loss has both a conditional and an unconditional version.

P* = argqr)nin E()~pPop — 108 Qo (y|)

P* = argq:r)nin Eypop — log Qo(y)

Conditional test loss can often be made small (MNIST, speech
recognition) but can also be inherently large (image coloriza-
tion).

Unconditional log loss is typically inherently large (language
modeling).

17



Log Loss is Cross Entropy

H(Pop) = EyNPop — log Pop(y)

H(Pop, Q) = EyNPop —log Q(y)

Ey~pop — log Qa(y) = H(Pop, Qo)

E(x,y)NPop —log Qo(y|r) = ESCNPOp H(Pop(y|z), Qa(yl|z))

18



KL Divergence

Pop(y)
Qy)

y~Pop 1Og POp(?J) o 1Og Q(y)

K L(Pop, Q) = E,pgp logy

= (Eyepop —102Q(1)) = (Eympop — log Pop(y))

19



Jensen’s Inequality

Convex

|
|
I
:
T y
For f convex (upward curving) we have

Elf(z)] = f(E[x])

20



KL Divergence

Qy)
P(y)

Qy)

KL(P,Q) = Ly.p —log

— —log ) P@)%

21



Fundamentals
K L(Pop,Q) > 0

H(Pop, Q)

H(Pop) + K L(Pop, Q)
> H(Pop)

argmin H (Pop, ()) = Pop
@

aé%n‘”ﬂ? B, pop H(Pop(y[x), Q(y|r)) = Pop(y|z)
ylx

22



Asymmetry of Cross Entropy

Consider

O* = argql;nin H(P,Qp) (1)

®* = argmin H(Qg, P) (2)
o

For (1) Q¢ must cover all of the support of P.
For (2) Q¢ concentrates all mass on the point maximizing P.

23



Asymmetry of KL Divergence
Consider

®* = argmin KL(P,Qg¢)
o

= argmin H(P,Qg) (1)
o

®* = argmin KL(Qg, P)
o

afgqlgﬂin H(Qg, P) — H(Qs) (2)

If Q¢ is not universally expressive we have that (1) still forces
Q¢ to cover all of P (or else the KL divergence is infinite)
while (2) allows Q¢ to be restricted to a single mode of P (a
common outcome).



Unsupervised Learning

Unsupervised learning is sometimes equated with uncondi-
tional log loss (density estimation).

O* = argénin Eypop — log Qop(y)

25



Unsupervised Learning

# "Pure” Reinforcement Learning (cherry)

* The machine predicts a scalar
reward given once in a while.

> A few bits for some samples

# Supervised Learning (icing)
» The machine predicts a category
or a few numbers for each input

* Predicting human-supplied data
» 10-10,000 bits per sample

# Unsupervised/Predictive Learning (cake)

* The machine predicts any part of
its input for any observed part.

» Predicts future frames in videos
* Millions of bits per sample

L

"\.‘F"._.

# (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

26



Unsupervised Learning

By “unsupervised learning” we will mean learning from mas-
sively available data. This is not a mathematical definition.

Massive: images, audio, text, video, click-through data.

Less Massive: car control data, stereo image pairs, closed
captioned video, captioned images.

Big: Manually annotated images or audio.

Small: manually annotated text — parse trees, named enti-
ties, semantic roles, coreference, entailment.

Smallest: Manually annotated text in an obscure language.

27



Colorization

P* = argqr)nin E(yy)~pop — log Qa(ylz)

We have massive data for colorization.
But any colorization is inevitably a guess.

28



Differential Entropy

Consider a continuous density p(z). For example

s

p@%zwgg

e 202

Differential entropy is often defined as

H@%{/(MR5>M@M7

29



Finite Differential Entropy is Not Meaningtul

£E2
H(N(0,0)) +/ (111(\/%0) + 27‘2) p(z)dx

1
= In(o) + In(v2m) + 5
But if we take y = x/2 we get H(y) = H(x) — In 2.
Also for o << 1, we get H(p) < 0

Hence differential entropy then depends on the choice of units
— a distributions on lengths will have a different entropy when
measuring in inches than when measuring in feet.

30



Differential Entropy is Always Infinite
Consider quantizing the the real numbers into bins.

A continuous probability densisty p assigns a probability p(B)
to each bin.

As the bin size decreases toward zero the entropy of the bin
distribution increases toward oo.

A meaningful convention is that H(p) = +oo for any contin-
uous density p.

31



Differential KL-divergence is Meaningful
KL(p,q) = / (m @> p(z)dx
q(x)

This integral can be computed by dividing the real numbers
into bins and computing the K L divergence between the dis-
tributions on bins.

The KL divergence between the bin distribution typically ap-
proaches a finite limit as the bin size goes to zero.

32



KL-Divergence can also be Infinite

i
KL(p,q) = Ez~p log pe)

q(x)

In either the discrete or continuous case, if a set is assigned
nonzero probability by p but zero probability by q then K L(p, q) =
+00.

If every set assigned nonzero probability by p is also assigned
nonzero probability by ¢ then we say that p is absolutely con-

tinuous with respect to q.

33



Random Variables

We consider variables where a single draw form the population
determines a value for each variable.

This 1s the formal definition of a “random variable” .

Each random variable has a probability distribution defined by
the distribution on the population.

We write H(z) for the entropy of the distribution on x.

34



Mutual Information

For two random variables x and y there is a distribution on
pairs (z,y) determined by the population distribution.

Mutual information concerns the relationship between the dis-
tribution on (x,y) and the marginal distributions on x and

Y.

For the discrete case we can write.

I(z,y) = H(z)+ H(y) — H(z,y)

This can be viewed as a quantity of non-independence — in-
dependent variables have zero mutual information.

35



Conditional Entropy

For the discrete case conditional entropy H (y|x) is defined by

H(ylz) = ZPOp ZPOpy\x — log Pop(y|z)

— Lg~Pop Ey~Pop|:1: — log Pop(y|)

— Lg~Pop H(Pop(y|z))

36



More Identities

For the discrete case we have.

I{z,y) = H(zx) — H(z[y)

= H(y) — H(y|r)

— K L(Pop(z,y), Pop(z) x Pop(y))

The last identity can be taken as a definition of I(x,y) in the
continuous case.

37



END



