
TTIC 31230, Fundamentals of Deep Learning

David McAllester, Winter 2018

Information Theory

1

Logistic Regression as a Major Advance

Φ∗ = argmin
Φ

E(x,y)∼Train (y − fΦ(x))2

Switched to

QΦ(y|x) = softmax
ŷ

fΦ(ŷ|x)

Φ∗ = argmin
Φ

E(x,y)∼Train − log QΦ(y|x)

2

Binary Classification

We have a population distribution over (x, y) with y ∈ {−1, 1}.

We compute a single number fΦ(x) where

for fΦ(x) ≥ 0 predict y = 1

for fΦ(x) < 0 predict y = −1

3

Softmax for Binary Classification

QΦ(y|x) =
1

Z
eyf (x)

=
eyf (x)

eyf (x) + e−yf (x)

=
1

1 + e−2yf (x)

=
1

1 + e−m(y)
m(y|x) = 2yf (x) is the margin

4

Logistic Regression for Binary Classification

Φ∗ = argmin
Φ

E(x,y)∼Train ln 1/QΦ(y|x)

= argmin
Φ

E(x,y)∼Train ln
(

1 + e−m(y|x)
)

ln
(

1 + e−m(y|x)
)
≈ 0 for m(y|x) >> 1

ln
(

1 + e−m(y|x)
)
≈ −m(y|x) for m(y|x) << −1

5

Log Loss vs. Hinge Loss

Log loss:

Φ∗ = argmin
Φ

E(x,y)∼Train − lnQΦ(y|x)

= argmin
Φ

E(x,y)∼Train ln
(

1 + e−m(y|x)
)

binary case

Hinge Loss:

Φ∗ = argmin
Φ

E(x,y)∼Train max(0, 1−m(y|x))

m(y|x) = min
ŷ 6=y

f (y|x)− f (ŷ|x)

6

Log Loss vs. Hinge Loss

We will show that log loss is a consistent probability estimator.

For log loss, and for infinite training data, Q∗(y|x) is the true
population conditional probability.

Hinge loss is a consistent classifier but not a consistent proba-
bility estimator.

f∗(y∗|x) = 1

f∗(ŷ|x) = 0 for ŷ 6= y∗

7

Entropy

Consider a probability distribution Pop on a finite set S.

Consider a codeC assigning a bit string code wordC(y1, . . . , yB)
to each possible batch of B elements with yi ∼ Pop.

Source coding theorem: As B → ∞ the optimal coding uses
exactly

H(Pop) = Ey∼Pop − log2 Pop(y)

bits per batch element.

8

Prefix Free Codes

Let S be a finite set.

Let C be assignment of a bit string C(y) to each y ∈ S.

C is called prefix-free if for x 6= y we have that C(x) is not a
prefix of C(y).

A concatenation of sequence of prefix-free code words can be
uniquely segmented (parsed) back into a sequence of code
words.

9

Prefix-Free Codes as Trees and as Probabilities

A prefix-free code defines a binary branching tree — branch
on the first code bit, then the second, and so on.

The leaves of this tree are labeled with the elements of S.

The code defines a probability distribution on S by randomly
selecting branches.

We have QC(y) = 2−|C(y)|.

10

The Source Coding Theorem

(1) There exists a prefix-free code C such that

|C(y)| <= (− log2 Pop(y)) + 1

and hence
Ey∼Pop|C(y)| ≤ H(Pop) + 1

(2) For any prefix-free code C

Ey∼Pop |C(y)| ≥ H(Pop)

11

Code Construction

We construct a code by iterating over y ∈ S in order of de-
creasing probability (most likely first).

For each y select a code word C(y) (a tree leaf) with length
(depth)

|C(y)| = d− log2 Pop(y)e

and where C(y) is not an extension of (under) any previously
selected code word.

12

Code Existence Proof

At any point before coding all elements of S we have∑
y∈Defined

2−|C(y)| ≤
∑

y∈Defined

Pop(y) < 1

Therefore there exists an infinite descent into the tree that
misses all previous code words.

Hence there exists a code word C(x) not under any previous
code word with |C(x)| = d− log2 Pop(y)e.

Furthermore C(x) is at least as long as all previous code words
and hence C(x) is not a prefix of any previously selected code
word.

13

Huffman Coding

Maintain a list of trees T1, . . . , TN .

Inititally each tree is just one root node labeled with an element
of S.

Each tree Ti has a weight equal to the sum of the probabilities
of the nodes on the leaves of that tree.

Repeatedly merge the two trees of lowest weight into a single
tree until all trees are merged.

14

Optimality of Huffman Coding

Theorem: The Huffman code T for Pop is optimal — for
any other tree T ′ we have d(T ; Pop) ≤ d(T ′; Pop).

Proof: The algorithm maintains the invariant that there ex-
ists an optimal tree including all the subtrees on the list.

To prove that a merge operation maintains this invariant we
consider any tree containing the given subtrees.

Consider the two subtrees Ti and Tj of minimal weight. With-
out loss of generality we can assume that Ti is at least as deep
as Tj.

Swapping the sibling of Ti for Tj brings Ti and Tj together
and can only improve the average depth.

15

Optimality of Huffman Coding

Why the swap operation cannot increase entropy. ...

16

Back to Log Loss

Log loss has both a conditional and an unconditional version.

Φ∗ = argmin
Φ

E(x,y)∼Pop − logQΦ(y|x)

Φ∗ = argmin
Φ

Ey∼Pop − logQΦ(y)

Conditional test loss can often be made small (MNIST, speech
recognition) but can also be inherently large (image coloriza-
tion).

Unconditional log loss is typically inherently large (language
modeling).

17

Log Loss is Cross Entropy

H(Pop)
.
= Ey∼Pop − log Pop(y)

H(Pop, Q)
.
= Ey∼Pop − log Q(y)

Ey∼Pop − logQΦ(y) = H(Pop, QΦ)

E(x,y)∼Pop − logQΦ(y|x) = Ex∼Pop H(Pop(y|x), QΦ(y|x))

18

KL Divergence

KL(Pop, Q)
.
= Ey∼Pop log2

Pop(y)

Q(y)

= Ey∼Pop log Pop(y)− logQ(y)

=
(
Ey∼Pop − logQ(y)

)
−
(
Ey∼Pop − log Pop(y)

)
= H(Pop, Q)−H(P)

19

Jensen’s Inequality

For f convex (upward curving) we have

E[f (x)] ≥ f (E[x])

20

KL Divergence

KL(P,Q) = Ey∼P − log
Q(y)

P (y)

≥ − logEx∼P
Q(y)

P (y)

= − log
∑
y

P (y)
Q(y)

P (y)

= − log
∑
y

Q(y)

= 0

21

Fundamentals

KL(Pop, Q) ≥ 0

H(Pop, Q) = H(Pop) + KL(Pop, Q)

≥ H(Pop)

argmin
Q

H(Pop, Q) = Pop

argmin
Q(y|x)

Ex∼Pop H(Pop(y|x), Q(y|x)) = Pop(y|x)

22

Asymmetry of Cross Entropy

Consider

Φ∗ = argmin
Φ

H(P,QΦ) (1)

Φ∗ = argmin
Φ

H(QΦ, P) (2)

For (1) QΦ must cover all of the support of P .

For (2) QΦ concentrates all mass on the point maximizing P .

23

Asymmetry of KL Divergence
Consider

Φ∗ = argmin
Φ

KL(P,QΦ)

= argmin
Φ

H(P,QΦ) (1)

Φ∗ = argmin
Φ

KL(QΦ, P)

= argmin
Φ

H(QΦ, P)−H(QΦ) (2)

If QΦ is not universally expressive we have that (1) still forces
QΦ to cover all of P (or else the KL divergence is infinite)
while (2) allows QΦ to be restricted to a single mode of P (a
common outcome).

Unsupervised Learning

Unsupervised learning is sometimes equated with uncondi-
tional log loss (density estimation).

Φ∗ = argmin
Φ

Ey∼Pop − logQΦ(y)

25

Unsupervised Learning

26

Unsupervised Learning

By “unsupervised learning” we will mean learning from mas-
sively available data. This is not a mathematical definition.

Massive: images, audio, text, video, click-through data.

Less Massive: car control data, stereo image pairs, closed
captioned video, captioned images.

Big: Manually annotated images or audio.

Small: manually annotated text — parse trees, named enti-
ties, semantic roles, coreference, entailment.

Smallest: Manually annotated text in an obscure language.

27

Colorization

Φ∗ = argmin
Φ

E(x,y)∼Pop − logQΦ(y|x)

We have massive data for colorization.

But any colorization is inevitably a guess.

28

Differential Entropy

Consider a continuous density p(x). For example

p(x) =
1√

2π σ
e
−x2

2σ2

Differential entropy is often defined as

H(p)
.
=

∫ (
ln

1

p(x)

)
p(x)dx

29

Finite Differential Entropy is Not Meaningful

H(N (0, σ)) = +

∫ (
ln(
√

2πσ) +
x2

2σ2

)
p(x)dx

= ln(σ) + ln(
√

2π) +
1

2

But if we take y
.
= x/2 we get H(y) = H(x)− ln 2.

Also for σ << 1, we get H(p) < 0

Hence differential entropy then depends on the choice of units
— a distributions on lengths will have a different entropy when
measuring in inches than when measuring in feet.

30

Differential Entropy is Always Infinite

Consider quantizing the the real numbers into bins.

A continuous probability densisty p assigns a probability p(B)
to each bin.

As the bin size decreases toward zero the entropy of the bin
distribution increases toward ∞.

A meaningful convention is that H(p) = +∞ for any contin-
uous density p.

31

Differential KL-divergence is Meaningful

KL(p, q) =

∫ (
ln
p(x)

q(x)

)
p(x)dx

This integral can be computed by dividing the real numbers
into bins and computing the KL divergence between the dis-
tributions on bins.

The KL divergence between the bin distribution typically ap-
proaches a finite limit as the bin size goes to zero.

32

KL-Divergence can also be Infinite

KL(p, q) = Ex∼p log
p(x)

q(x)

In either the discrete or continuous case, if a set is assigned
nonzero probability by p but zero probability by q thenKL(p, q) =
+∞.

If every set assigned nonzero probability by p is also assigned
nonzero probability by q then we say that p is absolutely con-
tinuous with respect to q.

33

Random Variables

We consider variables where a single draw form the population
determines a value for each variable.

This is the formal definition of a “random variable”.

Each random variable has a probability distribution defined by
the distribution on the population.

We write H(x) for the entropy of the distribution on x.

34

Mutual Information

For two random variables x and y there is a distribution on
pairs (x, y) determined by the population distribution.

Mutual information concerns the relationship between the dis-
tribution on (x, y) and the marginal distributions on x and
y.

For the discrete case we can write.

I(x, y)
.
= H(x) + H(y)−H(x, y)

This can be viewed as a quantity of non-independence — in-
dependent variables have zero mutual information.

35

Conditional Entropy

For the discrete case conditional entropy H(y|x) is defined by

H(y|x)
.
=
∑
x

Pop(x)
∑
y

Pop(y|x)− log Pop(y|x)

= Ex∼Pop Ey∼Pop|x − log Pop(y|x)

= Ex∼Pop H(Pop(y|x))

36

More Identities

For the discrete case we have.

I(x, y) = H(x)−H(x|y)

= H(y)−H(y|x)

= KL(Pop(x, y),Pop(x)× Pop(y))

The last identity can be taken as a definition of I(x, y) in the
continuous case.

37

END

