
Bias-Variance Analysis

Let X be a set (or space) of objects and let ρ be a fixed probabiity distri-
bution (or density) on X × R. In other worlds ρ is a probability density on
pairs 〈x, y〉 with x ∈ X and y ∈ R. We now consider an arbitrary space of
prediction functions fw : X → R with w ∈ RD. For example, we might have
fw(x) = w · Φ(x) where Φ : X → R is a feature map. But we might also have
some other arbitrary function such as the following “neural network”.

fw(x) = w1s(wsΦ2(x) + w3Φ3(x)) + w4s(w5Φ3(x) + w6Φ4(x)) (1)

s(z) =
1

1 + e−z
(2)

The point is that fw can be any function parameterized by a vector w of D
parameters. The set of functions of the form fw can be viewed as a space of
predictor functions. We can now define the following.

f∗(x) = E [y|x] = Ey∼ρ(·|x) [y] (3)

w∗ = argmin
w

E〈x, y〉∼ρ

[
(fw(x)− y)2

]
(4)

(5)

The function f∗ is the best predictor possible (for square loss) over all function
of X and fw∗ is the best predictor (for square loss) in the space of predictors
of the form fw. Typically f∗ is not equal to any function of the form fw. Now
consider an arbitrary predictor f . We define the square loss of f as follows.

L2(f) = E〈x, y〉∼ρ

[
(f(x)− y)2

]
(6)

The first step of bias-variance analysis is the following expression for L2(f).

L2(f) = E〈x, y〉∼ρ

[
(f(x)− y)2

]
= E〈x, y〉∼ρ

[
((f(x)− f∗(x))− (y − f∗(x)))2

]
= E〈x, y〉∼ρ

[
(f(x)− f∗(x))2 − 2(f(x)− f∗(x))(y − f∗(x)) + (y − f∗(x))2

]
= Ex∼ρ

[
(f(x)− f∗(x))2

]
−2Ex∼ρ

[
(f(x)− f∗(x))Ey∼ρ(·|x) [y − f∗(x)]

]
+E〈x, y〉∼ρ

[
(y − f∗(x))2

]
= Ex∼ρ

[
(f(x)− f∗(x))2

]
+ Ex∼ρ

[
Ey∼ρ(·|x)

[
(y − f∗(x))2

]]
(7)

Note that the second term in the left hand side of (7) does not depend on f .
The second term can be interpreted as the average over the choice of x of the
variance of y given x, i.e., the variance of y when we repeatedly draw different

1

values of y from the conditional distribution on y given x. We will call this the
noise term — we can interpret y as being equal to f∗(x) plus zero mean noise.

Note that the noise term does not depend on f . This implies that w∗ can
be defined equivalently as follows.

w∗ = argmin
w

Ex∼ρ

[
(fw(x)− f∗(x))2

]
(8)

Now we consider learning from a sample D = 〈x1, y1〉, . . . , 〈xN , yN 〉. We
assume that the sample is drawn IID from ρ, i.e., each pair 〈xt, yt〉 is drawn
independently from ρ. So the training data itself is a random variable. We are
already considering an arbitrary parameterized space of predictors. We now
consider an arbitrary learning algorithm A which takes as input training data
D and produces as output a setting A(D) of the predictor parameters. We now
consider the expected generalization loss when we use learning algorithm A.

L2(A) = ED∼ρN

[
L2(fA(D))

]
= E

D∼ρN ,〈x, y〉∼ρ

[
(fA(D)(x)− y)2

]
We also define the following “average prediction” on input x under learning
algorithm A.

fA(x) = ED∼ρN

[
fA(D)(x)

]
The full bias-variance analysis is to rewrite L2(A) as follows.

L2(A) = E
D∼ρN ,〈x, y〉∼ρ

[
(fA(D)(x)− y)2

]
= E

D∼ρN ,〈x, y〉∼ρ

[
((fA(D)(x)− fA(x))− (y − fA(x)))2

]
= E

D∼ρN ,〈x, y〉∼ρ

[
(fA(D)(x)− fA(x))2 − 2(fA(D)(x)− fA(x))(y − fA(x)) + (y − fA(x))2

]
= Ex∼ρ

[
(fA(D)(x)− fA(x))2

]
−2E〈x, y〉∼ρ

[
(y − fA(x))ED∼ρN

[
fA(D)(x)− fA(x)

]]
+E〈x, y〉∼ρ

[
(y − fA(x))2

]
= Ex∼ρ

[
(fA(D)(x)− fA(x))2

]
+ L2(fA)

= Ex∼ρ,D∼ρN

[
(fA(D)(x)− fA(x))2

]
+Ex∼ρ

[
(fA(x)− f∗(x))2

]
+E〈x, y〉∼ρ

[
(y − f∗(x))2

]
(9)

Equation (9) gives the full bias-variance analysis. The first term in the left
hand is the average over drawing x of the variance over drawing traning data
of fA(D)(x). This is called the variance term. The second term is a squared
distance between the function fA and the optimal function f∗. This is called

2

the bias term. The third term does not depend on A at all and is just the
average variance of noise added to y at a given x. This is called the noise term.

It should be noted that in general the function fA is different from optimal
function fw∗ in the parameterized space of functions. In fact if the space of
parameterized functions is nonconvex, then fA may not be definable by any
setting of the parameters.

As the number of parameters is increased we typically have that the bias
term decreases while the variance term increases. Hence there is a bias-variance
trade off.

1 Bias-Variance for K-Nearest Neighbor

For a give sample D and point x let Nk(x) be the set of times t such that xt is
one of the K nearest neighbors of x over all the training values xt. We define
the K-nearest neighbor predictor as follows.

fD(x) =
1
K

∑
t∈NK(x)

yt (10)

Although the nearest neighbor rule is non-parametric, the bias-variance anal-
ysis still applies when we measure the performance of fD with square loss. For
K = 1 the bias is very small — the expected value of fD(x) should be near f∗

since the one nearest neighbor should be near x. But the variance of one nearest
neighbor is very large. As we increase K the variance becomes smaller because
we are averaging over more training points for each prediction. However, as K
increases the bias eventually becomes large because we are using points that are
far from x. For K = N we simply predict the mean value of y. This has quite
low variance but the bias is large as fD(x) now ignores x.

2 Linear Learning of Linear Predictors

Consider the class of linear predictors defined by fw(x) = w · Φ(x) for some
feature map Φ and weight vector w with w,Φ(x) ∈ RD. Again we assume a
given distribution ρ on X × R. For linear predictors the optimal parameter
setting w∗, as defined by (4), can be written as follows.

w∗ = Γ−1β

β = E〈x, y〉∼ρ
[yΦ(x)]

Γ = Ex∼ρ

[
Φ(x)ΦT (x)

]

3

We now assume that the matrix Γ is given by God (or perhaps by a vast sample
of x only). We then consider the following “linear” learning algorithm A.

A(D) = Γ−1β̂ (11)

β̂ =
1
N

N∑
t=1

ytΦ(xt) (12)

In general we can define w to be the average value of A(D), i.e. the expectation
over drawing D of the parameter vector A(D). For the special case of linear
learning of linear predictors we have the following.

fA(x) = fw(x) = fw∗(x) (13)

In this case the bias term can be written as follows.

bias = Ex∼ρ

[
(w∗ · Φ(x)− f∗(x))2

]
So for linear learning of linear predictors the bias can be interpreted as a square
distance between fw∗ and the ideal function f∗. If X is finite then this is
literally a squared distance in a finite dimensional vector space. So the bias
becomes literally a squared distance between fw∗ and f∗. Note that if we add
new fetaures this distance cannot increase. The bias will typically be reduced
as we add new features.

We can also show that as new features are added the variance is non-
decreasing. To do this we will work in the coordinate system that is the eigen-
vectors of Γ. In this coordiante system we have the following.

w∗
i =

βi

λi

A(D)i =
β̂i

λi

λi = Ex∼D

[
Φ2

i (x)
]

4

The variance can now be written as follows.

variance = Ex∼ρ,D∼ρN

[
(A(D) · Φ(x)− w∗ · Φ(x))2

]
= Ex∼ρ,D∼ρN

[
((A(D)− w∗) · Φ(x))2

]
= Ex∼ρ,D∼ρN

(∑
i

(A(D)i − w∗
i)Φi(x)

)2

= Ex∼ρ,D∼ρN

∑
i,j

(A(D)i − w∗
i)(A(D)j − w∗

j)Φi(x)Φj(x)

=

∑
i,j

ED∼ρN

[
(A(D)i − w∗

i)(A(D)j − w∗
j)Ex∼ρ [Φi(x)Φj(x)]

]
=

∑
i

ED∼ρN

[
(A(D)i − w∗

i)2λi

]
=

∑
i

ED∼ρN

[
(β̂i − βi)

2/λi

]

=
D∑

i=1

σ2
i

N
(14)

σ2
i = E〈x, y〉∼ρ

[(
yΦi(x)√

λi

− βi√
λi

)2
]

If we add a feature that is linearly independent of the existing feaures, then this
the new feature can always be written as a linear combination of the previous
eigenvectors plus a new eigenvector orthogonal to the previous ones. Hence
a new feature simply adds another term to (14) so we get that variance can
only increase when a new feature is added. Note that for linear learning of
linear predictors, the bias is independent of the size of the training sample, but
the variance decreases linearly with N (for a fixed feature set). Also, if y and
Φi(x) are both bounded then we get that σ2

i is bounded and the variance of the
learning algorithm is no larger than O(D/N).

5

