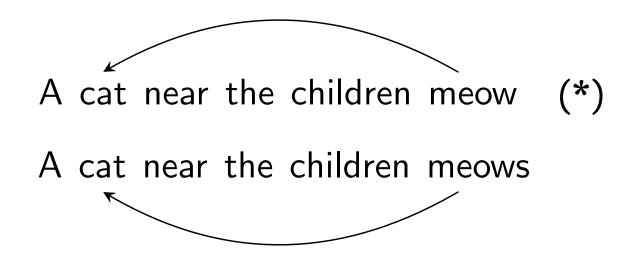
Learning Syntactic Structures from Visually Grounded Text and Speech

Freda Shi

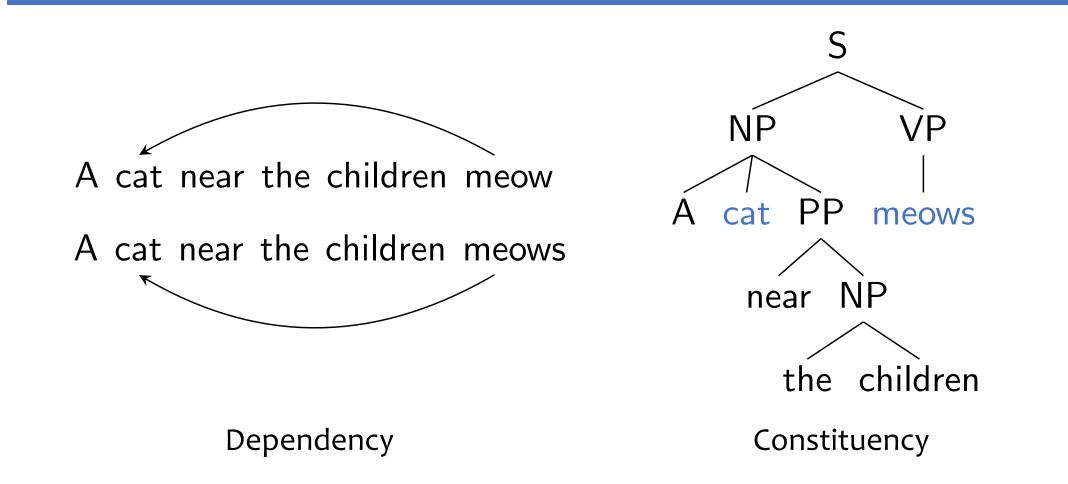
Toyota Technological Institute at Chicago & the University of Waterloo freda@ttic.edu/fhs@uwaterloo.ca

> Oct. 24, 2023 @the University of Michigan

A Minimal Pair



Syntactic Structures



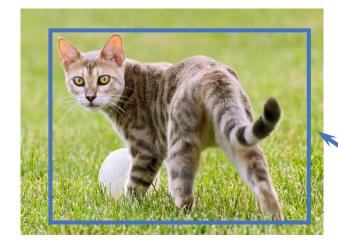
Syntactic Structures

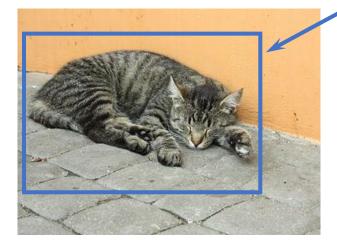
- Languages are highly structured
- The explicit structures are almost never given (to native speakers)

In the real world, we learn and use language in grounded settings

A cat is standing on the lawn.

How did we learn our first language?



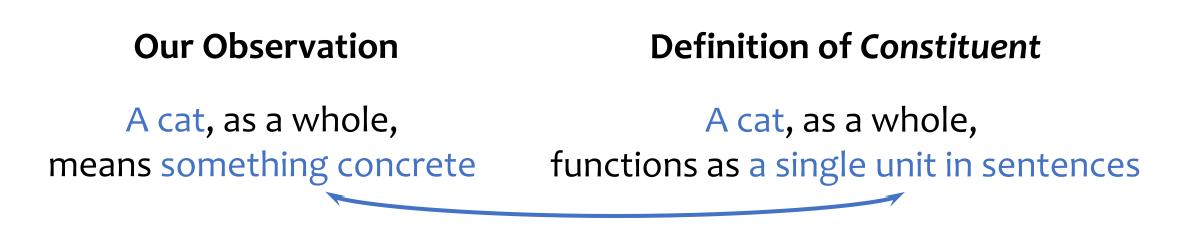


A cat is standing on the lawn.

A cat, as a whole, means something concrete

A cat is sleeping There is a cat sleeping on the ground

How did we learn our first language?

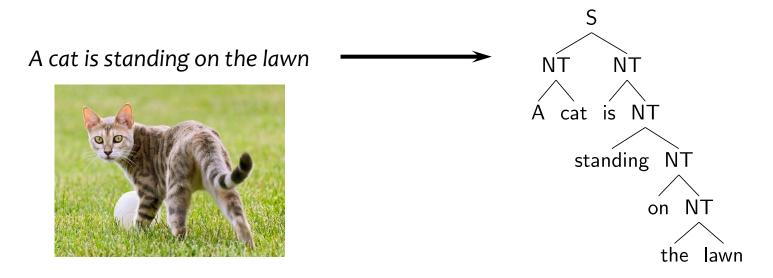


Our Hypothesis

More visually concrete word spans are more likely to be constituents

Visually Grounded Grammar Induction

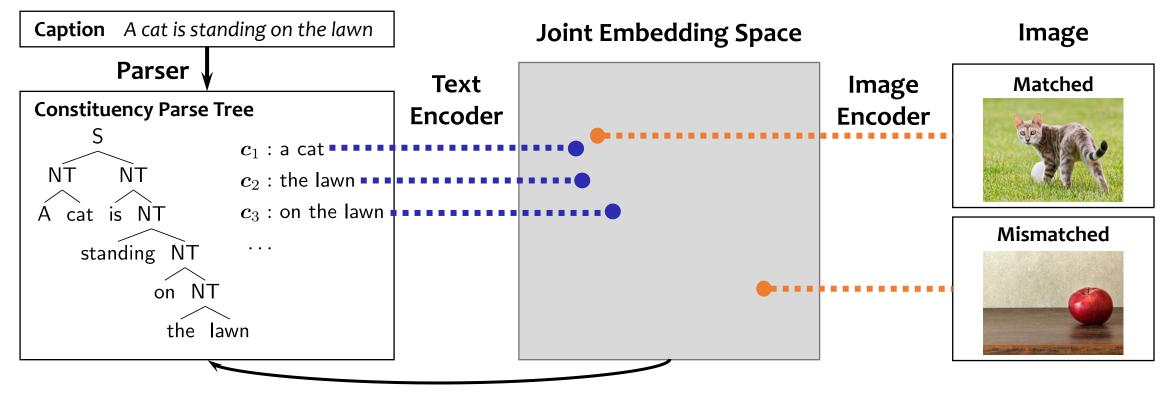
- Input: captioned images
- Output: linguistically plausible structure for captions



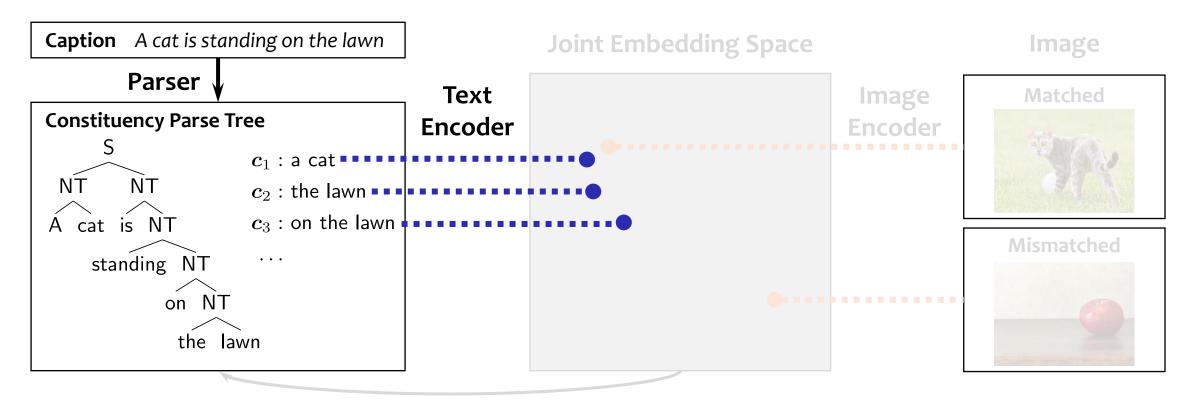
[Shi*, Mao*, Gimpel, Livescu. Visually grounded neural syntax acquisition. ACL 2019]

The Visually Grounded Neural Syntax Learner (VG-NSL)

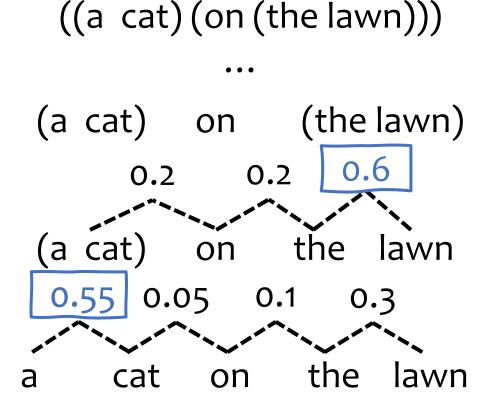
Hypothesis: more visually concrete word spans are more likely to be constituents



VG-NSL: Text Parser and Encoder



VG-NSL: Text Parser and Encoder

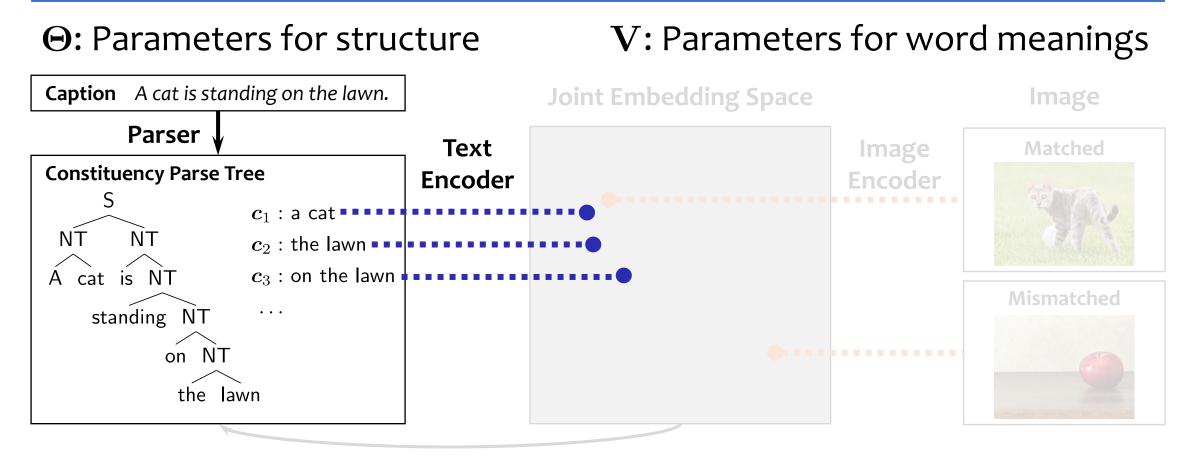


Repeat the score-sample-combine process for n - 1 times

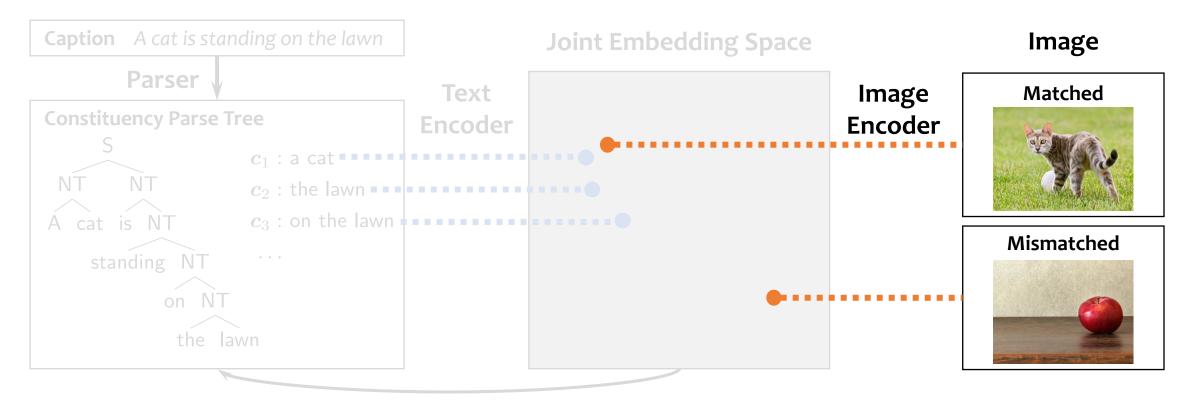
Θ: Parameters for structureV: Parameters for word meanings

$$\mathbf{v}_{a \text{ cat}} = \frac{\mathbf{v}_{a} + \mathbf{v}_{cat}}{||\mathbf{v}_{a} + \mathbf{v}_{cat}||_{2}}$$
Somplete score
$$FFN_{\Theta} \begin{pmatrix} \mathbf{v}_{\text{obset}} \\ \mathbf{v}_{\text{obset}} \end{pmatrix} = 0.013$$

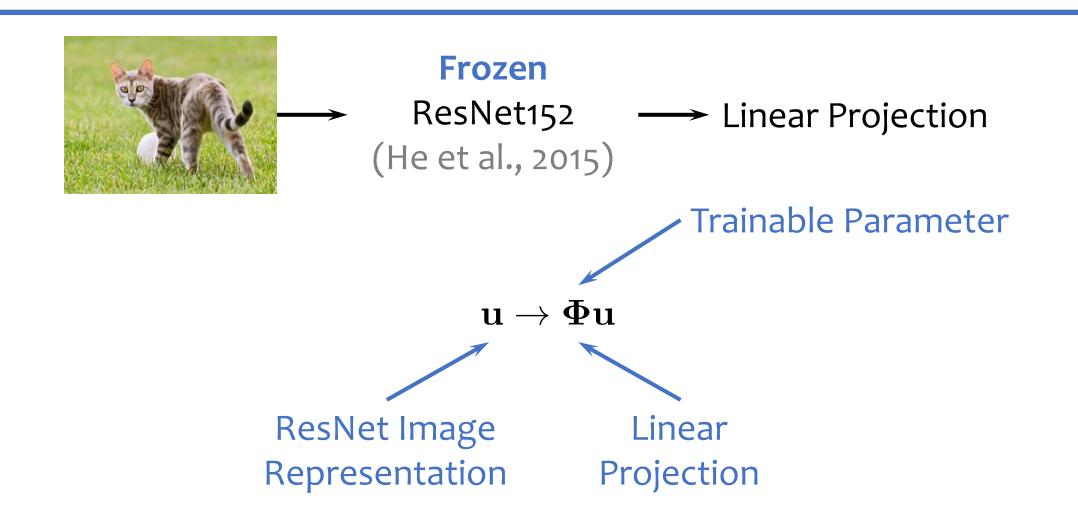
VG-NSL: Text Parser and Encoder



VG-NSL: Image Encoder

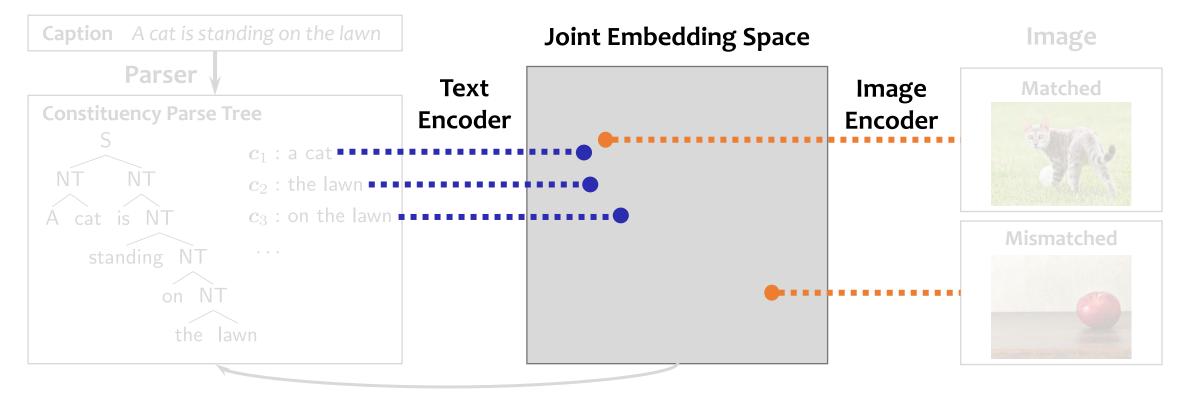


VG-NSL: Image Encoder



VG-NSL: Joint Embedding Space

Model parameters: Θ --text structure; Φ , V--visual/textual semantics



VG-NSL: Joint Embedding Space

- Key idea: high similarity for matched image-constituent pairs, low similarity for mismatched pairs
- Approach: minimize the hinge-based triplet loss (Kiros et al., 2015) $\mathcal{L}(i_{\Phi}, c_{\mathbf{V}})$

$$= \sum_{(i',c')\neq(i,c)} [\sin(i_{\Phi},c'_{V}) - \sin(i_{\Phi},c_{V}) + \delta]_{+} + [\sin(i'_{\Phi},c_{V}) - \sin(i_{\Phi},c_{V}) + \delta]_{+}$$

$$[i'_{i',c'})\neq(i,c)$$

$$[i]_{+} = \max(0,\cdot)$$

$$[i]_{+} = \max(0,\cdot)$$

$$\delta: \text{margin score}$$

$$15$$

VG-NSL: Quantify Visual Concreteness

• Joint embedding space: High similarity ↔ stronger correspondence

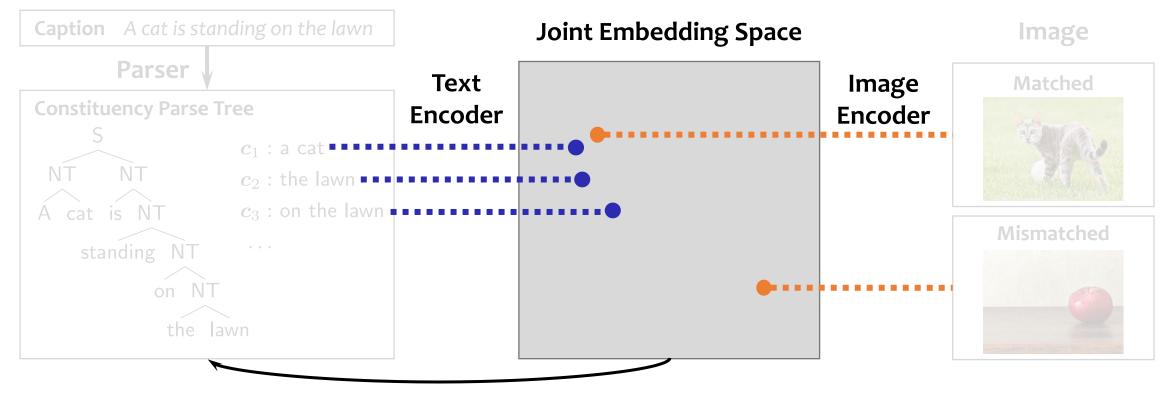
image ianother image i'Image iImage i

candidate constituents a cat on the

$$\ell(c; i, \mathbf{i'}) = \sin(\mathbf{i'_{\Phi}}, c_{\mathbf{V}}) - \sin(\mathbf{i_{\Phi}}, c_{\mathbf{V}})$$
$$-0.8 \qquad \sin(\mathbf{i'_{\Phi}}, a \operatorname{cat}) = 0.1 \qquad \sin(\mathbf{i_{\Phi}}, a \operatorname{cat}) = 0.9$$
$$0 \qquad \sin(\mathbf{i'_{\Phi}}, \text{ on the}) = 0.2 \qquad \sin(\mathbf{i_{\Phi}}, \text{ on the}) = 0.2$$

• Idea: smaller $\ell(c) \leftrightarrow c$ is more concrete

VG-NSL: Training the Parser



VG-NSL: Training the Parser

- $\ell(c; i, i') = \sin(i'_{\Phi}, c_{V}) \sin(i_{\Phi}, c_{V})$ quantifies visual abstractness of word spans, and we can define concreteness similarly $\operatorname{concreteness}(c; i, i') = [\sin(i_{\Phi}, c_{V}) - \sin(i'_{\Phi}, c_{V}) + \delta]_{+}$
- REINFORCE (Williams, 1992)

p

$$\Theta \leftarrow \Theta + \eta \nabla_{\Theta} \sum_{i,i',c} p_{\Theta}(c) \text{concreteness}(c;i,i')$$

arser parameters learning rate reward

• After training, the parser can parse sentences without images

VG-NSL: Head-Initiality as Abstract-Initiality

((A cat) on) (the lawn)

(A cat) (on (the lawn))

Fact #1: On is the head of on the lawn

Fact #2: English is strongly head-initial Many other Indo-European languages are head-initial as well

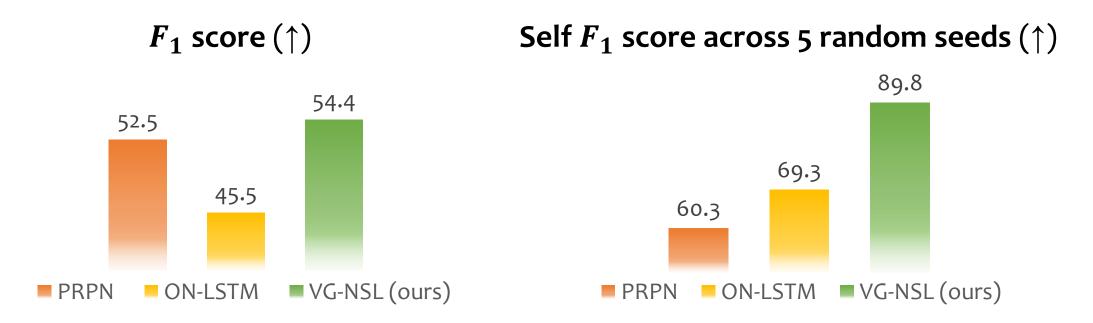
Fact #3: In visually grounded settings, most abstract words are function words (e.g., prepositions, determiners, complementizers)

Empirical Solution (mimic the head-initial property with abstractness): Discourage abstract words from combining to the front

$$\operatorname{reward}(c) = \frac{\operatorname{concreteness}(c)}{\lambda \cdot \operatorname{abstractness}(c_{right}) + 1} \quad (\lambda > 0)$$

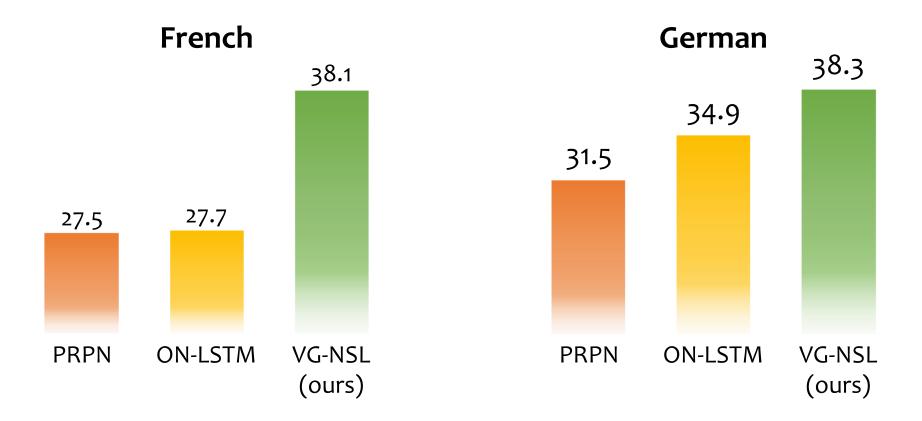
VG-NSL: English Results

- Text-only models: PRPN (Shen et al., 2018), ON-LSTM (Shen et al., 2019)
- Evaluated on MSCOCO (Lin et al., 2014)



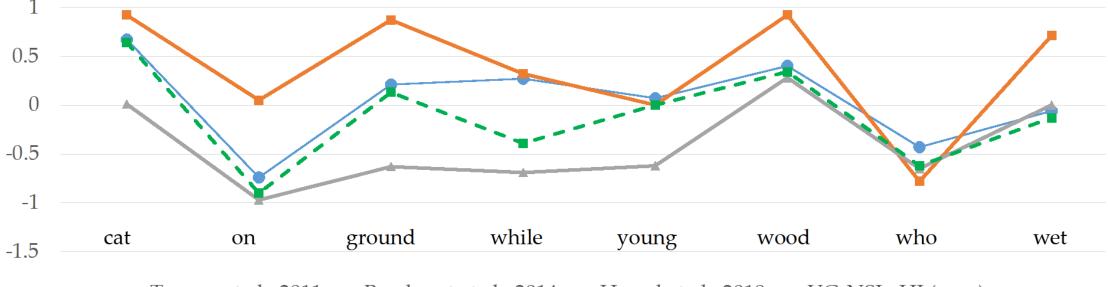
VG-NSL: Multilingual Results

• Extension to multiple languages, evaluated on Multi30K (Elliott et al., 2017)



VG-NSL: Estimated Concreteness

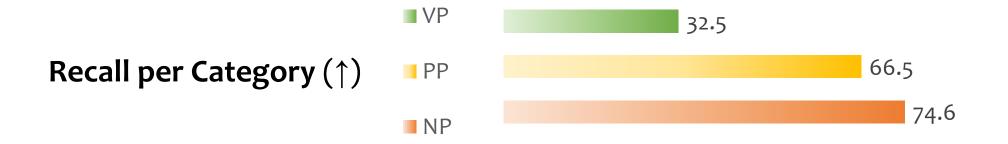
• Normalized concreteness $\in [0, 1]$



◆Turney et al., 2011 ◆Brysbaert et al., 2014 ◆Hessel et al., 2018 ◆VG-NSL+HI (ours)

VG-NSL: Discussion

• VG-NSL's concreteness-based bottom-up parser is good at capturing NPs and PPs, but less good at capturing VPs



• Follow-up work: more sophisticated inductive biases (e.g., PCFG) and other modalities (e.g., video)

Other Work on Grounded Grammar Induction

What is Learned in Visually Grounded Neural Syntax Acquisition

Noriyuki Kojima, Hadar Averbuch-Elor, Alexander Rush and Yoav Artzi Department of Computer Science and Cornell Tech, Cornell University {nk654, he93, arush}@cornell.edu {yoav}@cs.cornell.edu

Visually Grounded Compound PCFGs

Yanpeng Zhao^ɛ ^ɛILCC, University of Edinburgh yanp.zhao@ed.ac.uk Ivan Titov^{ɛæ} ^æILLC, University of Amsterdam ititov@inf.ed.ac.uk

Video-aided Unsupervised Grammar Induction

Songyang Zhang¹* Linfeng Song², Lifeng Jin², Kun Xu², Dong Yu² and Jiebo Luo¹ ¹University of Rochester, Rochester, NY, USA szhang83@ur.rochester.edu, jluo@cs.rochester.edu ²Tencent AI Lab, Bellevue, WA, USA {lfsong,lifengjin,kxkunxu,dyu}@tencent.com

UNSUPERVISED VISION-LANGUAGE GRAMMAR INDUCTION WITH SHARED STRUCTURE MODELING

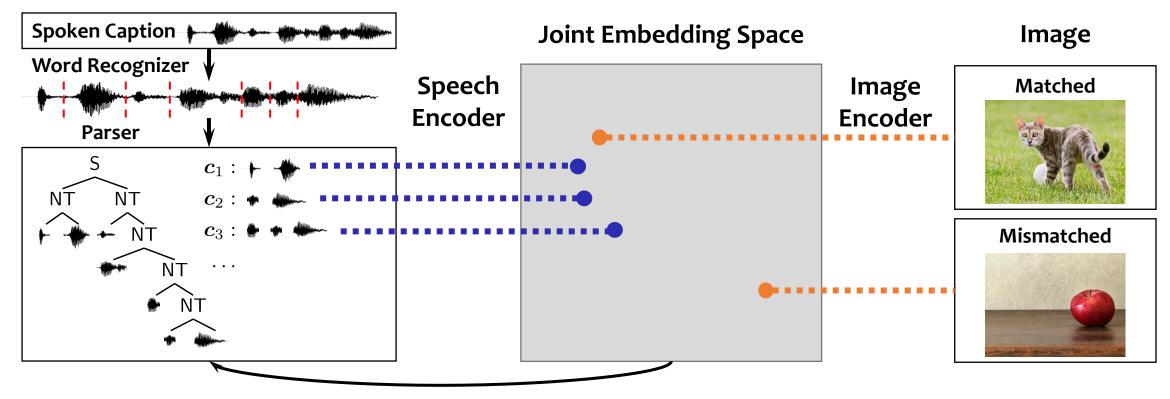
Bo Wan¹, Wenjuan Han²; Zilong Zheng², Tinne Tuytelaars¹

 Department of Electrical Engineering, KU Leuven;
 Beijing Institute for General Artificial Intelligence, Beijing, China {bwan; Tinne.Tuytelaars}@esat.kuleuven.be;
 {hanwenjuan; zlzheng}@bigai.ai

VG-NSL: Discussion

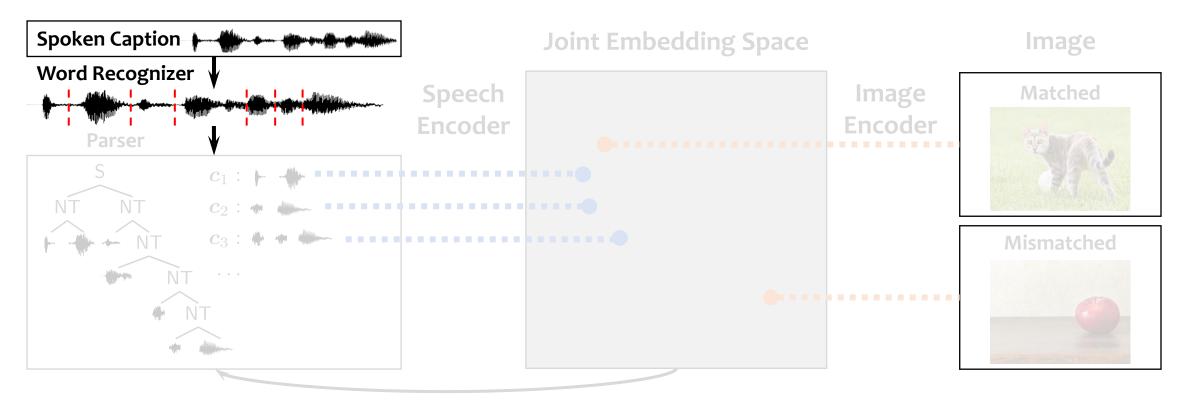
- Motivation of grammar induction/unsupervised parsing
 - Understanding quantitatively how much syntax is encoded in data
 - Arguing for or against the poverty of the stimulus (Chomsky, 1980) -
 - Byproduct: methods derived could benefit other tasks
- Modeling human language acquisition -
 - Pretrained **text** models are less desirable due to corpus-size mismatch
 - Pretrained speech models are okay in terms of developmental plausibility
 - HuBERT-960hr gives reasonable performance
 - Even the 60K-hour Libri-light data is acceptable: 60,000/24/365 = 6yrs
 - Humans learn languages in grounded settings
 - Much of humans' early exposure to language is in speech

The Audio-Visual Syntax Learner (AV-NSL)



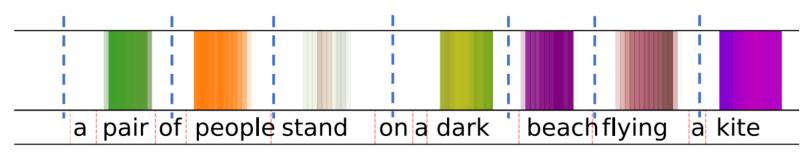
Reward for parser: Estimated text span concreteness

[Lai*, Shi*, Peng*, et al. Audio-Visual Neural Syntax Acquisition. ASRU 2019]

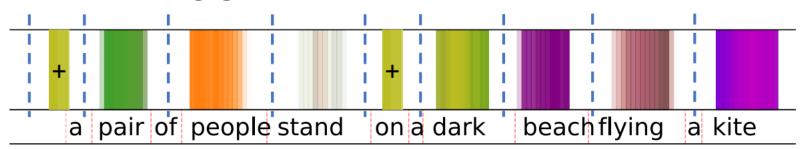


- How should we obtain word segments from a spoken utterance?
- Segmentation with forced alignment: Template-based matching between text and speech (e.g., MFA; McAuliffe et al., 2007)
- Humans learn to listen and speak before learning to read and write
 - Unsupervised word recognition/segmentation is desirable

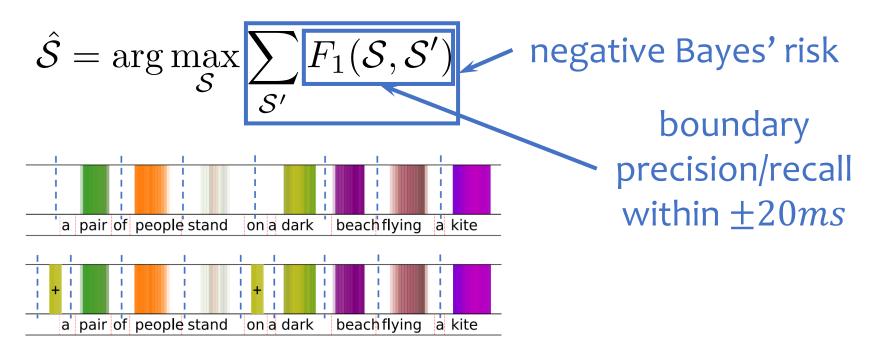
• Word segmentation emerges from VG-HuBERT [CLS] token's attention weights (Peng and Harwath, 2022)

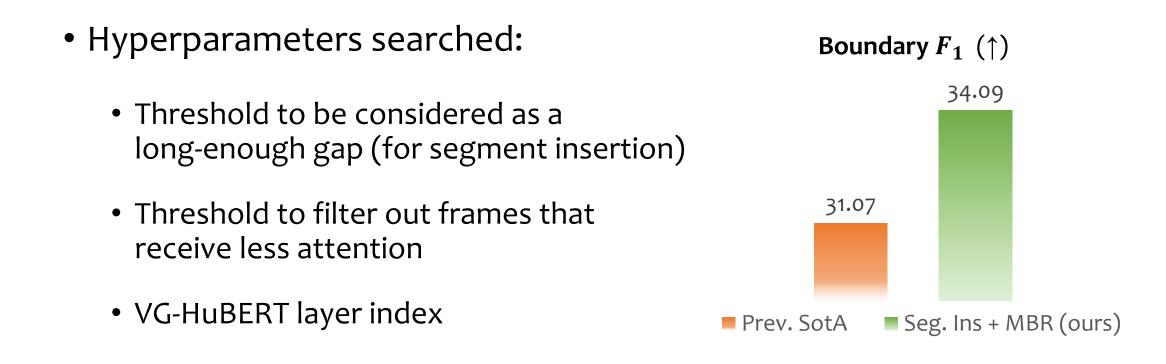


• Insert tokens in long gaps (threshold tuned w/o supervision)



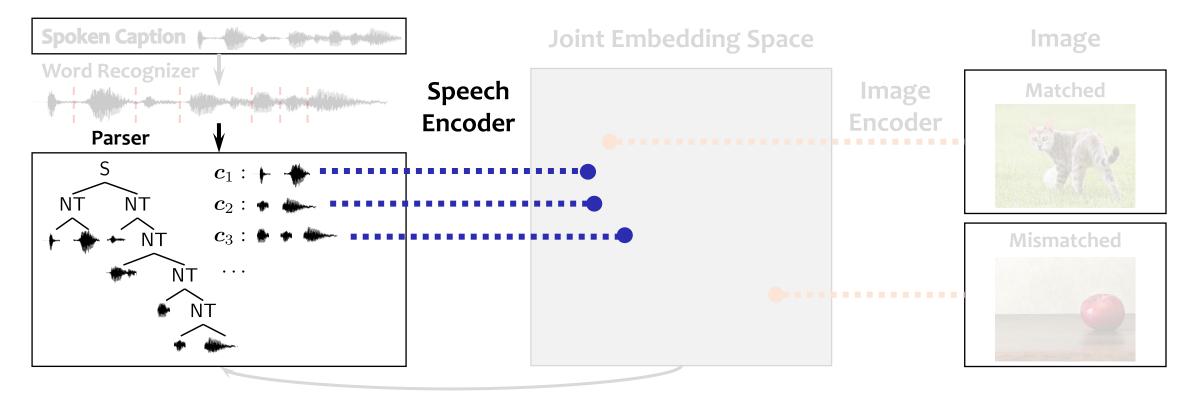
- Word segmentation with minimum Bayes' risk (MBR) decoding
- Collect multiple word segmentation proposals with different hyperparameters (e.g., threshold for inserting new segment)





AV-NSL: Speech Span Encoders

VG-HuBERT (Peng and Harwath, 2022) as the speech span encoder



AV-NSL: Evaluation

- Text-based segmentation: F_1 score (same as text parsing)
- What if the word segmentation doesn't align with the text?
- Prior work (Roark et al., 2006): project speech to the text domain
- Our proposal: use a structured alignment—based intersectionover-union ratio to measure the similarity between speech constituency parse trees

• IoU between two spans:
$$IoU(I_1, I_2) = \frac{|I_1 \cap I_2|}{|I_1 \cup I_2|}$$

AV-NSL: Evaluation with Structured Average IoU

- Align two constituency parse trees over the same spoken utterance
 - Each node aligns with at most one node in the other tree
 - If node a (in tree 1) and b (in tree 2) are aligned
 - Any descendant of *a* may align with a descendant of *b* or remain unaligned, and vice versa
 - Any ancestor of *a* may align with an ancestor of *b* or remain unaligned, and vice versa

STRUCTAIO
$$U(T_1, T_2) = \arg \max_{\mathcal{A}} \frac{1}{|\mathcal{T}_1| + |\mathcal{T}_2|} \sum_{(x,y) \in \mathcal{A}} IoU(t_{1,x}, t_{2,y})$$

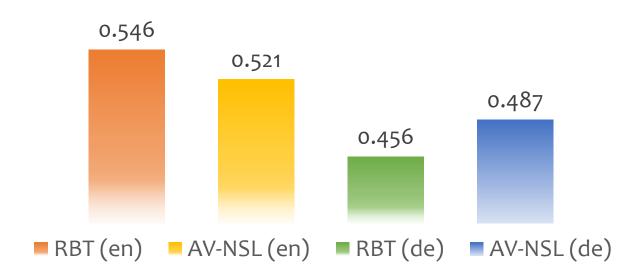
• This can be calculated within $O(n^2m^2)$ time in
• StructaloU is highly correlated with F_1 score when word segmentation is present

[Shi, Gimpel, Livescu. Structured Tree Alignment for Evaluation of Constituency Parsing. Work in Progress]

AV-NSL: Results

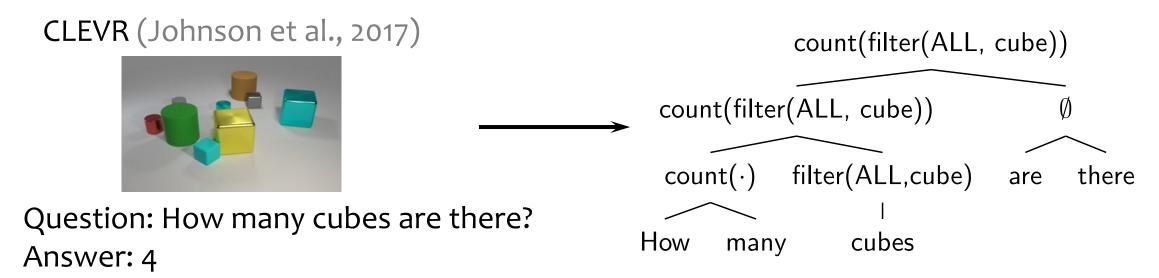
- Right-branching trees serve as a strong baseline for European languages
- There is still a gap between the current state and a decent grammar induction model from visually grounded speech

StructaloU score (w/o gold word segmentation ↑)



Joint Syntax and Semantics Induction

• Combinatory categorial grammar induction in visually grounded settings



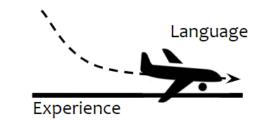
Question answering accuracy (\uparrow) on program-depth generalization:

81.6 (prior SotA) → **98.5**

[Mao, Shi, Wu, Levy, Tenenbaum. Grammar-Based Grounded Lexicon Learning. NeurIPS 2021]

Looking ahead...

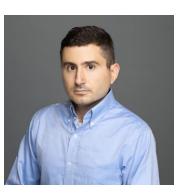
- Language is never text in isolation
 - Computational linguistics research should benefit more from state-of-the-art machine learning techniques, including (and especially) computer vision, speech, and robotics
- Grounding in NLP does not necessarily mean vision-text models--other grounding forms include but are not limited to
 - Execution results of programs, semantic parses of natural language
 - Sentences with shared semantics but in different languages
 - Knowledge bases
 - A metaphor for grounding \odot



Thanks!

Kevin Gimpel

James Glass



David Harwath

Yoon Kim



Cheng-I Jeff Lai

Roger Levy

Karen Livescu

Jiayuan Mao

Puyuan Peng



Jiajun Wu

& other collaborators