
TTIC 31190: Natural Language Processing
Hints for Assignment 2: Text Classification

Instructor: Kevin Gimpel

1 Worked-out Example for Training a Linear Text Classifier

The assignment asks you to implement and experiment with simple ways of building text classifiers
based on linear models. Consider a classifier defined by the function classify for label setL = {0, 1, 2}:

classify(x,w) = argmax
y∈{0,1,2}

score(x, y,w) (1)

where x is a textual input, y is an output class label, and the parameters are contained in the param-
eter (weight) vector w. The score function is defined:

score(x, y,w) =
∑
i

wifi(x, y) (2)

where each fi is a feature function and wi is the corresponding weight of the feature function.

We’ll work through an example of minimizing the perceptron loss by applying the stochastic subgra-
dient descent (SSD) update for a single training example 〈x(1), y(1)〉 where x(1) = “great film” and
y(1) = 2. Let’s assume we have two features in our model:

f1(x, y) = I[y = 2] ∧ I[x contains great]
f2(x, y) = I[y = 0] ∧ I[x contains great]

(Note: if we were using a feature count cut-off of 1, then this would not be the feature set that would
result from a training set that included 〈x(1), y(1)〉, but for purposes of this worked-out example of
the SSD update rule for the perceptron loss, we won’t worry about where the feature set came from.
We’ll just proceed assuming that the features above are the only two features in the model.)

Then we also have two weights w1 and w2, both of which we will initialize to be 0.

Learning proceeds by iterating through all training examples. When processing an example
〈x(1), y(1)〉, we will compute the subgradient of the loss with respect to the weight vector w and up-
date each entry in w based on its subgradient component. The assignment pdf derives the following
update rule for a single weight wj (written below for our single training example):

wj ← wj + 0.01fj(x
(1), y(1))− 0.01fj(x

(1), classify(x(1),w))

where we have plugged in our fixed step size η = 0.01. Let’s start with w1. Its subgradient
component consists of the difference in feature values between two y’s. First, compute f1(x(1), y(1)).
Since x(1) contains “great” and y(1) = 2, f1(x(1), y(1)) = 1.

Next, we have to compute f1(x
(1), classify(x(1),w)). To compute this, we first need to compute

classify(x(1),w), which is shown in Eq. 1. This requires computing the score function (Eq. 2) for each

1



possible label. Here things get slightly odd, because we initialized both weights w1 and w2 to be 0.
So, the scores for all labels will be 0. But since the classify function has to return a y, we need to break
ties somehow. Let’s break ties arbitrarily by simply choosing the y with the lowest integer value
among those with equal scores. This means that classify(x(1),w) = 0. Plugging this into the update
rule, we then have to compute the feature value f1(x(1), classify(x(1),w)) = f1(x

(1), 0). What’s the
value of this feature function? Even though x(1) contains “great”, the label being passed to the
feature function is 0, which doesn’t match the label that the feature is looking for, so f1(x(1), 0) = 0.

So, the update for weight w1 is:
w1 ← 0 + 0.01× 1− 0.01× 0

The new value of w1 will be 0.01. This feature “fired” (i.e., had nonzero value) with the gold standard
label, but did not fire for the predicted label (the output of classify(x(1),w)), so the SSD update made
the feature weight slightly more positive than it had been.

Now let’s do the update for w2. Its subgradient component again consists of the feature function
value difference between two y’s. First, compute f2(x(1), y(1)). While the input x(1) contains “great”,
the given label y(1) = 2 does not match what the feature f2 is looking for, so f2(x(1), y(1)) returns 0.

For the next term in the update, we have to compute f2(x(1), classify(x(1),w)). We already computed
classify(x(1),w) above and obtained the predicted label 0.1 So we then compute the feature value
f2(x

(1), 0), which is 1.

So the update for weight w2 is:
w2 ← 0 + 0.01× 0− 0.01× 1

and the new value of w2 will be −0.01. This feature fired on the predicted label but not the gold
standard label, so the SSD update made the feature weight slightly more negative than it had been.

(Note: We will only update weights for features that fire for the current x when paired with either
the gold standard label or the predicted label. For all other features, the update will be zero. You can
speed up computation by avoiding the loop over all features for a given x and only considering the
features that could possibly be nonzero for it (e.g., if the textual input does not contain “great”, you
can skip over f1 and f2).)

Let’s denote our new updated weight vector by w(new). Consider what happens if we process this
same example 〈x(1), y(1)〉 again, i.e., if we do another SSD update on this training example. Let’s first
compute classify(x(1),w(new)). Below are the scores for the three labels:

score(x(1), 0,w(new)) = w2 = −0.01
score(x(1), 1,w(new)) = 0

score(x(1), 2,w(new)) = w1 = 0.01

Therefore, classify(x(1),w(new)) = 2. Since this predicted label is in fact the correct label, the weight
updates for both weights will be 0!

1Note: we could recompute the classify function using our updated value for w1, but this means that we would have
different parameter updates depending on the order in which we updated the weights. As far as I know, this is not
commonly done. I’d suggest computing classify as the first thing you do when processing a training example and then
using the saved output of classify for updating all parameters for that training example (as described in this document).

2


	Worked-out Example for Training a Linear Text Classifier

