TTIC 31190:
Natural Language Processing

Kevin Gimpel
Spring 2018

Lecture 14:
Syntax and Parsing

Project Proposal

* project proposal due today

Midterm

* midterm in one week

* you can bring notes

— but we’ll try to give you all formulas/definitions
you’ll need

* Monday: review for midterm, including
sample questions

Roadmap

words, morphology, lexical semantics

text classification

language modeling

word embeddings
recurrent/recursive/convolutional networks in NLP
sequence labeling, HMMs, dynamic programming
syntax and syntactic parsing

semantics, compositionality, semantic parsing
machine translation and other NLP tasks

What is Syntax?

* rules, principles, processes that govern
sentence structure of a language

Constituent Parse (Bracketing/Tree)

(S (NP the man) (VP walked (PP to (NP the park))))
S

VP Key:

S = sentence
NP PP NP = noun phrase
VP = verb phrase
PP = prepositional phrase
NP DT = determiner
NN = noun

DT NN VBD IN DT NN P> iem bastiense)
the man walked to the park

Constituent Parse

S (NP the man) (VP walked (PP to (NP the park))))

nonterminals

NN VBD IN DT NN | preterminals

he man walked to the park| terminals

Attachment Ambiguity

One morning | shot an
elephant in my
pajamas. How he got
into my pajamas I'll

never know.

Groucho Marx
American Comedian

1890 - 1977

NLP Task: Constituent Parsing

given a sentence, output its constituent parse
widely-studied task with a rich history

most based on the Penn Treebank (Marcus et al.),
developed at Penn in early 1990s |

Treebank = “corpus of annotated parse trees”

Context-Free Grammar (CFG)

 has “rewrite rules” to rewrite nonterminals as
terminals or other nonterminals

S—=> NP VP

“S goes to NP VP”
NP - DT NN

VP = VBD PP

PP >IN NP

NN = man

DT = the

Context-Free Grammar (CFG)

* sequence of rewrites corresponds to a
bracketing (induces a hierarchical tree structure)

s
S > NP VP
P%VBD PP
NP > DT NN/\
VBD IN DT NN
DT = the

the man walked to the park

11

Why “context-free”?

* arule to rewrite NP does not depend on the
context of NP

e that is, the left-hand side of a rule is only a
single non-terminal (without any other
context)

Probabilistic Context-Free Grammar (PCFG)

e assign probabilities to rewrite rules:
NP - DT NN 0.5
NP = NNS 0.3
NP 2> NP PP 0.2

same nonterminal can be on both left and right sides

13

Probabilistic Context-Free Grammar (PCFG)

e assign probabilities to rewrite rules:
NP - DT NN 0.5
NP = NNS 0.3
NP 2> NP PP 0.2

probabilities must sum to one for each left-hand
side nonterminal

Probabilistic Context-Free Grammar (PCFG)

e assign probabilities to rewrite rules:

NP > DT NN 0.5
NP = NNS 0.3
NP> NP PP 0.2

NN = man 0.01
NN - park 0.0004
NN = walk 0.002
NN = ...

given a treebank, we can
estimate these probabilities
using maximum likelihood
estimation (“count and
normalize”)

just like n-gram language
models and HMMs for POS

tagging

Probabilistic Context-Free Grammar (PCFG)

* for each nonterminal, a PCFG has a probability
distribution over possible right-hand side
sequences

* 50, a PCFG assigns probabilities to:
— bracketings of sentences

— sequences of rewrite operations (derivations) that
eventually terminate in terminals

— hierarchical tree structures that ground out in
sequences of terminals

* these are different ways of saying the same thing

Constituent Parsing

e evaluation: evalb score

— first compute precision and recall (at the level of
constituents)

— then compute F1 (harmonic mean of precision
and recall)

Precision, Recall, F1

* precision:
— what fraction of the things | found are good?
FNnG
»_IFNG
F
* recall:
— what fraction of good things did | find?
FNnG
o F0G
G
* F1 score:

— harmonic mean of precision and recall

Modeling, Inference, Learning

inference: solve argmax | 'modeling: define score function

N ¥

classify(x, w) = argmax score(x,y, w)
Yy

X = a sentence learning: choose w
y = a constituent parse

inference requires iterating over all possible
constituent parses!

this can be done using dynamic programming but
is still expensive (cubic in the sentence length)

19

Inference in PCFGs

* to find max-probability tree for a sentence, use
dynamic programming: CKY algorithm

* to find the best way to build a tree covering
words j to j:
— consider all possible “split points” k between j and j

— for each split point k, consider all possible
nonterminals for the two smaller trees created by
that split

//

RB IN DT NN IN DT NN VBZ NNP NNP

There nearthe top of the Ilst |s quarterbackTroyAlkman

CKY Algorithm

C(Z,1,7) = max max (C(A,i,k)C(B,k,j)score({Z — AB)))

NP
of all ways to

build a constltuent
with nonterminal
Z from tOj

kL ADB
'\ ;
VBZ

max probability
NNP NNP
There near the top of the Ilst |s quarterback Troy Alkman

CKY Algorithm

C(Z,1,7) = max max (C(A,i,k)C(B,k,j)score({Z — AB)))

k AB
/ \(S\
max over N? max over
split points nonterminals
for smaller trees |

VBZ NNP NNP

There near the top of the list |s quarterback Troy Alkman
0 1 7

e detail: CKY requires the PCFG to be in
Chomsky Normal Form (CNF)

* basically: every rule has either 2 nonterminals
or 1 terminal on the right-hand side

24

How well does a PCFG work?

* a PCFG learned from the Penn Treebank with
maximum likelihood estimation (count &
normalize) gets about 73% F1 score

e state-of-the-art parsers are around 92%

How well does a PCFG work?

* a PCFG learned from the Penn Treebank with
maximum likelihood estimation (count &
normalize) gets about 73% F1 score

e state-of-the-art parsers are around 92%

* but, simple modifications can improve the
PCFG a lot!

— smoothing

— tree transformations (selective flattening)
— “parent annotation”

Parent Annotation

VP >V NP PP

VPS >V NPYP PPV

adds more information, but also fragments
counts, making parameter estimates noisier
(since we're just using MLE)

Johnson (1998)

PCFG Models of Linguistic Tree
Representations

Mark Johnson*

Brown University

The kinds of tree representations used in a treebank corpus can have a dramatic effect on perfor-
mance of a parser based on the PCFG estimated from that corpus, causing the estimated likelihood
of a tree to differ substantially from its frequency in the traznzng corpus. This paper points out that
the Penn 1 treeban ect, and describes
mple node relabeling transformation that improves a treebank PCFG-based parser’s aver

recision and recall by around 8%, or approxzmately half of the performance dzﬁ‘e; ence between
a simple . mance
variation comes about because any PCFG, and hence the corpus of trees from which the PCFG is
induced, embodies independence assumptions about the distribution of words and phrases. The
particular independence assumptions implicit in a tree representation can be studied theoretically
and investigated empirically by means of a tree transformation /detransformation process.

Johnson (1998)

22 22 1d Id NP-VP N’-V' Flatten Parent
Number of rules 2,269 14,962 14,297 14,697 22,652
Precision 1 0.772 0.735 0.730 0.735 0.745
Recall 1 0.728 0.697 0.705 0.701 0.723
NP attachments 279 0 67 330 69 154
VP attachments 299 424 384 0 503 392 351
NP* attachments 339 3 67 399 69 161 223

VP* attachments 412 668 662 150 643 509 462

29

How well does a PCFG work?

e PCFG learned from the Penn Treebank with
MLE gets about 73% F1 score

e state-of-the-art parsers are around 92%
* simple modifications can improve PCFGs:

— smoothing
— tree transformations (selective flattening)

— parent annotation

How well does a PCFG work?

e PCFG learned from the Penn Treebank with
MLE gets about 73% F1 score

e state-of-the-art parsers are around 92%
* simple modifications can improve PCFGs:

— smoothing

— tree transformations (selective flattening)
— parent annotation

— lexicalization

Collins (1997)

Three Generative, Lexicalised Models for Statistical Parsing

Michael Collins*

Dept. of Computer and Information Science
University of Pennsylvania
Philadelphia, PA, 19104, U.S.A.
mcollins@gradient.cis.upenn.edu

Abstract

In this paper we first propose a new sta-
tistical parsing model, which is a genera-
tive model of lexicalised context-free gram-
mar. We then extend the model to in-
clude a probabilistic treatment of both sub-
categorisation and wh-movement. Results
on Wall Street Journal text show that the
parser performs at 88.1/87.5% constituent
precision/recall, an average improvement
of 2.3% over (Collins 96).

1 Introduction

Generative models of syntax have been central in
linguistics since they were introduced in (Chom-

is derived from the analysis given in Generalized
Phrase Structure Grammar (Gazdar et al. 95). The
work makes two advances over previous models:
First, Model 1 performs significantly better than
(Collins 96), and Models 2 and 3 give further im-
provements — our final results are 88.1/87.5% con-
stituent precision/recall, an average improvement
of 2.3% over (Collins 96). Second, the parsers
in (Collins 96) and (Magerman 95; Jelinek et al.
94) produce trees without information about wh-
movement or subcategorisation. Most NLP applica-
tions will need this information to extract predicate-
argument structure from parse trees.

In the remainder of this paper we describe the 3
models in section 2, discuss practical issues in sec-
tion 3, give results in section 4, and give conclusions
in section 5.

NP(week)

JJ NN

La‘st we|ek
TOP ->
S(bought) ->
NP (week) ->
NP (Marks) ->
VP(bought) ->
NP (Brooks) =>

Lexicalized PCFGs

TOP
I
S(bought)

NP(Marks)
l
NNP

I
Marks

S (bought)
NP (week)
JJ(Last)
NNP (Marks)
VB (bought)
NNP (Brooks)

nonterminals are decorated with
the head word of the subtree

VP(bought)
VB NP(Brooks)
l |
bought NNP
f
Brooks

NP (Marks) VP(bought)
NN(week)

NP (Brooks)

Lexicalization

this adds a lot more rules!
many more parameters to estimate >
smoothing becomes much more important

— e.g., right-hand side of rule might be factored into
several steps

but it’s worth it because head words are really
useful for constituent parsing

Results (Collins, 1997)

MODEL < 40 Words (2245 sentences)
LR LP CBs | 0CBs | <2 CBs
(Magerman 95) || 84.6% | 84.9% | 1.26 | 56.6% | 81.4%
(Collins 96) 85.8% | 86.3% | 1.14 | 59.9% | 83.6%
Model 1 87.4% | 88.1% | 0.96 | 65.7% | 86.3%
Model 2 88.1% | 88.6% | 0.91 | 66.5% | 86.9%
Model 3 88.1% | 88.6% | 0.91 | 66.4% | 86.9%

35

Head Rules

how are heads decided?

initially, researchers used deterministic head
rules (Magerman/Collins)

for a PCFG rule A = B, ... B, these head rules
say which of B, ... By is the head of the rule

examples:

S NP VP

VP = VBD NP PP
NP = DT JJ NN

Head Annotation

heads have

é / bold outline

e.g., VP is head
NP o

5,
Vit

6 hit Jthe Jna ithl the Abat

from Noah Smith

Lexical Head Annotation

propagate lexical
heads up the tree

6 hit Jthe Jma ithl the A bat

from Noah Smith

Lexical Head Annotation = Dependencies
remove
nonlexical

parts:

5
MO TN

6 hit JtheJma ithl the A bat

from Noah Smith

Dependencies
merge
redundant
nodes:

from Noah Smith

constituent parse: labeled dependency parse:

nsubj = “nominal subject”
dobj = “direct object”

prep = “preposition modifier”
pobj = “object of preposition”
det = “determiner”

42

captures some semantic
relationships

constituent parse:

nsubj = “nominal subject”
dobj = “direct object”

prep = “preposition modifier”
pobj = “object of preposition”
det = “determiner”

43

A Typed Dependency Tree

(xoot

Y

I prefer the moming flight through Denver

J&M/SLP3

Some Dependency Relations

Clausal Argument Relations Description

NSUBJ Nominal subject

DOBJ Direct object

I0BJ Indirect object

CCOMP Clausal complement
XCOMP Open clausal complement
Nominal Modifier Relations Description

NMOD Nominal modifier

AMOD Adjectival modifier
NUMMOD Numeric modifier

APPOS Appositional modifier
DET Determiner

CASE Prepositions, postpositions and other case markers
Other Notable Relations Description

CON]J Conjunct

CC Coordinating conjunction

10701 B EW] Selected dependency relations from the Universal Dependency set. (de Marn-
effe et al., 2014)

J&M/SLP3

Some Dependency Relations

Relation Examples with head and dependent
NSUBIJ United canceled the flight.
DOBJ United diverted the flight to Reno.

We booked her the first flight to Miami.
I0BJ We booked her the flight to Miami.
NMOD We took the morning flight.
AMOD Book the cheapest flight.
NUMMOD Before the storm JetBlue canceled 1000 flights.
APPOS United, a unit of UAL, matched the fares.
DET The flight was canceled.

Which flight was delayed?
CONJ We flew to Denver and drove to Steamboat.
CC We flew to Denver and drove to Steamboat.
CASE Book the flight through Houston.

10T ER] Examples of core Universal Dependency relations.

J&M/SLP3

Crossing Dependencies = Nonprojective Tree

if dependencies cross
(“nonprojective”), no longer
corresponds to a CFG

@ lmodI

‘ g _
VR

JetBlue canceled our flight this morning which was already late

J&M/SLP3

Projective vs. Nonprojective Dependencies

* English dependency treebanks are mostly
projective
— but when focusing more on semantic
relationships, often becomes more nonprojective
* some (relatively) free word order languages,
like Czech, are fairly nonprojective

Annotating Dependencies

for many years, researchers build dependency
parsers from deterministic head rules

deterministic head rules are a blunt instrument

would be better to directly annotate

C

t
t

ependencies!

nere have been many annotation efforts with

nis goal

Universal Dependencies

Universal Dependencies (UD) is a project that is developing cross-linguistically consistent
treebank annotation for many languages, with the goal of facilitating multilingual parser
development, cross-lingual learning, and parsing research from a language typology perspective.

This is illustrated in the following parallel examples from English, Bulgarian, Czech and Swedish,
where the main grammatical relations involving a passive verb, a nominal subject and an oblique
agent are the same, but where the concrete grammatical realization varies.

punct

NSUDj:Pass=—— (case
!4 \g‘ aux:pass !/—
1| The was chased by the
punct»
nsubjpass obl
e""‘w Tshh
2 queTo c npecnegsawe oT KOoTKarta
nsubj:pass punct
OUN" (DR 7*** VERETY ** "TNOUN") PO
3 Pes byl honén kockou
puncte
obl
(NOUN"*"*") *** \ vERg"Y ”\—\—
———
4/ Hunden Jagades av katten

universaldependencies.org

Dependency Parsing

several widely-used algorithms

different guarantees but similar performance
In practice

graph-based:

— dynamic programming (Eisner, 1997)

— minimum spanning tree (McDonald et al., 2005)
transition-based:

— shift-reduce (Nivre, inter alia)

Transition-Based Dependency Parsing

Input buffer
w1 w2 wn
1 Dependency
2 - Parser Relations
Stack | - [Oracle]
——
sn

10T ERY Basic transition-based parser. The parser examines the top two elements of the
stack and selects an action based on consulting an oracle that examines the current configura-

tion.
on J&M/SLP3

Transition-Based Parsing

* there are many variations of greedy parsers
that build parse structures as they process a
sentence from left to right

)

— “shift-reduce”, “transition-based”, etc.

* these form the backbone of many modern
neural dependency (and constituency!)
parsers

* we’ll go through an example (thanks to Noah
Smith for these slides)

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

say
/\“Sten
millennials ﬂ\
I\/Ian/\ ~ must 0
y estimated parties \ get
A/‘/'R \ concerns re
political } to support
of percent are voted their

{ }
which 50 to have

Greedy Parsing with a Stack

Stack:
See:
Nivre & Scholz, 2004
Henderson, 2004
)
Buffer:

!

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:

Buffer:

!

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:

shift

=)
Many

Buffer:

!

millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:

shift

-

millennials
Many

Buffer:

!

of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:

reduce left

-

Many «— millennials

!

of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Greedy Parsing with a Stack

Stack:

shift

-

of
Many «— millennials

!

which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Greedy Parsing with a Stack

Stack:
shift
- .
which
of
Many «— millennials
Buffer:

!

50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:

reduce right

of — which
Many «— millennials

!

50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Buffer:

Greedy Parsing with a Stack

Stack:
shift
=)
50
of — which
Many <« millennials
Buffer:

!

percent are estimated to have voted, say

political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:
shift
percent
50
of — which
Many «— millennials
Buffer:

!

are estimated to have voted, say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

reduce right

Stack:
-
50 — percent
of — which
Many «— millennials
Buffer:

!

are estimated to have voted, say

political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:
shift
- are
50 — percent
of — which
Many «— millennials
Buffer:

!

estimated to have voted, say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:
" cstimated shift
are
50 — percent
of — which
Many «— millennials
Buffer:

!

to have voted, say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:

- to _
estimated shift

are
50 — percent
of — which
Many «— millennials

Buffer:

!

have voted, say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:

- have

to
estimated shift
are
50 — percent
of — which
Many < millennials

Buffer:

voted, say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:

-

voted
have
to _
estimated shift
are
50 — percent

of — which

Many <« millennials

Buffer:

say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:

-

have < voted
to
estimated reduce left
are
50 — percent
of — which
Many < millennials

Buffer:

say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:

-

(to have) < voted
estimated reduce left

are
50 — percent
of — which
Many «— millennials

Buffer:

say
political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:
estimated — ((to have) < voted)
are
50 — percent
of — which
Many «— millennials
Buffer:

reduce right

say

political parties must listen to their concerns to get support.

Greedy Parsing with a Stack

Stack:

- are «— estimated — ((to have) « voted)
50 — percent
of — which
Many «— millennials

Buffer:

reduce left

say

political parties must listen to their concerns to get support.

say

/\ listen
millennials ﬂ\
/\

_ must 1O
Many estimated parties \ get
A/‘/'R \ concerns ‘e
political } to support
of percent are voted their

{ }
which 50 to have

Many millennials, of which 50 percent are estimated to have voted, say
political parties must listen to their concerns to get support.

Stack; Buffer; | Action Stack; 1 Buffer;,; | Dependency
(w,u), (v,v),S B REDUCE-RIGHT(r) | (gr(u,Vv),u), S B u— v
(w,u), (v,v),S B REDUCE-LEFT(r) | (gr(v,u),v),S B u v

S (u,u), B | SHIFT (u,u),S B -

Figure 3: Parser transitions indicating the action applied to the stack and buffer and the resulting stack

and buffer states. Bold symbols indicate (learned) embeddings of words and relations, script symbols
indicate the corresponding words and relations.

Dyer et al. (ACL 2015) 77

e Early work used multi-class linear classifiers to
output a parsing decision (shift, reduce-left, or
reduce-right)

 Chen et al. (2014) used a feed-forward
network for this

* Dyer et al. (2015) used RNNs to model the
history of parsing decisions, the partial parses
so far (the “stack”), and the sentence

Stack RNNs

Yo Y1 Yo yi Yo Y1 yo
1 f pop 1 f push 1 f f
é 1 (3 i é) N f 71

Figure 1: A stack LSTM extends a conventional left-to-right LSTM with the addition of a stack pointer
(notated as TOP in the figure). This figure shows three configurations: a stack with a single element (left),
the result of a pop operation to this (middle), and then the result of applying a push operation (right).
The boxes in the lowest rows represent stack contents, which are the inputs to the LSTM, the upper rows
are the outputs of the LSTM (in this paper, only the output pointed to by TOP is ever accessed), and the
middle rows are the memory cells (the ¢;’s and h;’s) and gates. Arrows represent function applications
(usually affine transformations followed by a nonlinearity), refer to §2.1 for specifics.

Dyer et al. (ACL 2015) 79

[et | T P

an Vf\ decision was made ROOT

overhasty QZ
«— REDUCE-LEFT(amod)

A — SHIFT

= —b
= —

Figure 2: Parser state computation encountered while parsing the sentence “an overhasty decision was
made.” Here S designates the stack of partially constructed dependency subtrees and its LSTM encod-
ing; B is the buffer of words remaining to be processed and its LSTM encoding; and A is the stack
representing the history of actions taken by the parser. These are linearly transformed, passed through a
ReL.U nonlinearity to produce the parser state embedding p;. An affine transformation of this embedding
is passed to a softmax layer to give a distribution over parsing decisions that can be taken.

Dyer et al. (ACL 2015) 80

Stack LSTM Parser

{shift, reduce right, reduce left}
afly

~ s ﬁ -~
— J W< reduce right
d @ shift
e shift
lenniai o W< reduce left
mlinnla E>.’ & shift
mle shift

Many AN >
5 %)

s off ~
ool ll<: ll<: l|<:
T afy afy afy
Buffer: 50 percent are estimated to have voted ..

Stack: ’ Action history:

Dependency Parsers

Stanford parser

TurboParser
Joakim Nivre’s MALT parser

Ryan McDonald’s MST parser

and many others for many non-English
languages

Projective vs. Nonprojective Dependency Parsing

* nonprojective parsing can be formulated as a
minimum spanning tree problem

e projective parsing cannot, but dynamic
programming algorithms can be used
(variations of CKY) as well as transition-based
parsers

Complexity Comparison

* constituent parsing: O(Gn?)

— parsing complexity depends on grammar structure
(“erammar constant” G)

— since it has lots of nonterminal-only rules at the top of
the tree, there are many rule probabilities to estimate
* dependency parsing: O(n3)
— operates directly on words, so parsing complexity has
no grammar constant

— features designed on possible dependencies (pairs of
words) and larger structures

— transition-based parsing algorithms are O(n), though
not optimal; also, non-projective parsing is faster

Applications of Dependency Parsing

widely used for NLP tasks because:
— faster than constituent parsing
— captures more semantic information

text classification (features on dependencies)
syntax-based machine translation

relation extraction
— e.g., extract relation between Sam Smith and AlTech:
Sam Smith was named new CEO of AlTech.

— use dependency path between Sam Smith and AlTech:
* Smith 2 named, named €< CEO, CEO € of, of € AlTech

Summary: two types of grammars

phrase structure / constituent grammars

— inspired mostly by Chomsky and others

— only appropriate for certain languages (e.g., English)
dependency grammars

— closer to a semantic representation; some have made
this more explicit

— problematic for certain syntactic structures (e.g.,
conjunctions, nesting of noun phrases, etc.)

both are widely used in NLP

you can find constituent parsers and dependency
parsers for several languages online

Recursive Neural Networks for NLP
x = |t fell apart
* run a syntactic parser on the sentence

e construct vector recursively at each split
point:

Recursive Neural Networks for NLP
x = |t fell apart
* run a syntactic parser on the sentence
e construct vector recursively at each split

h, = emb(it)

Recursive Neural Networks for NLP
x = |t fell apart

* run a syntactic parser on the sentence

e construct vector recursively at each split

Recursive Neural Networks for NLP
x = |t fell apart

* run a syntactic parser on the sentence

e construct vector recursively at each split

Recursive Neural Networks for NLP

 same parameters used at every split point

e order of children matters (different weights
used for left and right child)

91

