
TTIC	31190:
Natural	Language	Processing

Kevin	Gimpel
Winter	2016

Lecture	13:	
Dependency	Syntax/Parsing	

&	Review	for	Midterm

1

Announcement
• project	proposal	due	today
• email	me	to	set	up	a	15-minute	meeting	next	
week	to	discuss	your	project	proposal

• times	posted	on	course	webpage
• let	me	know	if	none	of	those	work	for	you

2

Announcement
• midterm	is	Thursday,	room	#530
• closed-book,	but	you	can	bring	an	8.5x11	
sheet	(though	I	don’t	think	you’ll	need	to)

• we	will	start	at	10:35	am,	finish	at	11:50	am

3

Roadmap
• classification
• words
• lexical	semantics
• language	modeling
• sequence	labeling
• neural	network	methods	in	NLP
• syntax	and	syntactic	parsing
• semantic	compositionality
• semantic	parsing
• unsupervised	learning
• machine	translation	and	other	applications

4

What	is	Syntax?
• rules,	principles,	processes	that	govern	
sentence	structure	of	a	language

• can	differ	widely	among	languages
• but	every	language	has	systematic	structural	
principles

5

Constituent	Parse	(Bracketing/Tree)
(S	(NP	the	man)	(VP	walked	(PP	to	(NP	the	park))))

6

the	man	walked	to	the	park

S

NP

NP

VP

PP

Key:
S	=	sentence
NP	=	noun	phrase
VP	=	verb	phrase
PP	=	prepositional	phrase
DT	=	determiner
NN	=	noun
VBD	=	verb	(past	tense)
IN	=	preposition

DT NN VBD						IN				DT				NN

Constituent	Parse	(Bracketing/Tree)
(S	(NP	the	man)	(VP	walked	(PP	to	(NP	the	park))))

7

the	man	walked	to	the	park

S

NP

NP

VP

PP

DT NN VBD						IN				DT				NN preterminals

nonterminals

terminals

Penn	Treebank	Nonterminals

8

Probabilistic	Context-Free	Grammar	(PCFG)

• assign	probabilities	to	rewrite	rules:
NP	à DT		NN 0.5
NP	à NNS 0.3
NP	à NP		PP 0.2

NN	àman 0.01
NN	à park 0.0004
NN	àwalk 0.002
NN	à….

9

given	a	treebank,	estimate	
these	probabilities	using	MLE	
(“count	and	normalize”)

How	well	does	a	PCFG	work?
• PCFG	learned	from	the	Penn	Treebank	with	
MLE	gets	about	73%	F1	score

• state-of-the-art	parsers	are	around	92%
• simple	modifications	can	improve	PCFGs:
– smoothing
– tree	transformations	(selective	flattening)
– parent	annotation

10

Parent	Annotation
VP	à V		NP		PP

VPS à V		NPVP PPVP

adds	more	information,	but	also	fragments	
counts,	making	parameter	estimates	noisier	
(since	we’re	just	using	MLE)

11

How	well	does	a	PCFG	work?
• PCFG	learned	from	the	Penn	Treebank	with	
MLE	gets	about	73%	F1	score

• state-of-the-art	parsers	are	around	92%
• simple	modifications	can	improve	PCFGs:
– smoothing
– tree	transformations	(selective	flattening)
– parent	annotation
– lexicalization

12

Collins	(1997)

13

Lexicalized	PCFGs

14

nonterminals are	decorated	with	
the	headword	of	the	subtree

Lexicalization
• this	adds	a	lot	more	rules!
• many	more	parameters	to	estimate	à
smoothing	becomes	much	more	important
– e.g.,	right-hand	side	of	rule	might	be	factored	into	
several	steps

• but	it’s	worth	it	because	head	words	are	really	
useful	for	constituent	parsing

15

Results	(Collins,	1997)

16

Head	Rules
• how	are	heads	decided?
• most	researchers	use	deterministic	head	rules	
(Magerman/Collins)

• for	a	PCFG	rule	A	à B1 …	BN,	these	head	rules	
say	which	of	B1 …	BN	is	the	head	of	the	rule

• examples:
S	à NP		VP
VP	à VBD NP		PP
NP	à DT		JJ		NN

17

Head	Annotation

18from	Noah	Smith

Lexical	Head	Annotation

19from	Noah	Smith

Lexical	Head	Annotation	à Dependencies

20

remove	
nonlexical
parts:

from	Noah	Smith

Dependencies

21

merge	
redundant	
nodes:

from	Noah	Smith

22

constituent	parse: dependency	parse:

23

constituent	parse: labeled dependency	parse:

nsubj

det

dobj

pobj

det

prep

nsubj =	“nominal	subject”
dobj =	“direct	object”
prep	=	“preposition	modifier”
pobj =	“object	of	preposition”
det =	“determiner”

24

constituent	parse: labeled dependency	parse:

nsubj

det

dobj

pobj

det

prep

nsubj =	“nominal	subject”
dobj =	“direct	object”
prep	=	“preposition	modifier”
pobj =	“object	of	preposition”
det =	“determiner”

captures	some	semantic	
relationships

• how	(unlabeled)	dependency	trees	are	
typically	drawn:
– root	of	tree	is	represented	by	$	(“wall	symbol”)
– arrows	drawn	entirely	above	(or	below)	sentence
– arrows	are	directed	from	child	to	parent	(or	from	
parent	to	child);	you	will	see	both	in	practice—
don’t	get	confused!

25

source: $ konnten sie es übersetzen ?

reference: $ could you translate it ?
“wall”	symbol

Crossing	Dependencies

26

if	dependencies	cross	
(“nonprojective”),	no	
longer	corresponds	to	

a	PCFG

from	Noah	Smith

Projective	vs.	Nonprojective Dependency	Parsing

• English	dependency	treebanks are	mostly	
projective
– but	when	focusing	more	on	semantic	
relationships,	often	becomes	more	nonprojective

• some	(relatively)	free	word	order	languages,	
like	Czech,	are	fairly	nonprojective

• nonprojective parsing	can	be	formulated	as	a	
minimum	spanning	tree	problem

• projective	parsing	cannot

27

Dependency	Parsing
• several	widely-used	algorithms
• different	guarantees	but	similar	performance	
in	practice

• graph-based:
– dynamic	programming	(Eisner,	1997)
– minimum	spanning	tree	(McDonald	et	al.,	2005)

• transition-based:
– shift-reduce	(Nivre,	inter	alia)

28

Dependency	Parsers
• Stanford	parser
• TurboParser
• Joakim Nivre’s MALT	parser
• Ryan	McDonald’s	MST	parser
• and	many	others	for	many	non-English	
languages

29

Complexity	Comparison
• constituent	parsing:	O(Gn3)
– parsing	complexity	depends	on	grammar	structure	
(“grammar	constant”	G)

– since	it	has	lots	of	nonterminal-only	rules	at	the	top	of	
the	tree,	there	are	many	rule	probabilities	to	estimate

• dependency	parsing:	O(n3)
– operates	directly	on	words,	so	parsing	complexity	has	
no	grammar	constant

– features	designed	on	possible	dependencies	(pairs	of	
words)	and	larger	structures

– transition-based	parsing	algorithms	are	O(n),	though	
not	optimal;	also,	non-projective	parsing	is	faster

30

Applications	of	Dependency	Parsing
• widely	used	for	NLP	tasks	because:
– faster	than	constituent	parsing
– captures	more	semantic	information

• text	classification	(features	on	dependencies)
• syntax-based	machine	translation
• relation	extraction
– e.g.,	extract	relation	between	Sam	Smith	and	AITech:
Sam	Smith	was	named	new	CEO	of	AITech.
– use	dependency	path	between	Sam	Smith	and	AITech:

• Smith	à named,	named	ß CEO,	CEO	ß of,	of	ß AITech

31

Summary:	two	types	of	grammars
• phrase	structure	/	constituent	grammars
– inspired	mostly	by	Chomsky	and	others
– only	appropriate	for	certain	languages	(e.g.,	English)

• dependency	grammars	
– closer	to	a	semantic	representation;	some	have	made	
this	more	explicit

– problematic	for	certain	syntactic	structures	(e.g.,	
conjunctions,	nesting	of	noun	phrases,	etc.)

• both	are	widely	used	in	NLP
• you	can	find	constituent	parsers	and	dependency	
parsers	for	several	languages	online

32

Review

33

Modeling,	Inference,	Learning

• Modeling:	How	do	we	assign	a	score	to	an	
(x,y)	pair	using	parameters				?

modeling:	define		score	function

34

Modeling,	Inference,	Learning

• Inference:	How	do	we	efficiently	search	over	
the	space	of	all	labels?

inference:	solve														_ modeling:	define		score	function

35

Modeling,	Inference,	Learning

• Learning:	How	do	we	choose				?

learning:	choose	_

modeling:	define		score	functioninference:	solve														_

36

Applications

37

Applications	of	our	Classification	Framework

38

text	classification:

x y

the	hulk	 is	an	anger	fueled	monster	with	
incredible	strength	and	resistance	to	damage	. objective

in	trying	to	be	daring	and	original	,	it	comes	off	
as	only	occasionally	satirical	and	never	fresh	. subjective

=	{objective,	subjective}

Applications	of	our	Classification	Framework

39

word	sense	classifier	for	bass:

x y

he’s	a	bass	in	the	choir	. bass3

our bass	is	line-caught	from	the	
Atlantic	. bass4

=	{bass1,	bass2,	…,	bass8}

Applications	of	our	Classification	Framework

40

skip-gram	model	as	a	classifier:

x y

agriculture <s>

agriculture is

agriculture the

=	V (the	entire	vocabulary)

corpus	(English	Wikipedia):
agriculture	 is	the	traditional	mainstay	of	the	
cambodian economy	.
but	benares has	been	destroyed	by	an	earthquake	 .
…

determiner					verb	(past)						prep.			proper					proper			poss.					adj.													noun

modal							verb				det.									adjective									noun				prep.						proper					punc.

41

Part-of-Speech	Tagging

determiner					verb	(past)						prep.				noun								noun					poss.					adj.												noun
Some						questioned						if							Tim						Cook						’s						first						product	

modal							verb				det.									adjective									noun				prep.							noun						punc.
would						be						a						breakaway						hit						for						Apple								.

Simplest	kind	of	structured	prediction:	Sequence	Labeling

42

O																				O														O					B-PERSON			I-PERSON						O										O																	O
Some			questioned			if									Tim										Cook							’s						first						product	

O														O									O																	O																	O								O					B-ORGANIZATION						O
would						be						a						breakaway				hit				for												Apple														.

Named	Entity	Recognition

B	=	“begin”
I	=	“inside”
O	=	“outside”

Formulating	segmentation	tasks	as	sequence	labeling	
via	B-I-O	labeling:

Applications	of	our	Classifier	Framework	so	far

43

task input	(x) output	(y) output	space	() size	of

text	
classification a	sentence gold	standard	

label for	x

pre-defined,	 small	
label	set (e.g.,	

{positive,	negative})
2-10

word	sense	
disambiguation

instance	of	a	
particular	word	
(e.g.,	bass)	with

its	context

gold	standard	
word	sense	of	x

pre-defined	sense	
inventory	 from	

WordNet for	bass
2-30

learning skip-
gram	word	
embeddings

instance	of	a	
word	in	a	corpus

a	word	in	the	
context	of	x in	

a	corpus
vocabulary |V|

part-of-speech	
tagging a	sentence

gold	standard	
part-of-speech	

tags	for	x

all	possible	part-of-
speech tag	sequences	
with	same	length	as	x

|P||x|

Applications	of	Classifier	Framework	(continued)

44

task input	(x) output	(y) output	space	() size	of

named	
entity	

recognition
a	sentence

gold	standard	named	
entity	labels for	x	

(BIO	tags)

all	possible	BIO	label	
sequences	with	same	

length	as	x
|P||x|

constituent	
parsing a	sentence

gold	standard	
constituent	parse	
(labeled	bracketing)	

of	x

all possible	 labeled	
bracketings of	x

exponential
in	length	of	x
(Catalan	
number)

dependency	
parsing a	sentence

gold	standard	
dependency	parse	
(labeled	directed	
spanning	 tree)	of	x

all	possible	 labeled	
directed	spanning	 trees	

of	x

exponential
in	length	of	x

• each	application	draws	from	particular	
linguistic	concepts	and	must	address	different	
kinds	of	linguistic	ambiguity/variability:
– word	sense:	sense	granularity,	relationships	
among	senses,	word	sense	ambiguity

– word	vectors:	distributional	properties,	sense	
ambiguity,	different	kinds	of	similarity

– part-of-speech:	tag	granularity,	tag	ambiguity
– parsing:	constituent/dependency	relationships,	
attachment	&	coordination	ambiguities

45

Modeling

46

model	families
• linear	models
– lots	of	freedom	in	defining	features,	though	feature	
engineering	required	for	best	performance

– learning	uses	optimization	of	a	loss	function
– one	can	(try	to)	interpret	learned	feature	weights

• stochastic/generative	models
– linear	models	with	simple	“features”	(counts	of	events)
– learning	is	easy:	count	&	normalize	(but	smoothing	needed)
– easy	to	generate	samples

• neural	networks
– can	usually	get	away	with	less	feature	engineering
– learning	uses	optimization	of	a	loss	function
– hard	to	interpret	(though	we	try!),	but	often	works	best

47

special	case	of	linear	models:	
stochastic/generative	models

48

model tasks context	expansion

n-gram	language models language	modeling	 (for	
MT,	ASR,	etc.) increase	n

hidden	Markov	models
part-of-speech	tagging,	

named	entity	recognition,
word	clustering

increase	order	of	HMM	(e.g.,	bigram	
HMM	à trigram HMM)

probabilistic	 context-free	
grammars constituent	parsing increase	size	of	rules,	e.g.,	flattening,	

parent	annotation,	etc.

• all	use	MLE	+	smoothing	(though	probably	different	kinds	of	smoothing)
• all	assign	probability	to	sentences	(some	assign	probability	jointly	to	pairs	

of	<sentence,	something	else>)
• all	have	the	same	trade-off	of	increasing	“context”	(feature	size)	and	

needing	more	data	/	better	smoothing

Feature	Engineering	for	Text	Classification

• Two	features:

where

• What	should	the	weights	be?

49

unigram	binary	template:

bigram	binary	template:

trigram	binary	features
…

50

Higher-Order	Binary	Feature	Templates

Unigram	Count	Features

• a	``count’’	feature	returns	the	count	of	a	
particular	word	in	the	text

• unigram	count	feature	template:

51

Feature	Count	Cutoffs
• problem:	some	features	are	extremely	rare
• solution:	only	keep	features	that	appear	at	
least	k times	in	the	training	data

52

2-transformation	(1-layer)	network

• we’ll	call	this	a	“2-transformation”	neural	
network,	or	a	“1-layer”	neural	network

• input	vector	is	
• score	vector	is
• one	hidden	vector											(“hidden	layer”)

53

vector	of	label	scores

1-layer	neural	network	for	sentiment	classification

54

ikr smh he		asked		fir		yo last		name		so		he		can

55

intj pronoun	 																					prep																	adj prep	 															verb	
other																					verb																					det noun	 														pronoun	

Neural	Networks	for	Twitter	Part-of-Speech	Tagging

vector	for	lastvector	for	yo

• let’s	use	the	center	word	+	two	words	to	the	right:

vector	for	name

• if	name is	to	the	right	of	yo,	then	yo is	probably	a	form	of	your
• but	our	x above	uses	separate	dimensions	for	each	position!

– i.e.,	name	is	two	words	to	the	right
– what	if	name	is	one	word	to	the	right?		

Convolution

56

vector	for	lastvector	for	yo vector	for	name

=	“feature	map”,	has	an	entry	for	each	word	position	 in	context	window	/	sentence

Pooling

57

vector	for	lastvector	for	yo vector	for	name

=	“feature	map”,	has	an	entry	for	each	word	position	 in	context	window	/	sentence

how	do	we	convert	this	into	a	fixed-length	vector?
use	pooling:

max-pooling:	returns	maximum	value	in	
average pooling:	returns	average	of	values	in	

Pooling

58

vector	for	lastvector	for	yo vector	for	name

=	“feature	map”,	has	an	entry	for	each	word	position	 in	context	window	/	sentence

how	do	we	convert	this	into	a	fixed-length	vector?
use	pooling:

max-pooling:	returns	maximum	value	in	
average pooling:	returns	average	of	values	in	

then,	this	single	filter							produces	a	single	feature	
value	(the	output	of	some	kind	of	pooling).
in	practice,	we	use	many	filters	of	many	different	
lengths	(e.g.,	n-grams	rather	than	words).	

Convolutional	Neural	Networks
• convolutional	neural	networks	(convnets or	CNNs)	use	
filters	that	are	“convolved	with”	(matched	against	all	
positions	of)	the	input

• think	of	convolution	as	“perform	the	same	operation	
everywhere	on	the	input	in	some	systematic	order”

• “convolutional	layer”	=	set	of	filters	that	are	convolved	
with	the	input	vector	(whether	x or	hidden	vector)

• could	be	followed	by	more	convolutional	layers,	or	by	a	
type	of	pooling

• often	used	in	NLP	to	convert	a	sentence	into	a	feature	
vector

59

Recurrent	Neural	Networks

60

“hidden	vector”

Long	Short-Term	Memory	(LSTM)	Recurrent	Neural	Networks

61

Backward	&	Bidirectional	LSTMs

62

bidirectional:	
if	shallow,	just	use	forward	and	backward	LSTMs	in	parallel,	concatenate	
final	two	hidden	vectors,	feed	to	softmax

Deep	LSTM
(2-layer)

63

layer	1

layer	2

Recursive	Neural	Networks	for	NLP
• first,	run	a	constituent	parser	on	the	sentence
• convert	the	constituent	tree	to	a	binary	tree	
(each	rewrite	has	exactly	two	children)

• construct	vector	for	sentence	recursively	at	each	
rewrite	(“split	point”):	

64

Learning

65

Cost	Functions
• cost	function:	scores	output	against	a	gold	standard

• should	reflect	the	evaluation	metric	for	your	task

• usual	conventions:
• for	classification,	what	cost	should	we	use?
• for	classification,	what	cost	should	we	use?

66

Empirical Risk	Minimization
(Vapnik et	al.)

67

• replace	expectation	with	sum	over	examples:

Empirical Risk	Minimization
(Vapnik et	al.)

68

• replace	expectation	with	sum	over	examples:

problem:	NP-hard	even	for	binary	
classification	with	linear	models

Empirical	Risk	Minimization	with	Surrogate	Loss	Functions

69

• given	training	data:																																
where	each is	a	label

• we	want	to	solve	the	following:

many	possible	loss	
functions	to	consider	

optimizing

Loss	Functions

70

name loss where	used

cost	(“0-1”)
intractable,	but	

underlies	“direct	error	
minimization”

perceptron perceptron	algorithm
(Rosenblatt,	1958)

hinge
support	vector	

machines,	other	 large-
margin	algorithms

log

logistic	regression,	
conditional	 random	
fields,	maximum
entropy	models

(Sub)gradients	of	Losses	for	Linear	Models

71

name entry	j of	(sub)gradient	of	loss for	linear	model

cost	(“0-1”) not	subdifferentiable in	general

perceptron

hinge

log

(Sub)gradients	of	Losses	for	Linear	Models

72

name entry	j of	(sub)gradient	of	loss for	linear	model

cost	(“0-1”) not	subdifferentiable in	general

perceptron

hinge

log

expectation	of	feature	value	with	respect	to	distribution	
over	y (where	distribution	 is	defined	by	theta)

alternative	notation:

Visualization

73

sc
or
e

five	possible	outputs

Visualization

74

co
st

five	possible	outputs

Visualization

75

co
st

gold	standard

Visualization

76

co
st

gold	standard

Visualization

77

sc
or
e	
+	
co
st

gold	standard

78

perceptron	loss:

79

sc
or
e

gold	standard

perceptron	loss:

80

sc
or
e

gold	standard

perceptron	loss:

81

sc
or
e

gold	standard

perceptron	loss:

effect	of	learning?

82

sc
or
e

gold	standard

perceptron	loss:

effect	of	learning:
gold	standard	will	
have	highest	score

83

hinge	loss:

84

sc
or
e	
+	
co
st

gold	standard

hinge	loss:

85

sc
or
e	
+	
co
st

gold	standard

hinge	loss:

86

sc
or
e	
+	
co
st

gold	standard

hinge	loss:

effect	of	learning?

87

sc
or
e	
+	
co
st

gold	standard

hinge	loss:

effect	of	learning:
score	of	gold	standard	
will	be	higher	than	
score+costof	all	

others

Regularized Empirical	Risk	Minimization

88

• given	training	data:																																
where	each is	a	label

• we	want	to	solve	the	following:

regularization	
term

regularization	
strength

Regularization	Terms

• most	common:	penalize	large	parameter	values
• intuition:	large	parameters	might	be	instances	of	
overfitting

• examples:
L2 regularization:
(also	called	Tikhonov regularization	
or	ridge	regression)

L1 regularization:
(also	called	basis	pursuit	or	LASSO)

89

Dropout
• popular	regularization	method	for	neural	
networks

• randomly	“drop	out”	(set	to	zero)	some	of	the	
vector	entries	in	the	layers

90

Inference

91

Exponentially-Large	Search	Problems

92

inference:	solve														_

• when	output	is	a	sequence	or	tree,	this	
argmax requires	iterating	over	an	
exponentially-large	set

Learning	requires	solving	exponentially-hard	
problems	too!

93

loss entry	j of	(sub)gradient	of	loss for	linear	model

perceptron

hinge

log

computing	 each	of	 these	terms	
requires	iterating	through	every	

possible	output

Dynamic	Programming	(DP)
• what	is	dynamic	programming?
– a	family	of	algorithms	that	break	problems	into	smaller	
pieces	and	reuse	solutions	for	those	pieces

– only	applicable	when	the	problem	has	certain	properties	
(optimal	substructure	and	overlapping	sub-problems)

• in	this	class,	we	use	DP	to	iterate	over	exponentially-
large	output	spaces	in	polynomial	time

• we	focus	on	a	particular	type	of	DP	algorithm:	
memoization

94

Implementing	DP	algorithms
• even	if	your	goal	is	to	compute	a	sum	or	a	
max,	focus	first	on	counting	mode (count	the	
number	of	unique	outputs	for	an	input)

• memoization =	recursion	+	saving/reusing	
solutions
– start	by	defining	recursive	equations
– “memoize”	by	creating	a	table	to	store	all	
intermediate	results	from	recursive	equations,	use	
them	when	requested

95

Inference	in	HMMs

96

• since	the	output	is	a	sequence,	this	argmax
requires	iterating	over	an	exponentially-large	set

• last	week	we	talked	about	using	dynamic	
programming	(DP)	to	solve	these	problems

• for	HMMs	(and	other	sequence	models),	the	for	
solving	this	is	called	the	Viterbi	algorithm

Viterbi	Algorithm
• recursive	equations	+	memoization:

97

base	case:	
returns	probability	of	sequence	starting	with	label	y for	first	word

recursive	case:
computes	probability	of	max-probability	label	
sequence	that	ends	with	label	y at	position	m

final	value	is	in:

Viterbi	Algorithm
• space	and	time	complexity?
• can	be	read	off	from	the	recursive	equations:

98

space	complexity:
size	of	memoization table,	which	is	#	of	unique	indices	of	recursive	equations

so,	space	complexity	is	O(|x|	|L|)

length	of	
sentence

number	
of	labels*

Viterbi	Algorithm
• space	and	time	complexity?
• can	be	read	off	from	the	recursive	equations:

99

time	complexity:
size	of	memoization table	*	complexity	of	computing	each	entry

so,	time	complexity	is	O(|x|	|L|	|L|)	=	O(|x|	|L|2)	

length	of	
sentence

number	
of	labels*

each	entry	requires	
iterating	through	the	labels*

Feature	Locality

• feature	locality:	how	“big”	are	your	features?
• when	designing	efficient	inference	algorithms	
(whether	w/	DP	or	other	methods),	we	need	
to	be	mindful	of	this

• features	can	be	arbitrarily	big	in	terms	of	the	
input,	but	not	in	terms	of	the	output!

• the	features	in	HMMs	are	small	in	both	the	
input	and	output	sequences	(only	two	pieces	
at	a	time)

100

