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Announcement
• project	proposal	due	today
• email	me	to	set	up	a	15-minute	meeting	next	
week	to	discuss	your	project	proposal

• times	posted	on	course	webpage
• let	me	know	if	none	of	those	work	for	you
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Announcement
• midterm	is	Thursday,	room	#530
• closed-book,	but	you	can	bring	an	8.5x11	
sheet	(though	I	don’t	think	you’ll	need	to)

• we	will	start	at	10:35	am,	finish	at	11:50	am
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Roadmap
• classification
• words
• lexical	semantics
• language	modeling
• sequence	labeling
• neural	network	methods	in	NLP
• syntax	and	syntactic	parsing
• semantic	compositionality
• semantic	parsing
• unsupervised	learning
• machine	translation	and	other	applications
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What	is	Syntax?
• rules,	principles,	processes	that	govern	
sentence	structure	of	a	language

• can	differ	widely	among	languages
• but	every	language	has	systematic	structural	
principles
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Constituent	Parse	(Bracketing/Tree)
(S	(NP	the	man)	(VP	walked	(PP	to	(NP	the	park))))
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the	man	walked	to	the	park

S

NP

NP

VP

PP

Key:
S	=	sentence
NP	=	noun	phrase
VP	=	verb	phrase
PP	=	prepositional	phrase
DT	=	determiner
NN	=	noun
VBD	=	verb	(past	tense)
IN	=	preposition

DT NN VBD						IN				DT				NN



Constituent	Parse	(Bracketing/Tree)
(S	(NP	the	man)	(VP	walked	(PP	to	(NP	the	park))))
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the	man	walked	to	the	park

S

NP

NP

VP

PP

DT NN VBD						IN				DT				NN preterminals

nonterminals

terminals



Penn	Treebank	Nonterminals
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Probabilistic	Context-Free	Grammar	(PCFG)

• assign	probabilities	to	rewrite	rules:
NP	à DT		NN 0.5
NP	à NNS 0.3
NP	à NP		PP 0.2

NN	àman 0.01
NN	à park 0.0004
NN	àwalk 0.002
NN	à….
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given	a	treebank,	estimate	
these	probabilities	using	MLE	
(“count	and	normalize”)



How	well	does	a	PCFG	work?
• PCFG	learned	from	the	Penn	Treebank	with	
MLE	gets	about	73%	F1	score

• state-of-the-art	parsers	are	around	92%
• simple	modifications	can	improve	PCFGs:
– smoothing
– tree	transformations	(selective	flattening)
– parent	annotation
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Parent	Annotation
VP	à V		NP		PP

VPS à V		NPVP PPVP

adds	more	information,	but	also	fragments	
counts,	making	parameter	estimates	noisier	
(since	we’re	just	using	MLE)
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How	well	does	a	PCFG	work?
• PCFG	learned	from	the	Penn	Treebank	with	
MLE	gets	about	73%	F1	score

• state-of-the-art	parsers	are	around	92%
• simple	modifications	can	improve	PCFGs:
– smoothing
– tree	transformations	(selective	flattening)
– parent	annotation
– lexicalization
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Collins	(1997)
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Lexicalized	PCFGs
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nonterminals are	decorated	with	
the	headword	of	the	subtree



Lexicalization
• this	adds	a	lot	more	rules!
• many	more	parameters	to	estimate	à
smoothing	becomes	much	more	important
– e.g.,	right-hand	side	of	rule	might	be	factored	into	
several	steps

• but	it’s	worth	it	because	head	words	are	really	
useful	for	constituent	parsing
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Results	(Collins,	1997)
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Head	Rules
• how	are	heads	decided?
• most	researchers	use	deterministic	head	rules	
(Magerman/Collins)

• for	a	PCFG	rule	A	à B1 …	BN,	these	head	rules	
say	which	of	B1 …	BN	is	the	head	of	the	rule

• examples:
S	à NP		VP
VP	à VBD NP		PP
NP	à DT		JJ		NN
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Head	Annotation

18from	Noah	Smith



Lexical	Head	Annotation

19from	Noah	Smith



Lexical	Head	Annotation	à Dependencies
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remove	
nonlexical
parts:

from	Noah	Smith



Dependencies
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merge	
redundant	
nodes:

from	Noah	Smith
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constituent	parse: dependency	parse:
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constituent	parse: labeled dependency	parse:

nsubj

det

dobj

pobj

det

prep

nsubj =	“nominal	subject”
dobj =	“direct	object”
prep	=	“preposition	modifier”
pobj =	“object	of	preposition”
det =	“determiner”
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constituent	parse: labeled dependency	parse:

nsubj

det

dobj

pobj

det

prep

nsubj =	“nominal	subject”
dobj =	“direct	object”
prep	=	“preposition	modifier”
pobj =	“object	of	preposition”
det =	“determiner”

captures	some	semantic	
relationships



• how	(unlabeled)	dependency	trees	are	
typically	drawn:
– root	of	tree	is	represented	by	$	(“wall	symbol”)
– arrows	drawn	entirely	above	(or	below)	sentence
– arrows	are	directed	from	child	to	parent	(or	from	
parent	to	child);	you	will	see	both	in	practice—
don’t	get	confused!
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source:          $  konnten  sie  es  übersetzen  ?

reference:     $  could  you  translate  it  ?
“wall”	symbol



Crossing	Dependencies
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if	dependencies	cross	
(“nonprojective”),	no	
longer	corresponds	to	

a	PCFG

from	Noah	Smith



Projective	vs.	Nonprojective Dependency	Parsing

• English	dependency	treebanks are	mostly	
projective
– but	when	focusing	more	on	semantic	
relationships,	often	becomes	more	nonprojective

• some	(relatively)	free	word	order	languages,	
like	Czech,	are	fairly	nonprojective

• nonprojective parsing	can	be	formulated	as	a	
minimum	spanning	tree	problem

• projective	parsing	cannot
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Dependency	Parsing
• several	widely-used	algorithms
• different	guarantees	but	similar	performance	
in	practice

• graph-based:
– dynamic	programming	(Eisner,	1997)
– minimum	spanning	tree	(McDonald	et	al.,	2005)

• transition-based:
– shift-reduce	(Nivre,	inter	alia)
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Dependency	Parsers
• Stanford	parser
• TurboParser
• Joakim Nivre’s MALT	parser
• Ryan	McDonald’s	MST	parser
• and	many	others	for	many	non-English	
languages
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Complexity	Comparison
• constituent	parsing:	O(Gn3)
– parsing	complexity	depends	on	grammar	structure	
(“grammar	constant”	G)

– since	it	has	lots	of	nonterminal-only	rules	at	the	top	of	
the	tree,	there	are	many	rule	probabilities	to	estimate

• dependency	parsing:	O(n3)
– operates	directly	on	words,	so	parsing	complexity	has	
no	grammar	constant

– features	designed	on	possible	dependencies	(pairs	of	
words)	and	larger	structures

– transition-based	parsing	algorithms	are	O(n),	though	
not	optimal;	also,	non-projective	parsing	is	faster
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Applications	of	Dependency	Parsing
• widely	used	for	NLP	tasks	because:
– faster	than	constituent	parsing
– captures	more	semantic	information

• text	classification	(features	on	dependencies)
• syntax-based	machine	translation
• relation	extraction
– e.g.,	extract	relation	between	Sam	Smith	and	AITech:
Sam	Smith	was	named	new	CEO	of	AITech.
– use	dependency	path	between	Sam	Smith	and	AITech:

• Smith	à named,	named	ß CEO,	CEO	ß of,	of	ß AITech
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Summary:	two	types	of	grammars
• phrase	structure	/	constituent	grammars
– inspired	mostly	by	Chomsky	and	others
– only	appropriate	for	certain	languages	(e.g.,	English)

• dependency	grammars	
– closer	to	a	semantic	representation;	some	have	made	
this	more	explicit

– problematic	for	certain	syntactic	structures	(e.g.,	
conjunctions,	nesting	of	noun	phrases,	etc.)

• both	are	widely	used	in	NLP
• you	can	find	constituent	parsers	and	dependency	
parsers	for	several	languages	online
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Review
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Modeling,	Inference,	Learning

• Modeling:	How	do	we	assign	a	score	to	an	
(x,y)	pair	using	parameters				?

modeling:	define		score	function
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Modeling,	Inference,	Learning

• Inference:	How	do	we	efficiently	search	over	
the	space	of	all	labels?

inference:	solve														_ modeling:	define		score	function
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Modeling,	Inference,	Learning

• Learning:	How	do	we	choose				?

learning:	choose	_

modeling:	define		score	functioninference:	solve														_
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Applications
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Applications	of	our	Classification	Framework

38

text	classification:

x y

the	hulk	 is	an	anger	fueled	monster	with	
incredible	strength	and	resistance	to	damage	. objective

in	trying	to	be	daring	and	original	,	it	comes	off	
as	only	occasionally	satirical	and	never	fresh	. subjective

=	{objective,	subjective}



Applications	of	our	Classification	Framework
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word	sense	classifier	for	bass:

x y

he’s	a	bass	in	the	choir	. bass3

our bass	is	line-caught	from	the	
Atlantic	. bass4

=	{bass1,	bass2,	…,	bass8}



Applications	of	our	Classification	Framework
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skip-gram	model	as	a	classifier:

x y

agriculture <s>

agriculture is

agriculture the

=	V (the	entire	vocabulary)

corpus	(English	Wikipedia):
agriculture	 is	the	traditional	mainstay	of	the	
cambodian economy	.
but	benares has	been	destroyed	by	an	earthquake	 .
…



determiner					verb	(past)						prep.			proper					proper			poss.					adj.													noun

modal							verb				det.									adjective									noun				prep.						proper					punc.

41

Part-of-Speech	Tagging

determiner					verb	(past)						prep.				noun								noun					poss.					adj.												noun
Some						questioned						if							Tim						Cook						’s						first						product	

modal							verb				det.									adjective									noun				prep.							noun						punc.
would						be						a						breakaway						hit						for						Apple								.

Simplest	kind	of	structured	prediction:	Sequence	Labeling
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O																				O														O					B-PERSON			I-PERSON						O										O																	O
Some			questioned			if									Tim										Cook							’s						first						product	

O														O									O																	O																	O								O					B-ORGANIZATION						O
would						be						a						breakaway				hit				for												Apple														.

Named	Entity	Recognition

B	=	“begin”
I	=	“inside”
O	=	“outside”

Formulating	segmentation	tasks	as	sequence	labeling	
via	B-I-O	labeling:



Applications	of	our	Classifier	Framework	so	far
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task input	(x) output	(y) output	space	(					) size	of

text	
classification a	sentence gold	standard	

label for	x

pre-defined,	 small	
label	set (e.g.,	

{positive,	negative})
2-10

word	sense	
disambiguation

instance	of	a	
particular	word	
(e.g.,	bass)	with

its	context

gold	standard	
word	sense	of	x

pre-defined	sense	
inventory	 from	

WordNet for	bass
2-30

learning skip-
gram	word	
embeddings

instance	of	a	
word	in	a	corpus

a	word	in	the	
context	of	x in	

a	corpus
vocabulary |V|

part-of-speech	
tagging a	sentence

gold	standard	
part-of-speech	

tags	for	x

all	possible	part-of-
speech tag	sequences	
with	same	length	as	x

|P||x|



Applications	of	Classifier	Framework	(continued)
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task input	(x) output	(y) output	space	(					) size	of

named	
entity	

recognition
a	sentence

gold	standard	named	
entity	labels for	x	

(BIO	tags)

all	possible	BIO	label	
sequences	with	same	

length	as	x
|P||x|

constituent	
parsing a	sentence

gold	standard	
constituent	parse	
(labeled	bracketing)	

of	x

all possible	 labeled	
bracketings of	x

exponential
in	length	of	x
(Catalan	
number)

dependency	
parsing a	sentence

gold	standard	
dependency	parse	
(labeled	directed	
spanning	 tree)	of	x

all	possible	 labeled	
directed	spanning	 trees	

of	x

exponential
in	length	of	x



• each	application	draws	from	particular	
linguistic	concepts	and	must	address	different	
kinds	of	linguistic	ambiguity/variability:
– word	sense:	sense	granularity,	relationships	
among	senses,	word	sense	ambiguity

– word	vectors:	distributional	properties,	sense	
ambiguity,	different	kinds	of	similarity

– part-of-speech:	tag	granularity,	tag	ambiguity
– parsing:	constituent/dependency	relationships,	
attachment	&	coordination	ambiguities
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Modeling
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model	families
• linear	models
– lots	of	freedom	in	defining	features,	though	feature	
engineering	required	for	best	performance

– learning	uses	optimization	of	a	loss	function
– one	can	(try	to)	interpret	learned	feature	weights

• stochastic/generative	models
– linear	models	with	simple	“features”	(counts	of	events)
– learning	is	easy:	count	&	normalize	(but	smoothing	needed)
– easy	to	generate	samples

• neural	networks
– can	usually	get	away	with	less	feature	engineering
– learning	uses	optimization	of	a	loss	function
– hard	to	interpret	(though	we	try!),	but	often	works	best
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special	case	of	linear	models:	
stochastic/generative	models
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model tasks context	expansion

n-gram	language models language	modeling	 (for	
MT,	ASR,	etc.) increase	n

hidden	Markov	models
part-of-speech	tagging,	

named	entity	recognition,
word	clustering

increase	order	of	HMM	(e.g.,	bigram	
HMM	à trigram HMM)

probabilistic	 context-free	
grammars constituent	parsing increase	size	of	rules,	e.g.,	flattening,	

parent	annotation,	etc.

• all	use	MLE	+	smoothing	(though	probably	different	kinds	of	smoothing)
• all	assign	probability	to	sentences	(some	assign	probability	jointly	to	pairs	

of	<sentence,	something	else>)
• all	have	the	same	trade-off	of	increasing	“context”	(feature	size)	and	

needing	more	data	/	better	smoothing



Feature	Engineering	for	Text	Classification

• Two	features:

where

• What	should	the	weights	be?
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unigram	binary	template:

bigram	binary	template:

trigram	binary	features
…

50

Higher-Order	Binary	Feature	Templates



Unigram	Count	Features

• a	``count’’	feature	returns	the	count	of	a	
particular	word	in	the	text

• unigram	count	feature	template:
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Feature	Count	Cutoffs
• problem:	some	features	are	extremely	rare
• solution:	only	keep	features	that	appear	at	
least	k times	in	the	training	data
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2-transformation	(1-layer)	network

• we’ll	call	this	a	“2-transformation”	neural	
network,	or	a	“1-layer”	neural	network

• input	vector	is	
• score	vector	is
• one	hidden	vector											(“hidden	layer”)

53

vector	of	label	scores



1-layer	neural	network	for	sentiment	classification
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ikr smh he		asked		fir		yo last		name		so		he		can

55

intj pronoun	 																					prep																	adj prep	 															verb	
other																					verb																					det noun	 														pronoun	

Neural	Networks	for	Twitter	Part-of-Speech	Tagging

vector	for	lastvector	for	yo

• let’s	use	the	center	word	+	two	words	to	the	right:

vector	for	name

• if	name is	to	the	right	of	yo,	then	yo is	probably	a	form	of	your
• but	our	x above	uses	separate	dimensions	for	each	position!

– i.e.,	name	is	two	words	to	the	right
– what	if	name	is	one	word	to	the	right?		



Convolution

56

vector	for	lastvector	for	yo vector	for	name

=	“feature	map”,	has	an	entry	for	each	word	position	 in	context	window	/	sentence



Pooling
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vector	for	lastvector	for	yo vector	for	name

=	“feature	map”,	has	an	entry	for	each	word	position	 in	context	window	/	sentence

how	do	we	convert	this	into	a	fixed-length	vector?
use	pooling:

max-pooling:	returns	maximum	value	in	
average pooling:	returns	average	of	values	in	



Pooling
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vector	for	lastvector	for	yo vector	for	name

=	“feature	map”,	has	an	entry	for	each	word	position	 in	context	window	/	sentence

how	do	we	convert	this	into	a	fixed-length	vector?
use	pooling:

max-pooling:	returns	maximum	value	in	
average pooling:	returns	average	of	values	in	

then,	this	single	filter							produces	a	single	feature	
value	(the	output	of	some	kind	of	pooling).
in	practice,	we	use	many	filters	of	many	different	
lengths	(e.g.,	n-grams	rather	than	words).	



Convolutional	Neural	Networks
• convolutional	neural	networks	(convnets or	CNNs)	use	
filters	that	are	“convolved	with”	(matched	against	all	
positions	of)	the	input

• think	of	convolution	as	“perform	the	same	operation	
everywhere	on	the	input	in	some	systematic	order”

• “convolutional	layer”	=	set	of	filters	that	are	convolved	
with	the	input	vector	(whether	x or	hidden	vector)

• could	be	followed	by	more	convolutional	layers,	or	by	a	
type	of	pooling

• often	used	in	NLP	to	convert	a	sentence	into	a	feature	
vector
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Recurrent	Neural	Networks
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“hidden	vector”



Long	Short-Term	Memory	(LSTM)	Recurrent	Neural	Networks
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Backward	&	Bidirectional	LSTMs

62

bidirectional:	
if	shallow,	just	use	forward	and	backward	LSTMs	in	parallel,	concatenate	
final	two	hidden	vectors,	feed	to	softmax



Deep	LSTM
(2-layer)
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layer	1

layer	2



Recursive	Neural	Networks	for	NLP
• first,	run	a	constituent	parser	on	the	sentence
• convert	the	constituent	tree	to	a	binary	tree	
(each	rewrite	has	exactly	two	children)

• construct	vector	for	sentence	recursively	at	each	
rewrite	(“split	point”):	
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Learning

65



Cost	Functions
• cost	function:	scores	output	against	a	gold	standard

• should	reflect	the	evaluation	metric	for	your	task

• usual	conventions:
• for	classification,	what	cost	should	we	use?
• for	classification,	what	cost	should	we	use?
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Empirical Risk	Minimization
(Vapnik et	al.)
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• replace	expectation	with	sum	over	examples:



Empirical Risk	Minimization
(Vapnik et	al.)

68

• replace	expectation	with	sum	over	examples:

problem:	NP-hard	even	for	binary	
classification	with	linear	models



Empirical	Risk	Minimization	with	Surrogate	Loss	Functions
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• given	training	data:																																
where	each is	a	label

• we	want	to	solve	the	following:

many	possible	loss	
functions	to	consider	

optimizing



Loss	Functions
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name loss where	used

cost	(“0-1”)
intractable,	but	

underlies	“direct	error	
minimization”

perceptron perceptron	algorithm
(Rosenblatt,	1958)

hinge
support	vector	

machines,	other	 large-
margin	algorithms

log

logistic	regression,	
conditional	 random	
fields,	maximum
entropy	models



(Sub)gradients	of	Losses	for	Linear	Models
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name entry	j of	(sub)gradient	of	loss for	linear	model

cost	(“0-1”) not	subdifferentiable in	general

perceptron

hinge

log



(Sub)gradients	of	Losses	for	Linear	Models
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name entry	j of	(sub)gradient	of	loss for	linear	model

cost	(“0-1”) not	subdifferentiable in	general

perceptron

hinge

log

expectation	of	feature	value	with	respect	to	distribution	
over	y (where	distribution	 is	defined	by	theta)

alternative	notation:



Visualization
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sc
or
e

five	possible	outputs



Visualization
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co
st

five	possible	outputs



Visualization
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co
st

gold	standard



Visualization
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co
st

gold	standard



Visualization
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sc
or
e	
+	
co
st

gold	standard
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perceptron	loss:
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sc
or
e

gold	standard

perceptron	loss:
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sc
or
e

gold	standard

perceptron	loss:
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sc
or
e

gold	standard

perceptron	loss:

effect	of	learning?
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sc
or
e

gold	standard

perceptron	loss:

effect	of	learning:
gold	standard	will	
have	highest	score
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hinge	loss:
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sc
or
e	
+	
co
st

gold	standard

hinge	loss:
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sc
or
e	
+	
co
st

gold	standard

hinge	loss:



86

sc
or
e	
+	
co
st

gold	standard

hinge	loss:

effect	of	learning?
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sc
or
e	
+	
co
st

gold	standard

hinge	loss:

effect	of	learning:
score	of	gold	standard	
will	be	higher	than	
score+costof	all	

others



Regularized Empirical	Risk	Minimization

88

• given	training	data:																																
where	each is	a	label

• we	want	to	solve	the	following:

regularization	
term

regularization	
strength



Regularization	Terms

• most	common:	penalize	large	parameter	values
• intuition:	large	parameters	might	be	instances	of	
overfitting

• examples:
L2 regularization:
(also	called	Tikhonov regularization	
or	ridge	regression)

L1 regularization:
(also	called	basis	pursuit	or	LASSO)
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Dropout
• popular	regularization	method	for	neural	
networks

• randomly	“drop	out”	(set	to	zero)	some	of	the	
vector	entries	in	the	layers
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Inference

91



Exponentially-Large	Search	Problems
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inference:	solve														_

• when	output	is	a	sequence	or	tree,	this	
argmax requires	iterating	over	an	
exponentially-large	set



Learning	requires	solving	exponentially-hard	
problems	too!

93

loss entry	j of	(sub)gradient	of	loss for	linear	model

perceptron

hinge

log

computing	 each	of	 these	terms	
requires	iterating	through	every	

possible	output



Dynamic	Programming	(DP)
• what	is	dynamic	programming?
– a	family	of	algorithms	that	break	problems	into	smaller	
pieces	and	reuse	solutions	for	those	pieces

– only	applicable	when	the	problem	has	certain	properties	
(optimal	substructure	and	overlapping	sub-problems)

• in	this	class,	we	use	DP	to	iterate	over	exponentially-
large	output	spaces	in	polynomial	time

• we	focus	on	a	particular	type	of	DP	algorithm:	
memoization

94



Implementing	DP	algorithms
• even	if	your	goal	is	to	compute	a	sum	or	a	
max,	focus	first	on	counting	mode (count	the	
number	of	unique	outputs	for	an	input)

• memoization =	recursion	+	saving/reusing	
solutions
– start	by	defining	recursive	equations
– “memoize”	by	creating	a	table	to	store	all	
intermediate	results	from	recursive	equations,	use	
them	when	requested
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Inference	in	HMMs

96

• since	the	output	is	a	sequence,	this	argmax
requires	iterating	over	an	exponentially-large	set

• last	week	we	talked	about	using	dynamic	
programming	(DP)	to	solve	these	problems

• for	HMMs	(and	other	sequence	models),	the	for	
solving	this	is	called	the	Viterbi	algorithm



Viterbi	Algorithm
• recursive	equations	+	memoization:
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base	case:	
returns	probability	of	sequence	starting	with	label	y for	first	word

recursive	case:
computes	probability	of	max-probability	label	
sequence	that	ends	with	label	y at	position	m

final	value	is	in:



Viterbi	Algorithm
• space	and	time	complexity?
• can	be	read	off	from	the	recursive	equations:
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space	complexity:
size	of	memoization table,	which	is	#	of	unique	indices	of	recursive	equations

so,	space	complexity	is	O(|x|	|L|)

length	of	
sentence

number	
of	labels*



Viterbi	Algorithm
• space	and	time	complexity?
• can	be	read	off	from	the	recursive	equations:
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time	complexity:
size	of	memoization table	*	complexity	of	computing	each	entry

so,	time	complexity	is	O(|x|	|L|	|L|)	=	O(|x|	|L|2)	

length	of	
sentence

number	
of	labels*

each	entry	requires	
iterating	through	the	labels*



Feature	Locality

• feature	locality:	how	“big”	are	your	features?
• when	designing	efficient	inference	algorithms	
(whether	w/	DP	or	other	methods),	we	need	
to	be	mindful	of	this

• features	can	be	arbitrarily	big	in	terms	of	the	
input,	but	not	in	terms	of	the	output!

• the	features	in	HMMs	are	small	in	both	the	
input	and	output	sequences	(only	two	pieces	
at	a	time)
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