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Announcements

* if you haven’t emailed me to set up a 15-
minute meeting to discuss your project
proposal, please do so
— times posted on course webpage
— let me know if none of those work for you

* Assignment 3 due Feb 29

 email me to sign up for your (10-minute) class
presentationon 3/3 or 3/8



Roadmap

classification

words

lexical semantics

language modeling

sequence labeling

neural network methods in NLP
syntax and syntactic parsing
semantic compositionality
semantic parsing

unsupervised learning

machine translation and other applications



Roadmap

classification

words

lexical semantics

language modeling

sequence labeling

neural network methods in NLP
syntax and syntactic parsing
computational semantics (today)

— compositionality
— semanticparsing

machine translation (Thursday)
other NLP applications (next Tuesday)



Compositional Semantics

“how should the meanings of words combine
to create the meaning of something larger?”

there’s currently a lot of work in producing

vector representations of sentences and
documents

simplest case: how should two word vectors
be combined to create a vector for a bigram?

explosion of work in this area in the neural
network era, but earlier work began ~2007



Evaluating Compositional Semantics

e compute similarity of two bigrams under your
model, then compute correlation with human
judgments:

BigramSim
television programme tv set 5.8
training programme education course 5.7
bedroom window education officer 1.3

(Mitchell and Lapata, 2010)
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Abstract

Vector-based models of word meaning have become increasingly popular in cognitive science.
The appeal of these models lies in their ability to represent meaning simply by using distributional
information under the assumption that words occurring within similar contexts are semantically simi-
lar. Despite their widespread use, vector-based models are typically directed at representing words in
isolation, and methods for constructing representations for phrases or sentences have received little
attention in the literature. This is in marked contrast to experimental evidence (e.g., in sentential
priming) suggesting that semantic similarity is more complex than simply a relation between 1solated
words. This article proposes a framework for representing the meaning of word combinations in vec-
tor space. Central to our approach is vector composition, which we operationalize in terms of addi-
tive and multiplicative functions. Under this framework, we introduce a wide range of composition
models that we evaluate empirically on a phrase similarity task.




Bigram Composition Functions

J. Mitchell, M. Lapata/Cognitive Science 34 (2010)

Table 5

Composition functions considered in our experiments
Model Function
Additive pi = U; + v,

Kintsch pi = Uu; +v; + n;
Multiplicative pi = U;'v;

Tensor product pij = Ui vj

Circular convolution Pi = D Vi
Weighted additive pi = av; + Pu;
Dilation pi = vy i + (4 — Du;y iuv,
Head only pi = Vi

Target unit pi = vi(tit2)




Bigram Similarity Results

J. Mitchell, M. Lapata/Cognitive Science 34 (2010)

Table 6

Correlation coefficients of model predictions with subject similarity ratings

(Spearman’s p) using a simple semantic space

Model Adjective—Noun Noun—Noun Verb—Object
Additive .36 .39 .30
Kintsch 32 22 29
Multiplicative 46 49 37
Tensor product 41 .36 33
Convolution .09 .05 10
Weighted additive A 41 34
Dilation g 41 38
Target unit 43 34 29
Head only 43 17 24
Humans 52 49 S5




Why does multiplication work?

 these vectors are built from co-occurrence
counts (like in the first part of Assignment 2)

* so element-wise multiplication is like

performing an AND operation on context
counts

* when using skip-gram word vectors (or other
neural network-derived vectors), addition
often works better



A Comparison of Vector-based Representations for Semantic Composition

William Blacoe and Mirella Lapata
Institute for Language, Cognition and Computation
School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB
w.b.blacoe@sms.ed.ac.uk, mlap@inf.ed.ac.uk

Abstract

In this paper we address the problem of
modeling compositional meaning for phrases
and sentences using distributional methods.
We experiment with several possible com-
binations of representation and composition,
exhibiting varying degrees of sophistication.
Some are shallow while others operate over
syntactic structure, rely on parameter learn-
ing, or require access to very large corpora.
We find that shallow approaches are as good
as more computationally intensive alternatives
with regards to two particular tests: (1) phrase
similarity and (2) paraphrase detection. The
sizes of the involved training corpora and the

word sense discrimination (Schiitze, 1998), lan-
guage modeling (Bellegarda, 2000), and the iden-
tification of analogical relations (Turney, 2006).

While much research has been directed at the
most effective ways of constructing representations
for individual words, there has been far less con-
sensus regarding the representation of larger con-
structions such as phrases and sentences. The prob-
lem has received some attention in the connection-
ist literature, particularly in response to criticisms of
the ability of connectionist representations to handle
complex structures (Smolensky, 1990; Plate, 1995).
More recently, several proposals have been put for-
ward for computing the meaning of word combina-
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Results

dim. | cm. || Ad]-N_LN-N_| V-Obyj
sps | 2000 | + @ 037 K
ey | 2000 | © N 048

100 | RAE
NLM gg
(BNO) 100

Table 3: Correlation coefficients of model predictions
with subject similarity ratings (Spearman’s p); columns
show dimensionality: fixed or varying (see Section 2.1),
composition method: + is additive vector composition,
® 1s component-wise multiplicative vector composition,
RAE is Socher et al. (2011a)’s recursive auto-encoder.

SDS = simple
) distributional
semantic

NLM = neural
language model
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: BigramSim
Blgrams (Mitchell and Lapata, 2010)
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: BigramSim
Blgrams (Mitchell and Lapata, 2010)

BigramSim
television programme tv set 5.8
training programme education course 5.7
bedroom window education officer 1.3

14



: BigramSim BigramPara
Blgrams (Mitchell and Lapata, 2010) (Wietinget al., 2015)

BigramSim | BigramPara

television programme tv set 5.8 1.0

training programme education course 5.7 5.0

bedroom window education officer 1.3 1.0

15




m PhrasePara

can not be separated from isinseparable from 5.0
hoped to be ableto looked forward to 3.4
come on, thinkaboutit people, please 2.2
how do you mean that what worst feelings 1.6

Phrases PhrasePara
(Wietinget al., 2015)
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Training Data: Paraphrase Database
(Ganitkevitch, Van Durme, and Callison-Burch, 2013)

, ebenso auch ...

/| /

,as have ...

journalisten wurden

[ /)

journalists have been

... harrassed and

||

. ausgesetzt und

,can not ...

from Ganitkevitch and Callison-Burch (2014)
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e currently thereis a lot of work on designing
functional architectures for bigram, phrase,

and sentence similarity
— e.g., word averaging, recurrent neural networks,
LSTMs, recursive neural networks, etc.

e our recent results find that, for sentence
similarity, word averaging is a surprisingly
strong baseline



TOWARDS UNIVERSAL
PARAPHRASTIC SENTENCE EMBEDDINGS

John Wieting Mohit Bansal Kevin Gimpel Karen Livescu
Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA
{jwieting, mbansal, kgimpel, klivescu}@ttic.edu

Model Pavlick et al. (2015)
(test)
PARAGRAM-PHRASE 60.0
iRNN 60.0
projection 58.4
DAN 60.1
RNN 60.3
LSTM (o.g.) 60.9
LSTM (no o.g.) 61.3
skip-thought 39.3
GloVe 44.8
PARAGRAM-SL999 55.3

on similar data to training data, LSTM does best
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word

averaging

l

adding layers
to word

averaging

/\

Dataset 50% | 75% | Max PP | iRNN | proj. | DAN | RNN | LSTM | LSTM ST | GloVe | PSL
(0.g.) | (noo.g.)
STS 2012 Average || 54.5 | 59.5 | 703 || 58.7 | 584 | 60.0 | 56.0 | 48.1 46.4 51.0 30.8 | 52.5 | 528
STS 2013 Average || 453 | 51.4 | 653 || 55.8 | 56.7 | 56.8 | 54.2 | 44.7 41.5 45.2 248 | 423 | 464
STS 2014 Average || 64.7 | 71.4 | 76.7 || 709 | 709 | 71.3 | 69.5 | 57.7 51.5 59.8 31.4 | 542 | 595
STS 2015 Average || 70.2 | 75.8 | 80.2 || 75.8 | 75.6 | 748 | 727 | 57.2 56.0 63.9 31.0 | 52.7 | 60.0
2014 SICK 714 |1 799 | 828 || 71.6 | 71.2 | 7.6 | 70.7 | 61.2 59.0 63.9 498 | 659 | 664
2015 Twitter 499 | 525 | 619 || 529 | 529 | 52.8 | 53.7 | 45.1 36.1 47.6 247 | 30.3 | 36.3

but when evaluating on other datasets,
word averaging models do best!

20




“You can’t cram the meaning of a whole
%&!$# sentence into a single $&!#* vector

'99

--Ray Mooney

“You can’t map all sentences into a cold, sterile space of
meaningless, uninterpretable dimensions.
Symbolic representations can encode meaning much more
efficiently.”

--my Interpretation

21



“You can’t cram the meaning of a whole
%&!$# sentence into a single $&!#* vector!”

--Ray Mooney

Why must we choose?

Neural architectures for text understanding
can combine discrete (symbolic)
and continuous representations

22



Syntax and Semantics

* syntax:rules, principles, processes that govern
sentence structure of a language

* semantics: what the sentence means

23



* we saw syntactic parsing, which produces a
syntactic structure of a sentence

— helps to disambiguate attachments,
coordinations, sometimes word sense
* now we’ll look at semantic parsing, which

roughly means “produce a semantic structure
of a sentence”



Several Kinds of Semantic Parsing

semantic role labeling (SRL)

frame-semantic parsing

“semantic parsing” (first-order logic)
abstract meaning representation (AMR)
dependency-based compositional semantics



Semantic Role Labeling

Who did what to whom at where!

| 11 1

The police officer detained the suspect at the scene of the crime

] |\ J | J

I Y 1 I
Agent Predicate Theme Location

J&M/SLP3



Can we figure out that these have the
same meaning?

XYZ corporation bought the stock.
They sold the stock to XYZ corporation.
ne stock was bought by XYZ corporation.

T
The purchase of the stock by XYZ corporation...
The stock purchase by XYZ corporation...

J&M/SLP3



A Shallow Semantic Representation:
Semantic Roles

Predicates (bought, sold, purchase) represent an event

semantic roles express the abstract role that
arguments of a predicate can take in the event

More specific More general

- -

buyer agent proto-agent

J&M/SLP3



Getting to semantic roles

Neo-Davidsonian event representation:

Je, x,y Breaking(e) N\ Breaker(e,Sasha)
ABrokenT hing(e,y) AWindow(y)

Je,x,y Opening(e) A Opener (e, Pat)
AOpenedThing(e,y) A Door(y)

Subjects of break and open: Breaker and Opener

Deep roles specific to each event (breaking,
opening)

Hard to reason about them for applications like QA

Sasha broke the window
Pat openedthe door

J&M/SLP3



Thematic roles

* Breaker and Opener have something in common!

— Volitional actors
— Often animate
— Direct causal responsibility for their events

 Thematic roles are a way to capture this semantic
commonality between Breakers and Eaters

— they are both AGENTS
* The BrokenThing and OpenedThing are THEMES.

— prototypically inanimate objects affected in some way
by the action

J&M/SLP3



A Typical Set of Thematic Roles

Thematic Role  Definition Example

AGENT The volitional causer of an event The waiter spilled the soup.

EXPERIENCER  The experiencer of an event John has a headache.

FORCE The non-volitional causer of the event The wind blows debris from the mall into our yards.
THEME The participant most directly affected by an event ~ Only after Benjamin Franklin broke the ice...

RESULT The end product of an event The city built a regulation-size baseball diamond...
CONTENT The proposition or content of a propositional event ~ Mona asked “You met Mary Ann at a supermarket?”
INSTRUMENT An instrument used in an event He poached catfish, stunning them with a shocking device...
BENEFICIARY The beneficiary of an event Whenever Ann Callahan makes hotel reservations for her boss
SOURCE The origin of the object of a transfer event I flew in from Boston.

GOAL The destination of an object of a transfer event I drove o Portland.

J&M/SLP3



Problems with Thematic Roles

Hard to create standard set of roles or formally
define them

Often roles need to be fragmented to be defined.

Levin and Rappaport Hovav (2015): two kinds of INSTRUMENTS
intermediary instruments that can appear as subjects
The cook opened the jar with the new gadget.
The new gadget opened the jar.
enabling instruments that cannot
Shelly ate the sliced banana with a fork.
*The fork ate the sliced banana.

J&M/SLP3



Alternatives to thematic roles

1. Fewer roles: generalized semantic roles, defined
as prototypes (Dowty 1991)

PROTO-AGENT
PROTO-PATIENT

PropBank

2. More roles: Define roles specific to a group of
predicates

FrameNet

J&M/SLP3



Semantic role labeling (SRL)

* The task of finding the semantic roles of each
argument of each predicate in a sentence.

* FrameNet versus PropBank:

[You] can’t [blame] [the program] [for being unable to 1dentify it]
COGNIZER TARGET EVALUEE REASON

[The San Francisco Examiner] 1ssued  [a special edition] [yesterday]
ARG( TARGET ARGI ARGM-TMP

J&M/SLP3



History

e semantic roles as a intermediate semantics, used

early in

— machine translation (Wilks, 1973)

— guestion-answering (Hendrix et al., 1973)

— spoken-language understanding (Nash-Webber, 1975)
— dialogue systems (Bobrow et al., 1977)

e early SRL systems

Simmons 1973, Marcus 1980:
e parser followed by hand-written rules for each verb
 dictionaries with verb-specific case frames (Levin 1977)

J&M/SLP3



Why Semantic Role Labeling?

* A useful shallow semantic representation
* Improves NLP tasks like:

— question answering

Shen and Lapata 2007, Surdeanu et al. 2011
— machine translation

Liu and Gildea 2010, Lo et al. 2013

J&M/SLP3



PropBank

 Palmer, Martha, Daniel Gildea, and Paul
Kingsbury. 2005. The Proposition Bank: An
Annotated Corpus of Semantic Roles.
Computational Linguistics, 31(1):71-106

J&M/SLP3



PropBank Roles

Following Dowty 1991

Proto-Agent

— Volitional involvement in event or state

— Sentience (and/or perception)

— Causesan event or change of statein another participant

— Movement (relative to position of another participant)
Proto-Patient

— Undergoes change of state

— Causally affected by another participant

— Stationaryrelative to movement of another participant

J&M/SLP3



PropBank Roles

Following Dowty 1991

— Role definitions determined verb by verb, with respect to the other
roles

— Semanticroles in PropBankare thus verb-sense specific.
Each verb sense has numbered argument: Arg0, Argl, Arg2,...
Arg0: PROTO-AGENT
Argl: PROTO-PATIENT
Arg2: usually: benefactive, instrument, attribute, or end state
Arg3: usually: start point, benefactive, instrument, or attribute

Argd the end point

(Arg2-Arg5 are not really that consistent, causes a problem for
labeling)

J&M/SLP3



PropBank Frame Files

agree.(1

Arg(0: Agreer

Argl: Proposition

Arg2: Other entity agreeing

Ex1:
Ex2:

Arg0 The group] agreed | Argl it wouldn’t make an offer].
 ArgM-TMP Usually] [ Arg0 John] agrees | Arg2 with Mary]

Arg] ON everything].

J&M/SLP3



Advantage of a ProbBank Labeling

increase.01 “go up incrementally”

Arg0:
Argl:
Arg?2:
Arg3:
Arg4.

causer of increase

thing increasing

amount increased by, EXT, or MNR
start point

end point

This would allow us to see the commonalitiesin these 3 sentences:

Arg0 Big Fruit Co. ] increased [ Argl the price of bananas].
Arg1 The price of bananas| was increased again [ 5rq0 by Big Fruit Co. ]
(Arg1 The price of bananas] increased [Arg 3%I.

J&M/SLP3



Modifiers or adjuncts of the predicate: Arg-M

ArgM-TMP
LOC
DIR
MNR
PRP/CAU
REC
ADV
PRD

when?

where?

where to/from?
how?

why?

miscellaneous
secondary predication

yesterday evening, now

at the museum, in San Francisco
down, to Bangkok

clearly, with much enthusiasm
because ... , in response to the ruling
themselves, each other

...ate the meat raw

J&M/SLP3



Capturing descriptions of the same
event by different nouns/verbs

[Arg1 The price of bananas]
[Arg1 The price of bananas]

There has been a [prgp S%]

increased [Argp S%I.
rose [ Argp Y%I.
rise [ Arg1 10 the price of bananas].

J&M/SLP3



FrameNet

 Baker et al. 1998, Fillmore et al. 2003, Fillmore
and Baker 2009, Ruppenhofer et al. 2006

* Roles in PropBank are specific to a verb

* Role in FrameNet are specific to a frame: a
background knowledge structure that defines a
set of frame-specific semantic roles, called
frame elements,

— includes a set of predicates that use these roles

— each word evokes a frame and profiles some aspect

of the frame
J&M/SLP3



“Change position on a scale” Frame

frame consists of words that indicate change of
ITEM’s position on a scale (the ATTRIBUTE) from
starting point (INITIAL VALUE) to end point (FINAL
VALUE)

[1rEm O1l] rose [ Arrripute 10 price] [pieperence bY 2%].
[yreMm It] has increased [pyap sTaTE tO having them 1 day a month].
|

1rem Microsoft shares] fell [pinar varug to 7 5/8].

[1reM Colon cancer incidence] fell [pyprprence PY 50%] [Group @mong
men].

steady increase [[niriaL_varug from 9.5] [pryar_varLue t© 14.3] [11em
in dividends]

[DirrErRENCE %] [1TRM dividend] increase...

J&M/SLP3



VERBS:

“Change position on a scale” Frame

advance
climb

ecline

ecrease
1minish
ip
ouble

C
C
e
e
C
C

rop

dwindle
edge
explode
fall
fluctuate
gain
grow
Increase
jump

move

mushroom

plummet
reach

rise
rocket
shift
skyrocket
slide

soar
swell
sSwing
triple
tumble

NOUNS:
decline
decrease

escalation shift

explosion tumble

fall

fluctuation ADVERBS:
gain increasingly
growth

hike

Increase

rse

J&M/SLP3



“Change position on a scale” Frame

Core Roles

ATTRIBUTE
DIFFERENCE
FINAL_STATE

FINAL_VALUE
INITIAL_STATE

INITIAL_VALUE
ITEM
VALUE_RANGE

The ATTRIBUTE is a scalar property that the ITEM possesses.

The distance by which an ITEM changes its position on the scale.

A description that presents the ITEM’s state after the change in the ATTRIBUTE’s
value as an independent predication.

The position on the scale where the ITEM ends up.

A description that presents the ITEM’s state before the change in the AT-
TRIBUTE’s value as an independent predication.

The 1nitial position on the scale from which the ITEM moves away.

The entity that has a position on the scale.

A portion of the scale, typically identified by its end points, along which the
values of the ATTRIBUTE fluctuate.

Some Non-Core Roles

DURATION
SPEED
GROUP

The length of time over which the change takes place.
The rate of change of the VALUE.

The GROUP in which an ITEM changes the value of an
ATTRIBUTE in a specified way.

J&M/SLP3



