TTIC 31190:
 Natural Language Processing

Kevin Gimpel
Winter 2016

Lecture 3: Words

- Assignment 1 has been posted
- Due 11:59 pm on Wednesday, January 20 ${ }^{\text {th }}$
- We will start class 5 minutes late from now on, due to several students taking algorithms across campus
- My office hours are Mondays 3-4pm, \#531 (or by appointment)
- TA office hours are Thursdays 4-5pm, \#501
- If you're auditing, you may still turn in the homework and we will give you feedback (though we may not give your homework as much attention as others)
- If you didn't receive an email from me this details, then please email me with your name/email and let me know whether you are taking course for credit

Today

- review of loss functions and subgradients from last week (useful for homework)
- start words (more about words and lexical semantics on Thursday)

Empirical Risk Minimization with Surrogate Loss Functions

- given training data: $\mathcal{T}=\left\{\left\langle\boldsymbol{x}^{(i)}, y^{(i)}\right\rangle\right\}_{i=1}^{|\mathcal{T}|}$ where each $y^{(i)} \in \mathcal{L}$ is a label
- we want to solve the following:

$$
\hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{i=1}^{|\mathcal{T}|} \operatorname{loss}\left(\boldsymbol{x}^{(i)}, y^{(i)}, \boldsymbol{\theta}\right)
$$

Empirical Risk Minimization with Surrogate Loss Functions

- given training data: $\mathcal{T}=\left\{\left\langle\boldsymbol{x}^{(i)}, y^{(i)}\right\rangle\right\}_{i=1}^{|\mathcal{T}|}$ where each $y^{(i)} \in \mathcal{L}$ is a label
- we want to solve the following:

$$
\begin{aligned}
& \hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{i=1}^{|\mathcal{T}|} \operatorname{loss}\left(\boldsymbol{x}^{(i)}, y^{(i)}, \boldsymbol{\theta}\right) \\
& \text { many possible loss } \\
& \text { functions to consider } \\
& \text { optimizing }
\end{aligned}
$$

Cost Functions

- cost function: scores output against a gold standard

$$
\operatorname{cost}: \mathcal{L} \times \mathcal{L} \rightarrow \mathbb{R}_{\geq 0}
$$

- should reflect the evaluation metric for your task
- usual convention: $\operatorname{cost}(y, y)=0$

Surrogate Loss Functions

cost loss / 0-1 loss: $\quad \operatorname{loss}_{\operatorname{cost}}(\boldsymbol{x}, y, \boldsymbol{\theta})=\operatorname{cost}(y, \operatorname{classify}(\boldsymbol{x}, \boldsymbol{\theta}))$
max-score loss:

$$
\operatorname{loss}_{\text {maxscore }}(\boldsymbol{x}, y, \boldsymbol{\theta})=-\operatorname{score}(\boldsymbol{x}, y, \boldsymbol{\theta})
$$

Visualization

five possible outputs

Visualization

five possible outputs

Visualization

Visualization

Visualization

$\operatorname{loss}_{\text {maxscore }}(\boldsymbol{x}, y, \boldsymbol{\theta})=-\operatorname{score}(\boldsymbol{x}, y, \boldsymbol{\theta})$

$\operatorname{loss}_{\text {maxscore }}(\boldsymbol{x}, y, \boldsymbol{\theta})=-\operatorname{score}(\boldsymbol{x}, y, \boldsymbol{\theta})$
score

perceptron loss:
$\operatorname{loss}_{\text {perc }}(\boldsymbol{x}, y, \boldsymbol{\theta})=-\operatorname{score}(\boldsymbol{x}, y, \boldsymbol{\theta})+\max _{y^{\prime} \in \mathcal{L}} \operatorname{score}\left(\boldsymbol{x}, y^{\prime}, \boldsymbol{\theta}\right)$
perceptron loss:

$$
\operatorname{loss}_{\text {perc }}(\boldsymbol{x}, y, \boldsymbol{\theta})=-\operatorname{score}(\boldsymbol{x}, y, \boldsymbol{\theta})+\max _{y^{\prime} \in \mathcal{L}} \operatorname{score}\left(\boldsymbol{x}, y^{\prime}, \boldsymbol{\theta}\right)
$$

perceptron loss:

perceptron loss:

$$
\operatorname{loss}_{\text {perc }}(\boldsymbol{x}, y, \boldsymbol{\theta})=-\operatorname{score}(\boldsymbol{x}, y, \boldsymbol{\theta})+\max _{y^{\prime} \in \mathcal{L}} \operatorname{score}\left(\boldsymbol{x}, y^{\prime}, \boldsymbol{\theta}\right)
$$

perceptron loss:

$$
\operatorname{loss}_{\mathrm{perc}}(\boldsymbol{x}, y, \boldsymbol{\theta})=-\operatorname{score}(\boldsymbol{x}, y, \boldsymbol{\theta})+\max _{y^{\prime} \in \mathcal{L}} \operatorname{score}\left(\boldsymbol{x}, y^{\prime}, \boldsymbol{\theta}\right)
$$

effect of learning: gold standard will have highest score

hinge loss:
$\operatorname{loss}_{\text {hinge }}(\boldsymbol{x}, y, \boldsymbol{\theta})=-\operatorname{score}(\boldsymbol{x}, y, \boldsymbol{\theta})+\max _{y^{\prime} \in \mathcal{L}}\left(\operatorname{score}\left(\boldsymbol{x}, y^{\prime}, \boldsymbol{\theta}\right)+\operatorname{cost}\left(y, y^{\prime}\right)\right)$
hinge loss:
$\operatorname{loss}_{\text {hinge }}(\boldsymbol{x}, y, \boldsymbol{\theta})=-\operatorname{score}(\boldsymbol{x}, y, \boldsymbol{\theta})+\max _{y^{\prime} \in \mathcal{L}}\left(\operatorname{score}\left(\boldsymbol{x}, y^{\prime}, \boldsymbol{\theta}\right)+\operatorname{cost}\left(y, y^{\prime}\right)\right)$

hinge loss:
$\operatorname{loss}_{\text {hinge }}(\boldsymbol{x}, y, \boldsymbol{\theta})=-\operatorname{score}(\boldsymbol{x}, y, \boldsymbol{\theta})+\max _{y^{\prime} \in \mathcal{L}}\left(\operatorname{score}\left(\boldsymbol{x}, y^{\prime}, \boldsymbol{\theta}\right)+\operatorname{cost}\left(y, y^{\prime}\right)\right)$

hinge loss:
$\operatorname{loss}_{\text {hinge }}(\boldsymbol{x}, y, \boldsymbol{\theta})=-\operatorname{score}(\boldsymbol{x}, y, \boldsymbol{\theta})+\max _{y^{\prime} \in \mathcal{L}}\left(\operatorname{score}\left(\boldsymbol{x}, y^{\prime}, \boldsymbol{\theta}\right)+\operatorname{cost}\left(y, y^{\prime}\right)\right)$
effect of learning?
hinge loss:

$$
\operatorname{loss}_{\text {hinge }}(\boldsymbol{x}, y, \boldsymbol{\theta})=-\operatorname{score}(\boldsymbol{x}, y, \boldsymbol{\theta})+\max _{y^{\prime} \in \mathcal{L}}\left(\operatorname{score}\left(\boldsymbol{x}, y^{\prime}, \boldsymbol{\theta}\right)+\operatorname{cost}\left(y, y^{\prime}\right)\right)
$$

score + cost

y_{1}

y_{2}

effect of learning: score of gold standard
will be higher than score+cost of all others

Subgradients of Loss Functions

- some of our loss functions are not differentiable:

$$
\operatorname{loss}_{\text {perc }}(\boldsymbol{x}, y, \boldsymbol{\theta})=-\sum_{i} \theta_{i} f_{i}(\boldsymbol{x}, y)+\max _{y^{\prime} \in \mathcal{L}} \sum_{i} \theta_{i} f_{i}\left(\boldsymbol{x}, y^{\prime}\right)
$$

- but they are subdifferentiable:

Subgradient Examples

$$
f(x)=|x|=\max (x,-x)
$$

$$
\begin{array}{ll}
x<0: & \partial f(x)= \\
x>0: & \partial f(x)= \\
x=0: & \partial f(x)=
\end{array}
$$

Subgradient Examples

$$
f(x)=|x|=\max (x,-x)
$$

$$
\begin{aligned}
& x<0: \quad \partial f(x)=\{-1\} \\
& x>0: \quad \partial f(x)=\{1\} \\
& x=0: \quad \partial f(x)=
\end{aligned}
$$

Subgradient Examples

$$
f(x)=|x|=\max (x,-x)
$$

- to find a subgradient of max of convexfunctions at a point, choose one function that achieves the max at that point and choose any of its subgradients at the point

Subgradients of Loss Functions

- some of our loss functions are not differentiable:

$$
\operatorname{loss}_{\text {perc }}(\boldsymbol{x}, y, \boldsymbol{\theta})=-\sum_{i} \theta_{i} f_{i}(\boldsymbol{x}, y)+\max _{y^{\prime} \in \mathcal{L}} \sum_{i} \theta_{i} f_{i}\left(\boldsymbol{x}, y^{\prime}\right)
$$

- but they are subdifferentiable:

Subgradients of Loss Functions

- some of our loss functions are not differentiable:

$$
\operatorname{loss}_{\mathrm{perc}}(\boldsymbol{x}, y, \boldsymbol{\theta})=-\sum_{i} \theta_{i} f_{i}(\boldsymbol{x}, y)+\max _{y^{\prime} \in \mathcal{L}} \sum_{i} \theta_{i} f_{i}\left(\boldsymbol{x}, y^{\prime}\right)
$$

- but they are subdifferentiable:

$$
\frac{\partial \operatorname{loss}_{\mathrm{perc}}(\boldsymbol{x}, y, \boldsymbol{\theta})}{\partial \theta_{j}}=-f_{j}(\boldsymbol{x}, y)+f_{j}(\boldsymbol{x}, \operatorname{classify}(\boldsymbol{x}, \boldsymbol{\theta}))
$$

Subgradients of Loss Functions

$$
\begin{array}{r}
\operatorname{loss}_{\mathrm{perc}}(\boldsymbol{x}, y, \boldsymbol{\theta})=-\sum_{i} \theta_{i} f_{i}(\boldsymbol{x}, y)+\max _{y^{\prime} \in \mathcal{L}} \sum_{i} \theta_{i} f_{i}\left(\boldsymbol{x}, y^{\prime}\right) \\
\frac{\partial \operatorname{loss}_{\mathrm{perc}}(\boldsymbol{x}, y, \boldsymbol{\theta})}{\partial \theta_{j}}=-f_{j}(\boldsymbol{x}, y)+f_{j}(\boldsymbol{x}, \operatorname{classify}(\boldsymbol{x}, \boldsymbol{\theta}))
\end{array}
$$

$$
\frac{\partial}{\partial \theta_{j}} \max _{y^{\prime} \in \mathcal{L}} \sum_{i} \theta_{i} f_{i}\left(\boldsymbol{x}, y^{\prime}\right)=
$$

find subgradient of the
function that achieves the max

Subgradients of Loss Functions

$$
\operatorname{loss}_{\text {perc }}(\boldsymbol{x}, y, \boldsymbol{\theta})=-\sum_{i} \theta_{i} f_{i}(\boldsymbol{x}, y)+\max _{y^{\prime} \in \mathcal{L}} \sum_{i} \theta_{i} f_{i}\left(\boldsymbol{x}, y^{\prime}\right)
$$

$$
\frac{\partial \operatorname{loss}_{\mathrm{perc}}(\boldsymbol{x}, y, \boldsymbol{\theta})}{\partial \theta_{j}}=-f_{j}(\boldsymbol{x}, y)+f_{j}(\boldsymbol{x}, \operatorname{classify}(\boldsymbol{x}, \boldsymbol{\theta}))
$$

$$
\frac{\partial}{\partial \theta_{j}} \max _{y^{\prime} \in \mathcal{L}} \sum_{i} \theta_{i} f_{i}\left(\boldsymbol{x}, y^{\prime}\right)=\frac{\partial}{\partial \theta_{j}} \sum_{i} \theta_{i} f_{i}(\boldsymbol{x}, \operatorname{classify}(\boldsymbol{x}, \boldsymbol{\theta}))=f_{j}(\boldsymbol{x}, \operatorname{classify}(\boldsymbol{x}, \boldsymbol{\theta}))
$$

find subgradient of the
function that achieves the max

Roadmap

- classification
- words
- lexical semantics
- language modeling
- sequence labeling
- syntax and syntactic parsing
- neural network methods in NLP
- semantic compositionality
- semantic parsing
- unsupervised learning
- machine translation and other applications

Words

- what is a word?
- tokenization
- morphology
- word sense

What is a word?

Tokenization

- tokenization: convert a character stream into words by adding spaces
- for certain languages, highly nontrivial
- e.g., Chinese word segmentation is a widelystudied NLP task

Tokenization

- for other languages (English), tokenization is easier but is still not always obvious
- the data for your homework has been tokenized:
- punctuation has been split off from words
- contractions have been split

Intricacies of Tokenization

- separating punctuation characters from words?
- , " ! \rightarrow always separate
$-\quad . \quad$ when shouldn't we separate it?

Intricacies of Tokenization

- separating punctuation characters from words?
- ," ?! \rightarrow always separate
- . \rightarrow when shouldn't we separate it?
- Dr., Mr., Prof., U.S., etc.

Intricacies of Tokenization

- separating punctuation characters from words?
- ," ?! \rightarrow always separate
- . \rightarrow when shouldn't we separate it?
- Dr., Mr., Prof., U.S., etc.
- English contractions:
- isn't, aren't, wasn't,... \rightarrow is n't, are n't, was n't,...
- but how about these: can't, won't \rightarrow ca n't, wo n't
- ca and wo are then different forms from can and will
－Chinese and Japanese：no spaces between words：
- 莎拉波娃现在居住在美国东南部的佛罗里达。
- 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
－Sharapova now lives in US southeastern Florida
－Further complicated in Japanese，with multiple alphabets intermingled
－Dates／amounts in multiple formats

End－user can express query entirely in hiragana！

Word Segmentation in Chinese

- Chinese words are composed of characters
- characters are generally 1 syllable and 1 morpheme
- average word is 2.4 characters long
- standard baseline segmentation algorithm:
- Maximum Matching (also called Greedy)

Maximum Matching

Word Segmentation Algorithm

Given a Chinese word list and a string:

1) start a pointer at the beginning of the string
2) find longest word in dictionary that matches the string starting at pointer
3) move the pointer over the word in string
4) go to 2

Maximum Matching Examples

－Thecatinthehat
－Thetabledownthere
the cat in the hat
the table down there theta bled own there
－Doesn＇t generally work in English！
－But works astonishingly well in Chinese

- 莎拉波娃现在居住在美国东南部的佛罗里达。
- 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
－Modern probabilistic segmentation algorithms even better

Effect on Machine Translation

Reference translation:

scientists complete sequencing of the chromosome linked to early dementia
CharBased segmented input:

MaxMatch segmented input:

Translation with CharBased segmentation:
scientists at the beginning of the stake of chile lost the genome sequence completed

Translation with MaxMatch segmentation:

scientists at stake for the early loss of intellectual syndrome chromosome completed sequencing

Removing Spaces?

- tokenization is usually about adding spaces
- but might we also want to remove spaces?
- what are some English examples?

Removing Spaces?

- tokenization is usually about adding spaces
- but might we also want to remove spaces?
- what are some English examples?
- names?
- New York \rightarrow NewYork
- non-compositional compounds?
- hot dog \rightarrow hotdog
- other artifacts of our spacing conventions?
- New York-Long Island Railway

Types and Tokens

- once text has been tokenized, let's count the words
- types: entries in the vocabulary
- tokens: instances of types in a corpus
- example sentence: If they want to go, they should go .
- how many types?
- how many tokens?

Types and Tokens

- once text has been tokenized, let's count the words
- types: entries in the vocabulary
- tokens: instances of types in a corpus
- example sentence: If they want to go, they should go .
- how many types? 8
- how many tokens? 10
- type/token ratio: useful statistic of a corpus (here, 0.8)

Types and Tokens

- once text has been tokenized, let's count the words
- types: entries in the vocabulary
- tokens: instances of types in a corpus
- example sentence: If they want to go, they should go .
- how many types? 8
- how many tokens? 10
- type/token ratio: useful statistic of a corpus (here, 0.8)
- as we add data, what happens to the type-token ratio?
- indicates what?
- high type/token ratio \rightarrow
- low type/token ratio \rightarrow

Types and Tokens

- once text has been tokenized, let's count the words
- types: entries in the vocabulary
- tokens: instances of types in a corpus
- example sentence: If they want to go, they should go .
- how many types? 8
- how many tokens? 10
- type/token ratio: useful statistic of a corpus (here, 0.8)
- as we add data, what happens to the type-token ratio?
- indicates what?
- high type/token ratio \rightarrow rich morphology
- low type/token ratio \rightarrow poor morphology

How many words are there?

- how many English words exist?
- when we increase the size of our corpus, what happens to the number of types?

How many words are there?

- how many English words exist?
- when we increase the size of our corpus, what happens to the number of types?
- a bit surprising: vocabulary continues to grow in any actual dataset
- you'll just never see all the words
- in 1 million tweets, 15M tokens, 600k types
- in 56 million tweets, 847M tokens, ? types

How many words are there?

- how many English words exist?
- when we increase the size of our corpus, what happens to the number of types?
- a bit surprising: vocabulary continues to grow in any actual dataset
- you'll just never see all the words
- in 1 million tweets, 15 M tokens, 600k types
- in 56 million tweets, 847M tokens, 11M types

How are words distributed?

- Zipf's law: frequency of a word is inversely proportional to its rank

How are words distributed?

- Zipf's law: frequency of a word is inversely proportional to its rank

Zipf’s Law

- also predicts other kinds of data: population of cities in a country, revenue of different companies, etc.

The Laurentian
University Sports Analytics Group

The Long Tail

- there are so many word types!
- but words have internal structure

Morphology

- morphemes:
- the small meaningful units that make up words
- stems: core meaning-bearing units
- affixes: bits and pieces that adhere to stems
- often with grammatical functions

Kinds of Word Formation

- inflection: modifying a word with an affix to change its grammatical function (tense, number, etc.)
- result is a "different form of the same word"
- examples: book \rightarrow books, walk \rightarrow walked

Kinds of Word Formation

- inflection: modifying a word with an affix to change its grammatical function (tense, number, etc.)
- result is a "different form of the same word"
- examples: book \rightarrow books, walk \rightarrow walked
- derivation: adding an affix to a stem to create a new word
- examples: great \rightarrow greatly, great \rightarrow greatness

Kinds of Word Formation

- inflection: modifying a word with an affix to change its grammatical function (tense, number, etc.)
- result is a "different form of the same word"
- examples: book \rightarrow books, walk \rightarrow walked
- derivation: adding an affix to a stem to create a new word
- examples: great \rightarrow greatly, great \rightarrow greatness
- compounding: combining two stems
- examples: lawsuit, keyboard, bookcase

Morphology

- usually, morphological derivation is simply splitting a word into its morphemes:
- walked = walk + ed
- greatness $=$ great + ness
- but it can actually be a hierarchical structure

Morphology

- ambiguity in hierarchical morphological decomposition?
- rare, but it does happen

Morphology

- ambiguity in hierarchical morphological decomposition?
- rare, but it does happen
- unlockable $=$ un + lock + able
- what does this word mean?

Morphology

- ambiguity in hierarchical morphological decomposition?
- rare, but it does happen
- unlockable $=$ un + lock + able
- what does this word mean?
- (un+lock)+able: "able to be unlocked"
- un+(lock+able): "unable to be locked"

Morphology in NLP

- two common tasks:
- lemmatization
- stemming

Lemmatization

- lemmatization: reduce inflections or variant forms to base form
- am, are, is \rightarrow be
- car, cars, car's, cars' \rightarrow car
- the boy's cars are different colors \rightarrow the boy car be different color
- have to find correct dictionary headword form
- e.g., for machine translation:
- Spanish quiero ('I want'), quieres ('you want') same lemma as querer 'want'

Stemming

- stemming: reduces words to their stems via crude chopping of affixes
- e.g., automate(s), automatic, automation all reduced to automat
- language dependent
- key step in information retrieval

> for example compressed and compression are both accepted as equivalent to compress.
for exampl compress and compress ar both accept as equival to compress

Porter's algorithm

The most common English stemmer

Step 1a

sses	\rightarrow ss	caresses	\rightarrow caress
ies	\rightarrow i	ponies	\rightarrow poni
ss	\rightarrow ss caress	\rightarrow caress	
s	$\rightarrow \varnothing$	cats	\rightarrow cat

Step 1b

Step 2 (for long stems)

```
ational-> ate relational }->\mathrm{ relate
izer-> ize digitizer }->\mathrm{ digitize
ator }->\mathrm{ ate operator }->\mathrm{ operate
```

Step 3 (for longer stems)

Viewing morphology in a corpus Why only strip -ing if there is a vowel?
$\begin{array}{rlr}(* v *) \text { ing } \rightarrow \varnothing \text { walking } & \rightarrow \text { walk } \\ \text { sing } & \rightarrow \text { sing }\end{array}$

Viewing morphology in a corpus Why only strip -ing if there is a vowel?

$$
\begin{array}{rlr}
(* v *) \text { ing } \rightarrow \varnothing \text { walking } & \rightarrow \text { walk } \\
\text { sing } & \rightarrow \text { sing }
\end{array}
$$

```
tr -sc 'A-Za-z' '\n' < shakes.txt | grep 'ing$' | sort | uniq -c | sort -nr
    1 3 1 2 ~ K i n g ~ 5 4 8 ~ b e i n g
    5 4 8 \text { being } 5 4 1 \text { nothing}
    5 4 1 \text { nothing } 1 5 2 \text { something}
    3 8 8 \text { king 145 coming}
    3 7 5 \text { bring } 1 3 0 \text { morning}
    3 5 8 \text { thing } 1 2 2 \text { having}
    3 0 7 \text { ring } 1 2 0 \text { living}
    152 something 117 loving
    145 coming 116 Being
    130 morning 102 going
tr -sc 'A-Za-z' '\n' < shakes.txt | grep '[aeiou].*ing$' | sort | uniq -c | sort -nr
```


Dealing with complex morphology is sometimes necessary

- Some languages requires complex morpheme segmentation
- Turkish
- Uygarlastiramadiklarimizdanmissinizcasina: "(behaving) as if you are among those whom we could not civilize"
- Uygar `civilized’ + las `become'
+ tir `cause' + ama `not able'
+ dik `past' + lar 'plural'
+ imiz'p1pl' + dan 'abl'
+ mis 'past' + siniz '2pl' + casina 'as if'

Terminology: lemma and wordform

- lemma or citation form
- same stem, part of speech, rough semantics
- wordform
- inflected word as it appears in text

wordform	lemma
banks	bank
sung	sing
duermes	dormir

