TTIC 31190: Natural Language Processing

Kevin Gimpel Winter 2016

Lecture 3: Words

- Assignment 1 has been posted
- Due 11:59 pm on Wednesday, January 20th
- We will start class 5 minutes late from now on, due to several students taking algorithms across campus
- My office hours are Mondays 3-4pm, #531 (or by appointment)
- TA office hours are Thursdays 4-5pm, #501
- If you're auditing, you may still turn in the homework and we will give you feedback (though we may not give your homework as much attention as others)
- If you didn't receive an email from me this details, then please email me with your name/email and let me know whether you are taking course for credit

Today

 review of loss functions and subgradients from last week (useful for homework)

start words (more about words and lexical semantics on Thursday)

Empirical Risk Minimization with Surrogate Loss Functions

- given training data: $\mathcal{T} = \{\langle x^{(i)}, y^{(i)} \rangle\}_{i=1}^{|\mathcal{T}|}$ where each $y^{(i)} \in \mathcal{L}$ is a label
- we want to solve the following:

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{i=1}^{|\mathcal{T}|} \operatorname{loss}(\boldsymbol{x}^{(i)}, y^{(i)}, \boldsymbol{\theta})$$

Empirical Risk Minimization with Surrogate Loss Functions

- given training data: $\mathcal{T} = \{\langle x^{(i)}, y^{(i)} \rangle\}_{i=1}^{|\mathcal{T}|}$ where each $y^{(i)} \in \mathcal{L}$ is a label
- we want to solve the following:

Cost Functions

cost function: scores output against a gold standard

$\mathrm{cost}:\mathcal{L}\times\mathcal{L}\to\mathbb{R}_{\geq0}$

- should reflect the evaluation metric for your task
- usual convention: cost(y, y) = 0

Surrogate Loss Functions

cost loss / 0-1 loss: $loss_{cost}(\boldsymbol{x}, y, \boldsymbol{\theta}) = cost(y, classify(\boldsymbol{x}, \boldsymbol{\theta}))$

max-score loss:

$$loss_{maxscore}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -score(\boldsymbol{x}, y, \boldsymbol{\theta})$$

$loss_{maxscore}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -score(\boldsymbol{x}, y, \boldsymbol{\theta})$

score

$$(y, \theta) = -\operatorname{score}(x, y, \theta)$$

effect of learning: score of gold standard will go to infinity

perceptron loss:

$$loss_{perc}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -score(\boldsymbol{x}, y, \boldsymbol{\theta}) + \max_{y' \in \mathcal{L}} score(\boldsymbol{x}, y', \boldsymbol{\theta})$$

perceptron loss:

$$loss_{perc}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -score(\boldsymbol{x}, y, \boldsymbol{\theta}) + \max_{y' \in \mathcal{L}} score(\boldsymbol{x}, y', \boldsymbol{\theta})$$

effect of learning: gold standard will have highest score hinge loss: $loss_{hinge}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -score(\boldsymbol{x}, y, \boldsymbol{\theta}) + \max_{y' \in \mathcal{L}} (score(\boldsymbol{x}, y', \boldsymbol{\theta}) + cost(y, y'))$

hinge loss: $loss_{hinge}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -score(\boldsymbol{x}, y, \boldsymbol{\theta}) + \max_{y' \in \mathcal{L}} (score(\boldsymbol{x}, y', \boldsymbol{\theta}) + cost(y, y'))$

effect of learning: score of gold standard will be higher than score+cost of all others

• some of our loss functions are not differentiable:

$$loss_{perc}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -\sum_{i} \theta_{i} f_{i}(\boldsymbol{x}, y) + \max_{y' \in \mathcal{L}} \sum_{i} \theta_{i} f_{i}(\boldsymbol{x}, y')$$

• but they are subdifferentiable:

Subgradient Examples

$$x < 0: \quad \partial f(x) =$$

 $x > 0: \quad \partial f(x) =$
 $x = 0: \quad \partial f(x) =$

Subgradient Examples

 $x < 0: \quad \partial f(x) = \{-1\}$ $x > 0: \quad \partial f(x) = \{1\}$ $x = 0: \quad \partial f(x) =$

Subgradient Examples

$$x < 0: \ \partial f(x) = \{-1\}$$

 $x > 0: \ \partial f(x) = \{1\}$
 $x = 0: \ \partial f(x) = [-1, 1]$

 to find a subgradient of max of convex functions at a point, choose one function that achieves the max at that point and choose any of its subgradients at the point

• some of our loss functions are not differentiable:

$$loss_{perc}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -\sum_{i} \theta_{i} f_{i}(\boldsymbol{x}, y) + \max_{y' \in \mathcal{L}} \sum_{i} \theta_{i} f_{i}(\boldsymbol{x}, y')$$

• but they are subdifferentiable:

• some of our loss functions are not differentiable:

$$loss_{perc}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -\sum_{i} \theta_{i} f_{i}(\boldsymbol{x}, y) + \max_{y' \in \mathcal{L}} \sum_{i} \theta_{i} f_{i}(\boldsymbol{x}, y')$$

• but they are subdifferentiable:

$$\frac{\partial \text{loss}_{\text{perc}}(\boldsymbol{x}, y, \boldsymbol{\theta})}{\partial \theta_j} = -f_j(\boldsymbol{x}, y) + f_j(\boldsymbol{x}, \text{classify}(\boldsymbol{x}, \boldsymbol{\theta}))$$

$$loss_{perc}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -\sum_{i} \theta_{i} f_{i}(\boldsymbol{x}, y) + \max_{y' \in \mathcal{L}} \sum_{i} \theta_{i} f_{i}(\boldsymbol{x}, y')$$

$$\frac{\partial \text{loss}_{\text{perc}}(\boldsymbol{x}, y, \boldsymbol{\theta})}{\partial \theta_j} = -f_j(\boldsymbol{x}, y) + f_j(\boldsymbol{x}, \text{classify}(\boldsymbol{x}, \boldsymbol{\theta}))$$

$$\frac{\partial}{\partial \theta_j} \max_{y' \in \mathcal{L}} \sum_i \theta_i f_i(x, y') =$$
find subgradient of the
function that achieves the max

$$loss_{perc}(\boldsymbol{x}, y, \boldsymbol{\theta}) = -\sum_{i} \theta_{i} f_{i}(\boldsymbol{x}, y) + \max_{y' \in \mathcal{L}} \sum_{i} \theta_{i} f_{i}(\boldsymbol{x}, y')$$

$$\frac{\partial \text{loss}_{\text{perc}}(\boldsymbol{x}, y, \boldsymbol{\theta})}{\partial \theta_j} = -f_j(\boldsymbol{x}, y) + f_j(\boldsymbol{x}, \text{classify}(\boldsymbol{x}, \boldsymbol{\theta}))$$

$$\frac{\partial}{\partial \theta_j} \max_{y' \in \mathcal{L}} \sum_i \theta_i f_i(\boldsymbol{x}, y') = \frac{\partial}{\partial \theta_j} \sum_i \theta_i f_i(\boldsymbol{x}, \text{classify}(\boldsymbol{x}, \boldsymbol{\theta})) = f_j(\boldsymbol{x}, \text{classify}(\boldsymbol{x}, \boldsymbol{\theta}))$$
find subgradient of the function that achieves the max

Roadmap

- classification
- words
- lexical semantics
- language modeling
- sequence labeling
- syntax and syntactic parsing
- neural network methods in NLP
- semantic compositionality
- semantic parsing
- unsupervised learning
- machine translation and other applications

Words

- what is a word?
- tokenization
- morphology
- word sense
What is a word?

Tokenization

- tokenization: convert a character stream into words by adding spaces
- for certain languages, highly nontrivial
- e.g., Chinese word segmentation is a widelystudied NLP task

Tokenization

- for other languages (English), tokenization is easier but is still not always obvious
- the data for your homework has been tokenized:
 - punctuation has been split off from words
 - contractions have been split

Intricacies of Tokenization

- separating punctuation characters from words?
 - , " ? ! → always separate
 - . \rightarrow when shouldn't we separate it?

Intricacies of Tokenization

- separating punctuation characters from words?
 - , " ? ! → always separate
 - . \rightarrow when shouldn't we separate it?
 - Dr., Mr., Prof., U.S., etc.

Intricacies of Tokenization

- separating punctuation characters from words?
 - , " ? ! → always separate
 - . \rightarrow when shouldn't we separate it?
 - Dr., Mr., Prof., U.S., etc.
- English contractions:
 - isn't, aren't, wasn't,... \rightarrow is n't, are n't, was n't,...
 - but how about these: can't, won't \rightarrow ca n't, wo n't
 - ca and wo are then different forms from can and will

- Chinese and Japanese: no spaces between words:
 - 莎拉波娃现在居住在美国东南部的佛罗里达。
 - 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
 - Sharapova now lives in US southeastern Florida
- Further complicated in Japanese, with multiple alphabets intermingled
 - Dates/amounts in multiple formats

End-user can express query entirely in hiragana!

Word Segmentation in Chinese

- Chinese words are composed of characters
 - characters are generally 1 syllable and 1 morpheme
 - average word is 2.4 characters long
- standard baseline segmentation algorithm:
 - Maximum Matching (also called Greedy)

Maximum Matching Word Segmentation Algorithm

Given a Chinese word list and a string:

- 1) start a pointer at the beginning of the string
- 2) find longest word in dictionary that matches the string starting at pointer
- 3) move the pointer over the word in string
- 4) go to 2

Maximum Matching Examples

- Thecatinthehat
- Thetabledownthere

the cat in the hat

the table down there theta bled own there

• Doesn't generally work in English!

- But works astonishingly well in Chinese
 莎拉波娃现在居住在美国东南部的佛罗里达。
 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
- Modern probabilistic segmentation algorithms even better

Effect on Machine Translation

Reference translation:

scientists complete sequencing of the chromosome linked to early dementia

CharBased segmented input:

科_学_家_为_攸_关_初_期_失_智_症_的_染_色_体_完_成_定_序

MaxMatch segmented input: 科学家_为_攸关_初期_失_智_症_的_染色_体_完成_定_序

Translation with CharBased segmentation:

scientists at the beginning of the stake of chile lost the genome sequence completed

Translation with MaxMatch segmentation: scientists at stake for the early loss of intellectual syndrome chromosome completed sequencing

Removing Spaces?

- tokenization is usually about adding spaces
- but might we also want to remove spaces?
- what are some English examples?

Removing Spaces?

- tokenization is usually about adding spaces
- but might we also want to remove spaces?
- what are some English examples?

– names?

- New York \rightarrow NewYork
- non-compositional compounds?
 - hot dog \rightarrow hotdog
- other artifacts of our spacing conventions?
 - New York-Long Island Railway

- once text has been tokenized, let's count the words
- types: entries in the vocabulary
- tokens: instances of types in a corpus
- example sentence: If they want to go, they should go.
 - how many types?
 - how many tokens?

- once text has been tokenized, let's count the words
- types: entries in the vocabulary
- tokens: instances of types in a corpus
- example sentence: If they want to go, they should go.
 - how many types? 8
 - how many tokens? 10
- type/token ratio: useful statistic of a corpus (here, 0.8)

- once text has been tokenized, let's count the words
- types: entries in the vocabulary
- tokens: instances of types in a corpus
- example sentence: If they want to go, they should go.
 - how many types? 8
 - how many tokens? 10
- type/token ratio: useful statistic of a corpus (here, 0.8)
- as we add data, what happens to the type-token ratio?
- indicates what?
 - high type/token ratio \rightarrow
 - − low type/token ratio \rightarrow

- once text has been tokenized, let's count the words
- types: entries in the vocabulary
- tokens: instances of types in a corpus
- example sentence: If they want to go, they should go.
 - how many types? 8
 - how many tokens? 10
- type/token ratio: useful statistic of a corpus (here, 0.8)
- as we add data, what happens to the type-token ratio?
- indicates what?
 - high type/token ratio \rightarrow rich morphology
 - low type/token ratio \rightarrow poor morphology

How many words are there?

- how many English words exist?
- when we increase the size of our corpus, what happens to the number of types?

How many words are there?

- how many English words exist?
- when we increase the size of our corpus, what happens to the number of types?
 - a bit surprising: vocabulary continues to grow in any actual dataset
 - you'll just never see all the words
 - in 1 million tweets, 15M tokens, 600k types
 - in 56 million tweets, 847M tokens, ? types

How many words are there?

- how many English words exist?
- when we increase the size of our corpus, what happens to the number of types?
 - a bit surprising: vocabulary continues to grow in any actual dataset
 - you'll just never see all the words
 - in 1 million tweets, 15M tokens, 600k types
 - in 56 million tweets, 847M tokens, 11M types

How are words distributed?

• Zipf's law: frequency of a word is inversely proportional to its rank

How are words distributed?

• Zipf's law: frequency of a word is inversely proportional to its rank

Zipf's Law

also predicts other kinds of data: population of cities in a ۲ country, revenue of different companies, etc.

The Long Tail

- there are so many word types!
- but words have internal structure

- morphemes:
 - the small meaningful units that make up words
 - stems: core meaning-bearing units
 - affixes: bits and pieces that adhere to stems
 - often with grammatical functions

Kinds of Word Formation

- inflection: modifying a word with an affix to change its grammatical function (tense, number, etc.)
 - result is a "different form of the same word"
 - examples: *book* \rightarrow *books, walk* \rightarrow *walked*

Kinds of Word Formation

- inflection: modifying a word with an affix to change its grammatical function (tense, number, etc.)
 - result is a "different form of the same word"
 - examples: *book* \rightarrow *books, walk* \rightarrow *walked*
- derivation: adding an affix to a stem to create a new word
 - examples: great \rightarrow greatly, great \rightarrow greatness

Kinds of Word Formation

- inflection: modifying a word with an affix to change its grammatical function (tense, number, etc.)
 - result is a "different form of the same word"
 - examples: *book* \rightarrow *books, walk* \rightarrow *walked*
- derivation: adding an affix to a stem to create a new word
 - examples: great \rightarrow greatly, great \rightarrow greatness
- compounding: combining two stems

 examples: *lawsuit, keyboard, bookcase*

- usually, morphological derivation is simply splitting a word into its morphemes:
 - walked = walk + ed

– greatness = great + ness

• but it can actually be a hierarchical structure

- ambiguity in hierarchical morphological decomposition?
 - rare, but it does happen

- ambiguity in hierarchical morphological decomposition?
 - rare, but it does happen
 - unlockable = un + lock + able
 - what does this word mean?

- ambiguity in hierarchical morphological decomposition?
 - rare, but it does happen
 - unlockable = un + lock + able
 - what does this word mean?
 - (un+lock)+able: "able to be unlocked"
 - un+(lock+able): "unable to be locked"

Morphology in NLP

- two common tasks:
 - lemmatization
 - stemming

Lemmatization

- lemmatization: reduce inflections or variant forms to base form
 - am, are, is \rightarrow be
 - car, cars, car's, cars' \rightarrow car
- the boy's cars are different colors → the boy car be different color
- have to find correct dictionary headword form
- e.g., for machine translation:
 - Spanish quiero ('I want'), quieres ('you want') same lemma as querer 'want'

Stemming

- stemming: reduces words to their stems via crude chopping of affixes
 - e.g., automate(s), automatic, automation all reduced to automat
 - language dependent
 - key step in information retrieval

for example compressed and compression are both accepted as equivalent to compress.

for exampl compress and compress ar both accept as equival to compress

Porter's algorithm The most common English stemmer

Step 1a								St	Step 2 (for long stems)						
	sses	\rightarrow ss		caresses \rightarrow c			ca	ress	ational \rightarrow ate relational \rightarrow relate						
	ies	\rightarrow	<pre>> i ponies > ss caress</pre>		onies	\rightarrow	po	ni	izer→ ize		digitizer	· ->	→ digitize		
	SS	\rightarrow			aress	\rightarrow	caress		ator→ ate		operator	\rightarrow	operate		
	S	\rightarrow	Ø	Ca	ats	\rightarrow	Ca	at	•••			-		-	
Ste	Step 1b									Step 3 (for longer stems)					
	(*v*))in	g →	Ø	walking	ſ	\rightarrow	walk	al	\rightarrow	Ø	revival	\rightarrow	reviv	
					sing		\rightarrow	sing	able	\rightarrow	Ø	adjustable	\rightarrow	adjust	
	(*v*))ed	\rightarrow	Ø	plaster	ed	\rightarrow	plaster	ate	\rightarrow	Ø	activate	\rightarrow	activ	
	•••								•••						
Viewing morphology in a corpus Why only strip —ing if there is a vowel?

> $(*v*)ing \rightarrow \emptyset$ walking \rightarrow walk sing \rightarrow sing

Viewing morphology in a corpus Why only strip —ing if there is a vowel?

 $(*v*)ing \rightarrow \phi$ walking \rightarrow walk sing \rightarrow sing

tr -sc	'A-Za-z'	'\n'	< shakes.txt	grep	'ing\$'	sort	uniq -	-c so	ort —nr	-
		1312	King	548	being					
		548	being	541	nothing					
		541	nothing	152	something					
		388	king	145	coming					
		375	bring	130	morning					
		358	thing	122	having					
		307	ring	120	living					
		152	something	117	loving					
		145	coming	116	Being					
		130	morning	102	going					
tr -sc	'A-Za-z'	'\n'	< shakes.txt	grep '	[aeiou].*i	ing\$'	sort	uniq	-c s	sort —nr

J&M/SLP3

Dealing with complex morphology is sometimes necessary

- Some languages requires complex morpheme segmentation
 - Turkish
 - Uygarlastiramadiklarimizdanmissinizcasina: "(behaving) as if you are among those whom we could not civilize"
 - Uygar `civilized' + las `become'
 - + tir `cause' + ama `not able'
 - + dik `past' + lar 'plural'
 - + imiz 'p1pl' + dan 'abl'
 - + mis 'past' + siniz '2pl' + casina 'as if'

Terminology: lemma and wordform

- lemma or citation form
 - same stem, part of speech, rough semantics
- wordform
 - inflected word as it appears in text

wordform	lemma			
banks	bank			
sung	sing			
duermes	dormir			