TTIC 31190:
 Natural Language Processing

Kevin Gimpel
Winter 2016

Lecture 7: Sequence Models

Announcements

- Assignment 2 has been posted, due Feb. 3
- Midterm scheduled for Thursday, Feb. 18
- Project proposal due Tuesday, Feb. 23
- Thursday's class will be more like a lab / flipped class
- we will use the whiteboard and implement things in class, so bring paper, laptop, etc.

Roadmap

- classification
- words
- lexical semantics
- language modeling
- sequence labeling
- syntax and syntactic parsing
- neural network methods in NLP
- semantic compositionality
- semantic parsing
- unsupervised learning
- machine translation and other applications

Language Modeling

- goal: compute the probability of a sequence of words:

$$
p\left(w_{1} \ldots w_{n}\right)=\prod_{i=1}^{n} p\left(w_{i} \mid w_{1} \ldots w_{i-1}\right)
$$

Markov Assumption for Language Modeling

$$
\begin{aligned}
& p\left(w_{1} \ldots w_{n}\right)=\prod_{i=1}^{n} p\left(w_{i} \mid w_{1} \ldots w_{i-1}\right) \\
& p\left(w_{1} \ldots w_{n}\right)=\prod_{i=1}^{n} p\left(w_{i} \mid w_{i-k} \ldots w_{i-1}\right)
\end{aligned}
$$

Andrei Markov

Intuition of smoothing (from Dan Klein)

- When we have sparse statistics:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{w} \mid \text { denied the }) \\
& 3 \text { allegations } \\
& 2 \text { reports } \\
& 1 \text { claims } \\
& 1 \text { request } \\
& 7 \text { total }
\end{aligned}
$$

- Steal probability mass to generalize better:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{w} \mid \text { denied the }) \\
& 2.5 \text { allegations } \\
& 1.5 \text { reports } \\
& 0.5 \text { claims } \\
& 0.5 \text { request } \\
& 2 \text { other } \\
& 7 \text { total }
\end{aligned}
$$

"Add-1" estimation

- also called Laplace smoothing
- just add 1 to all counts!

Backoff and Interpolation

- sometimes it helps to use less context
- condition on less context for contexts you haven't learned much about
- backoff:
- use trigram if you have good evidence, otherwise bigram, otherwise unigram
- interpolation:
- mixture of unigram, bigram, trigram (etc.) models
- interpolation works better

Linear Interpolation

- simple interpolation:

$$
\begin{aligned}
\hat{P}\left(w_{n} \mid w_{n-2} w_{n-1}\right)= & \lambda_{1} P\left(w_{n} \mid w_{n-2} w_{n-1}\right) \\
& +\lambda_{2} P\left(w_{n} \mid w_{n-1}\right) \\
& +\lambda_{3} P\left(w_{n}\right)
\end{aligned}
$$

Kneser-Ney Smoothing

- better estimate for probabilities of lower-order unigrams!
- Shannon game: I can't see without my reading \qquad ?
- "Francisco" is more common than "glasses"
- ... but "Francisco" always follows "San"
- unigram is most useful when we haven't seen bigram!
- so instead of unigram $P(w)$ ("How likely is w ?")
- use $P_{\text {continuation }}(w)$ ("How likely is w to appear as a novel continuation?")
- for each word, count \# of bigram types it completes:

$$
P_{\text {CONTINUATION }}(w) \propto\left|\left\{w_{i-1}: c\left(w_{i-1}, w\right)>0\right\}\right|
$$

Kneser-Ney Smoothing

- how many times does w appear as a novel continuation?

$$
P_{\text {CONTINUATION }}(w) \propto\left|\left\{w_{i-1}: c\left(w_{i-1}, w\right)>0\right\}\right|
$$

- normalize by total number of word bigram types: $\left|\left\{\left(w_{j-1}, w_{j}\right): c\left(w_{j-1}, w_{j}\right)>0\right\}\right|$

$$
P_{\text {CONTINUATION }}(w)=\frac{\left|\left\{w_{i-1}: c\left(w_{i-1}, w\right)>0\right\}\right|}{\left|\left\{\left(w_{j-1}, w_{j}\right): c\left(w_{j-1}, w_{j}\right)>0\right\}\right|}
$$

N-gram Smoothing Summary

- add-1 estimation:
- OK for text categorization, not for language modeling
- for very large N-gram collections like the Web:
- stupid backoff
- most commonly used method:
- modified interpolated Kneser-Ney

Roadmap

- classification
- words
- lexical semantics
- language modeling
- sequence labeling
- syntax and syntactic parsing
- neural network methods in NLP
- semantic compositionality
- semantic parsing
- unsupervised learning
- machine translation and other applications

Linguistic phenomena: summary so far...

- words have structure (stems and affixes)
- words have multiple meanings (senses) \rightarrow word sense ambiguity
- senses of a word can be homonymous or polysemous
- senses have relationships:
- hyponymy ("is a")
- meronymy ("partof", "member of")
- variability/flexibility of linguistic expression
- many ways to express the same meaning (as you saw in Assignment 1)
- word vectors tell us when two words are similar
- today: part-of-speech

Part-of-Speech Tagging

Some questioned if Tim Cook 's first product
would be a breakaway hit for Apple .

Part-of-Speech Tagging

determiner	verb (past)	prep. noun	proper	noun	poss. adj.	noun	
Some	questioned	if	Tim	Cook	's	first	product

Part-of-Speech (POS)

- functional category of a word:
- noun, verb, adjective, etc.
- how is the word functioning in its context?
- dependent on context like word sense, but different from sense:
- sense represents word meaning, POS represents word function
- sense uses a distinct category of senses per word, POS uses same set of categories for all words

Universal Tag Set

- many use smaller sets of coarser tags
- e.g., "universal tag set" containing 12 tags:
- noun, verb, adjective, adverb, pronoun, determiner/article, adposition (preposition or postposition), numeral, conjunction, particle, punctuation, other

sentence:	The	oboist	Heinz	Holliger	has	taken	a	hard	line	about	the	problems
original:	DT	NN	NnP	NnP	Vbz	Vbn	DT	JJ	NN	In	DT	Nns
universal:	Det	Noun	Noun	Noun	Verb	Verb	Det	ADJ	Noun	AdP	Det	Noun

Figure 1: Example English sentence with its language specific and corresponding universal POS tags.
Petrov, Das, McDonald (2011)

Twitter Part-of-Speech Tagging

- we removed some fine-grained POS tags, then added Twitter-specific tags:
hashtag
@-mention
URL / email address
emoticon
Twitter discourse marker
other (multi-word abbreviations, symbols, garbage)

word sense vs. part-of-speech

	word sense	part-of-speech
semantic or syntactic?	semantic: indicates meaning of word in its context	syntactic: indicates function of word in its context
number of categories	$\|V\|$ words, ~ 5 senses each \rightarrow $5\|V\|$ categories!	typical POS tag sets have 12 to 45 tags
inter-annotator agreement	low; some sense distinctions are highly subjective	high; relatively few POS tags and function is relatively shallow / surface-level independent or joint classification of nearby words? independent: can classify a single word based on context words; structured prediction is rarely used
joint: strong relationship between tags of nearby words; structured prediction often used		

How might POS tags be useful?

- text classification
- machine translation
- question answering

Classification Framework

inference: solve argmax

modeling: define score function

$\operatorname{classify}(x, \boldsymbol{\theta})=\operatorname{argmax} \operatorname{score}(x, y, \boldsymbol{\theta})$ y

learning: choose $\boldsymbol{\theta}$

Applications of our Classification Framework

text classification:

$$
\text { classify }_{\text {text }}^{\text {linear }}(\boldsymbol{x}, \boldsymbol{\theta})=\underset{y \in \mathcal{L}}{\operatorname{argmax}} \sum_{i} \theta_{i} f_{i}(\boldsymbol{x}, y)
$$

$$
\mathcal{L}=\{\text { objective, subjective }\}
$$

x	y
the hulk is an anger fueled monster with incredible strength and resistance to damage .	objective
in trying to be daring and original , it comes off as only occasionally satirical and never fresh .	subjective

Applications of our Classification Framework

word sense classifier for bass:

$$
\text { classify }_{\text {bassWSD }}^{\text {linear }}(\boldsymbol{x}, \boldsymbol{\theta})=\underset{y \in \mathcal{L}_{\text {bass }}}{\operatorname{argmax}} \sum_{i} \theta_{i} f_{i}(\boldsymbol{x}, y)
$$

$\mathcal{L}_{\text {bass }}=\left\{\right.$ bass $_{1}$, bass $_{2}, \ldots$, bass $\left._{8}\right\}$

- $\mathrm{S}:(\mathrm{n})$ bass (the lowest part of the musical r
- S: (n) bass, bass part (the lowest part in pol
- S: (n) bass, basso (an adult male singer w
- $\mathrm{S}:(\mathrm{n})$ sea bass, bass (the lean flesh of a salt Serranidae)
- S: (n) freshwater bass, bass (any of various with lean flesh (especially of the genus Micr
- S: (n) bass, bass voice, basso (the lowest ad
- $\mathrm{S}:(\mathrm{n})$ bass (the member with the lowest ran instruments)
- $\mathrm{S}:(\mathrm{n})$ bass (nontechnical name for any of nt freshwater spiny-finned fishes)

Applications of our Classification Framework

skip-gram model as a classifier:

$$
\text { classify }_{\text {skipgram }}(x, \boldsymbol{\theta})=\underset{y \in \mathcal{L}}{\operatorname{argmax}} \boldsymbol{\theta}^{(\mathrm{in}, x)} \cdot \boldsymbol{\theta}^{(\mathrm{out}, y)}
$$

$\mathcal{L}=V \quad$ (the entire vocabulary)

x	y
agriculture	$<s>$
agriculture	is
agriculture	the

corpus (English Wikipedia):
agriculture is the traditional mainstay of the cambodian economy .
but benares has been destroyed by an earthquake .

Applications of our Classifier Framework so far

task	input (\boldsymbol{x})	output (\boldsymbol{y})	output space (\mathcal{L})	size of \mathcal{L}
text classification	a sentence	gold standard label for x	pre-defined, small label set (e.g., \{positive, negative\})	2 -10
word sense disambiguation	instance of a particular word (e.g., bass) with its context	gold standard word sense of x	pre-defined sense inventory from WordNet for bass	$2-30$
learning skip- gram word embeddings	instance of a word in a corpus	a word in the context of x in a corpus	vocabulary	$\|V\|$
part-of-speech tagging	a sentence	gold standard part-of-speech tags for x	all possible part-of- speech tag sequences with same length as x	$\|P\|^{\|x\|}$

Applications of our Classifier Framework so far

task	input (x)	output (y)	output space (\mathcal{L})	size of \mathcal{L}
text classification	a sentence	gold standard label for x	pre-defined, small label set (e.g., \{positive, negative\})	2-10
word sense disambiguation	instance of a particular word (e.g., bass its cont	gold standard	pre-defined sense la size of	Out!
learning skipgram word embeddings	instance word in a	"structured prediction"		
part-of-speech tagging	a sentence	gold standard part-of-speech tags for x	all possible part-ofspeech tag sequence with same length as	$\|P\|^{\|x\|}$

Simplest kind of structured prediction:Sequence Labeling

Part-of-Speech Tagging

Named Entity Recognition

Some questioned if Tim Cook's first product would be a breakaway hit for Apple.

Learning

$\operatorname{classify}(x, \boldsymbol{\theta})=\operatorname{argmax} \operatorname{score}(x, y, \boldsymbol{\theta})$

Empirical Risk Minimization with Surrogate Loss Functions

- given training data: $\mathcal{T}=\left\{\left\langle\boldsymbol{x}^{(i)}, y^{(i)}\right\rangle\right\}_{i=1}^{|\mathcal{T}|}$ where each $y^{(i)} \in \mathcal{L}$ is a label
- we want to solve the following:

$$
\hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{i=1}^{|\mathcal{T}|} \operatorname{loss}\left(\boldsymbol{x}^{(i)}, y^{(i)}, \boldsymbol{\theta}\right)
$$

many possible loss functions to consider optimizing

Loss Functions

name	loss	where used
cost ("0-1")	$\operatorname{cost}(y, \operatorname{classify}(\boldsymbol{x}, \boldsymbol{\theta}))$	intractable, but underlies "direct error minimization"
perceptron	$-\operatorname{score}(\boldsymbol{x}, y, \boldsymbol{\theta})+\max _{y^{\prime} \in \mathcal{L}} \operatorname{score}\left(\boldsymbol{x}, y^{\prime}, \boldsymbol{\theta}\right)$	perceptron algorithm (Rosenblatt, 1958)
hinge	$-\operatorname{score}(\boldsymbol{x}, y, \boldsymbol{\theta})+\max _{y^{\prime} \in \mathcal{L}}\left(\operatorname{score}\left(\boldsymbol{x}, y^{\prime}, \boldsymbol{\theta}\right)+\operatorname{cost}\left(y, y^{\prime}\right)\right)$	support vector machines, other large- margin algorithms
\log	$-\log p_{\boldsymbol{\theta}}(y \mid \boldsymbol{x})$	
$=\operatorname{score}(\boldsymbol{x}, y, \boldsymbol{\theta})+\log \sum_{y^{\prime} \in \mathcal{L}} \exp \left\{\operatorname{score}\left(\boldsymbol{x}, y^{\prime}, \boldsymbol{\theta}\right)\right\}$	logistic regression, conditional random fields, maximum entropy models	
	$p_{\boldsymbol{\theta}}(y \mid \boldsymbol{x})=\frac{\exp \{\operatorname{score}(\boldsymbol{x}, y, \boldsymbol{\theta})\}}{\sum_{y^{\prime} \in \mathcal{L}} \exp \left\{\operatorname{score}\left(\boldsymbol{x}, y^{\prime}, \boldsymbol{\theta}\right)\right\}}$	

(Sub)gradients of Losses for Linear Models

name	entry \boldsymbol{j} of (sub)gradient of loss for linear model
cost ("0-1")	not subdifferentiable in general
perceptron	$-f_{j}(\boldsymbol{x}, y)+f_{j}(\boldsymbol{x}, \hat{y})$, where $\hat{y}=\operatorname{classify}(\boldsymbol{x}, \boldsymbol{\theta})$
hinge	$-f_{j}(\boldsymbol{x}, y)+f_{j}(\boldsymbol{x}, \tilde{y})$, where $\tilde{y}=\operatorname{costClassify}(\boldsymbol{x}, y, \boldsymbol{\theta})$
log	
classify $(\boldsymbol{x}, \boldsymbol{\theta})=\underset{y}{\operatorname{argmax}} \operatorname{score}\left(\boldsymbol{x}, y^{\prime}, \boldsymbol{\theta}\right) \quad$whatever loss is used during training, classify (NOT costClassify) is used to predict labels for dev/test data!	

$\operatorname{costClassify}(\boldsymbol{x}, y, \boldsymbol{\theta})=\operatorname{argmax} \operatorname{score}\left(\boldsymbol{x}, y^{\prime}, \boldsymbol{\theta}\right)+\operatorname{cost}\left(y, y^{\prime}\right)$

$$
y^{\prime} \in \mathcal{L}
$$

(Sub)gradients of Losses for Linear Models

name	entry \boldsymbol{j} of (sub)gradient of loss for linear model
cost ("0-1")	not subdifferentiable in general
perceptron	$-f_{j}(\boldsymbol{x}, y)+f_{j}(\boldsymbol{x}, \hat{y})$, where $\hat{y}=\operatorname{classify}(\boldsymbol{x}, \boldsymbol{\theta})$
hinge	$-f_{j}(\boldsymbol{x}, y)+f_{j}(\boldsymbol{x}, \tilde{y})$, where $\tilde{y}=\operatorname{costClassify}(\boldsymbol{x}, y, \boldsymbol{\theta})$
log	$-f_{j}(\boldsymbol{x}, y)+\mathbb{E}_{p_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})}\left[f_{j}(\boldsymbol{x}, \cdot)\right]$ expectation of feature value with respect to distribution over y (where distribution is defined by theta) alternative notation: $-f_{j}(\boldsymbol{x}, y)+\mathbb{E}_{y^{\prime} \sim p_{\boldsymbol{\theta}}}(Y \mid \boldsymbol{x})\left[f_{j}\left(\boldsymbol{x}, y^{\prime}\right)\right]$

Sequence Models

- models that assign scores (could be probabilities) to sequences
- general category that includes many models used widely in practice:
- n-gram language models
- hidden Markov models
- "chain" conditional random fields
- maximum entropy Markov models

Hidden Markov Models (HMMs)

- HMMs define a joint probability distribution over input sequences \boldsymbol{x} and output sequences \boldsymbol{y} :

$$
p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{y})
$$

- conditional independence assumptions ("Markov assumption") are used to factorize this joint distribution into small terms
- widely used in NLP, speech recognition, bioinformatics, many other areas

Hidden Markov Models (HMMs)

- HMMs define a joint probability distribution over input sequences \boldsymbol{x} and output sequences \boldsymbol{y} :

$$
p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{y})
$$

- assumption: output sequence \boldsymbol{y} "generates" input sequence x :
$p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{y})=\prod_{i=1}^{|\boldsymbol{x}|} p\left(y_{i} \mid y_{1}, y_{2}, \ldots, y_{i-1}\right) p\left(x_{i} \mid y_{1}, y_{2}, \ldots, y_{i}\right)$
- these are too difficult to estimate, let's use Markov assumptions

Markov Assumption for Language Modeling

$$
\begin{aligned}
& p\left(w_{1} \ldots w_{n}\right)=\prod_{i=1}^{n} p\left(w_{i} \mid w_{1} \ldots w_{i-1}\right) \\
& p\left(w_{1} \ldots w_{n}\right)=\prod_{i=1}^{n} p\left(w_{i} \mid w_{i-k} \ldots w_{i-1}\right)
\end{aligned}
$$

trigram model:

$$
p\left(w_{1} \ldots w_{n}\right)=\prod_{i=1}^{n} p\left(w_{i} \mid w_{i-2} w_{i-1}\right)
$$

Independence and Conditional Independence

- Independence: two random variables X and Y are independent if:

$$
\begin{aligned}
& P(X=x, Y=y)=P(X=x) P(Y=y) \\
& \quad(\text { or } P(x, y)=P(x) P(y))
\end{aligned}
$$

for all values x and y

- Conditional Independence: two random variables X and Y are conditionally independent given a third variable Z if

$$
P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

for all values of x, y, and z

$$
\text { (or } P(x \mid y, z)=P(x \mid z) \text {) }
$$

Markov Assumption for Language Modeling

$$
p\left(w_{1} \ldots w_{n}\right)=\prod_{i=1}^{n} p\left(w_{i} \mid w_{1} \ldots w_{i-1}\right)
$$

trigram model:

$$
\begin{aligned}
p\left(w_{1} \ldots w_{n}\right) & =\prod_{i=1}^{n} p\left(w_{i} \mid w_{i-2} w_{i-1}\right) \\
w_{i} & \perp w_{i-3} \mid w_{i-2}, w_{i-1}
\end{aligned}
$$

Conditional Independence Assumptions of HMMs

- two y's are conditionally independent given the y 's between them:

$$
y_{i} \perp y_{i-2} \mid y_{i-1}
$$

- an x at position i is conditionally independent of other y 's given the y at position i :

$$
\begin{gathered}
x_{i} \perp y_{i-1} \mid y_{i} \\
p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{y})=\prod_{i=1}^{|\boldsymbol{x}|} p\left(y_{i} \mid y_{1}, y_{2}, \ldots, y_{i-1}\right) p\left(x_{i} \mid y_{1}, y_{2}, \ldots, y_{i}\right) \\
\downarrow \downarrow|\boldsymbol{x}| \\
p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{y})=\prod_{i=1} p_{\boldsymbol{\tau}}\left(y_{i} \mid y_{i-1}\right) p_{\boldsymbol{\eta}}\left(x_{i} \mid y_{i}\right)
\end{gathered}
$$

Graphical Model for an HMM

(for a sequence of length 4)

a graphical model is a graph in which:
each node corresponds to a random variable
each directed edge corresponds to a conditional probability distribution of the target node given the source node
conditional independence statements among random variables are encoded by the edge structure

Graphical Model for an HMM

(for a sequence of length 4)

conditional independence statements among random variables are encoded by the edge structure \rightarrow we only have to worry about local distributions:
transition parameters: $p_{\boldsymbol{\tau}}\left(y_{i} \mid y_{i-1}\right)$
emission parameters: $p_{\boldsymbol{\eta}}\left(x_{i} \mid y_{i}\right)$

Graphical Model for an HMM

(for a sequence of length 4)

$$
p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{y})=\prod_{i=1}^{|\boldsymbol{x}|} p_{\boldsymbol{\tau}}\left(y_{i} \mid y_{i-1}\right) p_{\boldsymbol{\eta}}\left(x_{i} \mid y_{i}\right)
$$

transition parameters: $p_{\boldsymbol{\tau}}\left(y_{i} \mid y_{i-1}\right)$
emission parameters: $p_{\boldsymbol{\eta}}\left(x_{i} \mid y_{i}\right)$

"Brown Clustering"

Class-Based n-gram Models of Natural Language

Peter F. Brown*
Peter V. deSouza*
Robert L. Mercer*
IBM T. J. Watson Research Center

Vincent J. Della Pietra*
Jenifer C. Lai*

Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays
June March July April January December October November September August
people guys folks fellows CEOs chaps doubters commies unfortunates blokes
down backwards ashore sideways southward northward overboard aloft downwards adrift water gas coal liquid acid sand carbon steam shale iron
great big vast sudden mere sheer gigantic lifelong scant colossal

Computational Linguistics, 1992

Brown Clustering (Brown et al., 1992)

hidden Markov model with one-cluster-per-word constraint

Brown Clustering (Brown et al., 1992)

hidden Markov model with one-cluster-per-word constraint

algorithm:

- initialize each word as its own cluster
- greedily merge clusters to improve data likelihood

Brown Clustering (Brown et al., 1992)

hidden Markov model with one-cluster-per-word constraint

algorithm:

- initialize each word as its own cluster
- greedily merge clusters to improve data likelihood
outputs hierarchical clustering
we induced 1000 Brown clusters from 56 million English tweets (1 billion words)
only words that appeared at least 40 times
(Owoputi, O'Connor, Dyer, Gimpel, Schneider, and Smith, 2013)

Example Cluster

missed loved hated misread admired underestimated resisted adored disliked regretted missd fancied luved prefered luvd overdid mistyped misd misssed looooved misjudged lovedd loooved loathed lurves lovd

Example Cluster

missed loved hated misread admired underestimated resisted adored disliked regretteo missd fancied luved prefered luvd overdid mistyp d misd misssed)looooved misjudged lovedd lo oved lioathed lurves lovd spelling
variation

"really"

really rly realy genuinely rlly reallly realllly reallyy rele realli relly realllly reli reali sholl rily reallyyy reeeeally realllllly reaally reeeally rili

"really"

really rly realy genuinely rlly reallly realllly reallyy rele realli relly reallllly reli reali sholl rily reallyyy reeeeally realllllly reaally reeeally rili reaaally reaaaally reallyyyy rilly reallllllly reeeeeally reeally shol reallyyy reely relle reaaaaally shole really2 reallyyyyy _really_ realllllllly reaaly realllyy reallii reallt genuinly relli realllyyyy reeeeeeally weally reaaallly reallllyyy reallIIIIIIly reaallly realyy /really/ reaaaaaally

"really"

really rly realy genuinely rlly really realllly reallyy rele realli relly reallllly reli reali sholl rily reallyyy reeeeally realllllly reaally reeeally rili reaaally reaaaally reallyyyy rilly reallllllly reeeeeally reeally shol reallyyy reely relle reaaaaally shole really2 reallyyyyy _really_ realll|ll|ly reaaly realllyy reallii reallt genuinly relli realllyyyy reeeeeeally weally reaaallly reallllyyy reallIIIIIIly reaallly realyy /really/ reaaaaaally reallu reaaaally reeaally rreally reallyreally eally reeeaally reeeaaally reaallyy reallyyyyyy -really- reallyreallyreally rilli reallllyyyy relaly reallllyy really-really r3ally reeli reallie reallIIlyyy rli reall|ll|lllly reaaaly reeeeeeeally

"going to"

gonna gunna gona gna guna gnna ganna qonna gonnna gana qunna gonne goona gonnaa gOnna goina gonnah goingto gunnah gonaa gonan gunnna going2 gonnnnagunnaa gonny gunaa quna goonna qona gonns goinna gonnae qnna gonnaaa gnaa
soo sooo soooo sooooo soooooo sooooooo
s00000000 s000000000 S0000000000
sooooooooooo soooooooooooo
s0000000000000 SOSO S00000000000000
sooooooooooooooo so000000000000000
sososo superrr sooooo000000000000 ssooo
so0o superrrr so0 soooooooooooooooooo
sosososo soooooooo00000000000 SSOO SSSOOO
soooooooooooooo000000 \#too sOo ssoooo s00

Food-Related Adjectives

hot fried peanut homemade grilled spicy soy cheesy coconut veggie roasted leftover blueberry icy dunkin mashed rotten mellow boiling crispy peppermint fruity toasted crunchy scrambled creamy boiled chunky funnel soggy clam steamed cajun steaming chewy steamy nacho mince reese's shredded salted glazed spiced venti pickled powdered butternut miso beet sizzling

Adjective Intensifiers/Qualifiers

kinda hella sorta hecka kindof kindaa kinna hellla propa helluh kindda justa \#slick helllla hela jii sortof hellaa kida wiggity hellllla hekka hellah kindaaa hellaaa kindah knda kind-of slicc wiggidy hellIIlla jih jye kinnda odhee kiinda heka sorda ohde kind've kidna baree rle hellaaaa jussa

