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• No	class	Monday	May	29	(Memorial	Day)
• Final	class	is	Wednesday	May	31
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• Assignment	3	has	been	posted,	due	Thursday	June	1
• Final	project	report	due	Friday,	June	9
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Modeling,	Inference,	Learning

Structured	Prediction:	
size	of	output	space	is	exponential	in	size	of	input
or	is	unbounded	(e.g.,	machine	translation)
(we	can’t	just	enumerate	all	possible	outputs)

learning:	choose	_

modeling:	define		score	functioninference:	solve														_

4



• 2	categories	of	structured	prediction:
score-based	and	search-based
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Score-Based	Structured	Prediction
• focus	on	defining	the	score	function	of	the	
structured	input/output	pair:

• cleanly	separates	score	function,	inference	
algorithm,	and	training	loss
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Modeling	in	Score-Based	SP
• define	score	as	a	sum	or	product	over	“parts”	
of	the	structured	input/output	pair:
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Parts	Functions	in	Score-Based	SP

• for	an	HMM:

• each	word-label	pair	forms	a	part,	and	each	
label	bigram	forms	a	part
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Parts	Functions	in	Score-Based	SP

• for	a	linear	chain	CRF:

• each	label	bigram	forms	a	part	(each	of	which	
includes	entire	input!)
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Parts	Functions	in	Score-Based	SP

• for	a	PCFG:

• each	context-free	grammar	rule	forms	a	part
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Parts	Functions	in	Score-Based	SP

• for	an	arc-factored	dependency	parser:

• each	dependency	arc	forms	a	part
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Inference	in	Score-Based	SP
• inference	algorithms	are	defined	based	on	
decomposition	of	score	into	parts

• smaller	parts	=	easier	to	define	efficient	exact	
inference	algorithms
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Inference	Algorithms	for	Score-Based	SP

• exact	inference	algorithms	are	often	based	on	
dynamic	programming
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Dynamic	Programming	(DP)
• a	class	of	algorithms	that	break	problems	into	
smaller	pieces	and	reuse	solutions	for	pieces
– applicable	if	problem	has	certain	properties	(optimal	
substructure	and	overlapping	sub-problems)

• in	NLP,	we	use	DP	to	iterate	over	exponentially-large	
output	spaces	in	polynomial	time
– Viterbi	and	forward/backward	for	HMMs
– CKY	for	PCFGs
– Eisner	algorithm	for	(arc-factored)	dependency	parsing
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Viterbi	Algorithm
• recursive	equations	+	memoization:
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base	case:	
returns	score	of	sequence	starting	with	label	y for	first	word

recursive	case:
computes	score	of	max-scoring	label	sequence	
that	ends	with	label	y at	position	t

final	value	is	in:



Viterbi	Algorithm
• space	and	time	complexity?
• can	be	read	off	from	the	recursive	equations:
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space	complexity:
size	of	memoization table,	which	is	#	of	unique	indices	of	recursive	equations

so,	space	complexity	is	O(|x|	|L|)

length	of	
sentence

number	
of	labels*



Viterbi	Algorithm
• space	and	time	complexity?
• can	be	read	off	from	the	recursive	equations:
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time	complexity:
size	of	memoization table	*	complexity	of	computing	each	entry

so,	time	complexity	is	O(|x|	|L|	|L|)	=	O(|x|	|L|2)	

length	of	
sentence

number	
of	labels*

each	entry	requires	
iterating	through	the	labels*



Feature	Locality

• feature	locality:	how	big	are	the	parts?
• for	efficient	inference	(w/	DP	or	other	
methods),	we	need	to	be	mindful	of	this

• parts	can	be	arbitrarily	big	in	terms	of	input,	
but	not	in	terms	of	output!

• HMM	parts	are	small	in	both	the	input	and	
output	(only	two	pieces	at	a	time)
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Learning	with	Score-Based	SP:
Empirical	Risk	Minimization
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Cost	Functions
• cost	function:	how	different	are	these	two	structures?

• typically	used	to	compare	predicted	structure	to	gold	standard
• should	reflect	evaluation	metric	for	task

• usual	conventions:
• for	classification,	what	cost	should	we	use?
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Cost	Functions

• for	classification,	we	used:

• how	about	for	sequences?

– “Hamming	cost”:	

– “0-1	cost”:
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Empirical	Risk	Minimization
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• this	is	intractable	so	we	typically	minimize	a	surrogate	
loss	function instead



Loss	Functions	for	Score-Based	SP
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Loss	Functions	for	Score-Based	SP
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Perceptron

Max-Margin Softmax-Margin

Conditional
Likelihood

add	cost	
function

max	to	softmax

max	to	softmax

add	cost	
function
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add	cost	
function

max	to	softmax

max	to	softmax

add	cost	
function

Results:	Named	Entity	Recognition
(Gimpel	&	Smith,	2010)

Softmax-Margin
F1:	86.03

Conditional
Likelihood
F1:	85.54

Max-Margin
F1:	85.55

Perceptron
F1:	85.27



Inference	Algorithms	for	Score-Based	SP

• dynamic	programming
– exact,	but	parts	must	be	small	for	efficiency

• dynamic	programming	+	“cube	pruning”
– permits	approximate	incorporation	of	large	parts	
(“non-local	features”)	while	still	using	dynamic	
program	backbone

• integer	linear	programming
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Cube	Pruning
(Chiang,	2007;	Huang	&	Chiang,	2007)

• Modification	to	dynamic	programming	algorithms	for	
decoding	to	use	non-local	features	approximately

• Keeps	a	k-best	list	of	derivations	for	each	item

• Applies	non-local	feature	functions	on	these	derivations	when	
defining	new	items
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Non-local	features	break	dynamic	programming!
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Clarification
• Cube	pruning	does	not	actually	expand	all	k2 proofs	as	this	

example	showed

• It	uses	a	fast	approximation	that	only	looks	at	O(k) proofs



Integer	Linear	Programming
• (on	board)

51


