TTIC 31210:
Advanced Natural Language Processing

Kevin Gimpel
Spring 2017

Lecture 3:
Word Embeddings

Assignment 1

* Assignment 1 due tonight

Roadmap

review of TTIC 31190 (week 1)

deep learning for NLP (weeks 2-4)

generative models & Bayesian inference (week 5)
Bayesian nonparametrics in NLP (week 6)

EM for unsupervised NLP (week 7)

syntax/semantics and structure prediction (weeks 8-9)
applications (week 10)

Neural Similarity Modeling

“Siamese networks” (Bromley et al., 1993)
— two identical networks with shared parameters
— at end, similarity computed between two representations

Similarity Functions

* many choices for similarity functions
* we talked about some during Lecture 2

Learning for Similarity

We want to learn input representation
function fg as well as any parameters of
similarity function

We’'ll just write all these parameters as 6
How about this loss? (loss A on your handout)

min Z —sim(fo(x1), fo(x2))

V)
(x1,x2)ET

Any potential problems with this?

(Better) Learning for Similarity

* Contrastive hinge loss (loss B on handout):

min Y - [=sim(fo(x1), fo(x2)) + sim(fo(z1), fo(v))]+

<€B1 ,2132>€T

al . = max(0,a)

* v is a “negative” example
* Any potential problems with this?

(Better) Learning for Similarity

* Large-margin contrastive hinge loss:

min > A =sim(fo(x1), fo(m2)) + sim(fa(x1), fo(v))]+

(1,x2)ET

la]. = max(0, a)

A isthe “margin”

(Better) Learning for Similarity

* Large-margin contrastive hinge loss:

min > A =sim(fo(x1), fo(m2)) + sim(fa(x1), fo(v))]+

(1,x2)ET

* How should we choose negative examples?

(Better) Learning for Similarity

* Large-margin contrastive hinge loss:

min > A =sim(fo(x1), fo(m2)) + sim(fa(x1), fo(v))]+

(1,x2)ET

* How should we choose negative examples?

— random: just pick v randomly from the data

—max: v = argmax sim(f9($1), f@(S))
s:(-,8)€T ,s#£x

— many other ways depending on problem

Aside:

On Multiplicative Integration with
Recurrent Neural Networks

Yuhuai Wul-*, Saizheng Zhang?:*, Ying Zhang?, Yoshua Bengio?* and Ruslan Salakhutdinov3-
1 University of Toronto, 2MILA, Université de Montréal, *Carnegie Mellon University, “CIFAR
ywu@cs.toronto.edu, 2{firstname.lastname}Qumontreal.ca,rsalakhu@cs.cmu.edu

11

Recurrent Neural Networks

t — tanh W(m)wt—l—W(h)ht 1_|_b(h)

“hidden vector” 0 0 @

Recurrent Neural Networks

h! — tanh (W(x)a:t LW mpt=1 b<h>)

Multiplicative Integration
Recurrent Neural Networks

h! = tanh (W(w)wt o Wmpt=1 4 b<h>)

On Multiplicative Integration with
Recurrent Neural Networks

2.2 Gradient Properties

The Multiplicative Integration has different gradient properties compared to the additive building
block. For clarity of presentation, we first look at vanilla-RNN and RNN with Multiplicative
Integration embedded, referred to as MI-RNN. That is, h; = ¢(Wzx, + Uh;_; + b) versus

h; = ¢(Wz, ® Uh;_; + b). In a vanilla-RNN, the gradient <Rt can be computed as follows:

oh,_,
Ohy YT r1Taen
on, = 1l U'diag(dh), (5)

k=t—n—+1

where ¢}, = ¢'(Wx, + Uh,_; + b). The equation above shows that the gradient flow through time
heavily depends on the hidden-to-hidden matrix U, but W and x;, appear to play a limited role: they
only come in the derivative of ¢’ mixed with Uhj_1. On the other hand, the gradient %‘: of a
MI-RNN is*:
Bht : T q: . /
— H U~ diag(Wzy,)diag(o},), (6)
aht_n k=t—n+1

14

validation BPC

(b)

3.0

w— yanilla-RNN
2 7k == MI-RNN-simple |-
=&= MI-RNN-general

0 5 10 15 20 25
number of epochs

normalized fequency

RNN

o
u

S
n

o
w

o
)

o
=

=
lo
=
o

(g:)

~05 0.0 0.5
activation values of h_t

MI-RNN

()

o
—
N

o
[
o

O
o
o

normalized fequency
o
o
N

" =1.0 -0.5 0.0 0.5
activation values of h_t

16

Word Embeddings

larcamall
right good big
clear strong
long
: possible
| higher bogh
ower likely recent
first
1997 seCopdrqg
final
Sunday (ks’
Saturday past
MondayFriday July late
Auquét |
eptember carnly
TuesTJP%"\ZSZaV 4 P Becember
ednesday Novendieber lastaxt

Turian et al. (2010)

17

A Neural Probabilistic Language Model

Département d’Informatique et Recherche Opérationnelle
Centre de Recherche Mathématiques
Université de Montréal, Montréal, Québec, Canada

Journal of Machine Learning Research 3 (2003) 1137-1155 Submitted 4/02; Published 2/03

Yoshua Bengio BENGIOY @IRO.UMONTREAL.CA
Réjean Ducharme DUCHARME @IRO.UMONTREAL.CA
Pascal Vincent VINCENTP@IRO.UMONTREAL.CA
Christian Jauvin JAUVINC@IRO.UMONTREAL.CA

* idea: use a neural network for n-gram
language modeling:

PH(wt | Wt—n+1y -y Wt—2, wt—l)

18

A Neural Probabilistic Language Model

Département d’Informatique et Recherche Opérationnelle
Centre de Recherche Mathématiques
Université de Montréal, Montréal, Québec, Canada

Journal of Machine Learning Research 3 (2003) 1137-1155 Submitted 4/02; Published 2/03

Yoshua Bengio BENGIOY @IRO.UMONTREAL.CA
Réjean Ducharme DUCHARME @IRO.UMONTREAL.CA
Pascal Vincent VINCENTP@IRO.UMONTREAL.CA
Christian Jauvin JAUVINC@IRO.UMONTREAL.CA

* this is not the earliest paper on using neural

networks for n-gram language mode
the most well-known and first to sca

e see paper for citations of earlier wor

s, but it’s
e up

¢

Neural Probabilistic Language Models
(Bengio et al., 2003)

1.1 Fighting the Curse of Dimensionality with Distributed Representations

In a nutshell, the idea of the proposed approach can be summarized as follows:

1. associate with each word in the vocabulary a distributed word feature vector (a real-
valued vector in R™),

2. express the joint probability function of word sequences in terms of the feature vectors
of these words in the sequence, and

3. learn simultaneously the word feature vectors and the parameters of that probability
function.

20

Model (Bengio et a

., 2003)

i-th output = P(w, = i| context)

softmax

most| computation here

tanh

.. @)

Table ~.. ~.. Matrix C
look—up
inC

. across words

index for w;_,1 index for w;_»

------------------------ Sssssssssssem e ®

shared parameters

Cwi-a) C(wir)\ _ -7

(.. .)

nd

*

index for w,_;

21

Bengio et al. (2003)

* Experiments:

— they minimized log loss of next word conditioned
on a fixed number of previous words

— no RNNs here. just a feed-forward network.
— ~800k training tokens, vocab size of 17k

— they trained for 5 epochs, which took 3 weeks on
40 CPUs!

Experiments (Bengio et al., 2003)

n C h | m | direct | mix | train. | valid. | test.
MLP1 5 50 | 60 | yes no 182 284 | 268
MLP2 5 50 | 60 | yes | yes 275 | 257
MLP3 5 0| 60| yes no 201 327 | 310
MLP4 5 0|60 | yes | yes 286 | 272
MLP5 5 50 | 30 | yes no 209 296 | 279
MLP6 5 50 | 30 | yes | yes 273 | 259
MLP7 3 50 | 30 | yes no 210 309 | 293
MLPS8 3 50 | 30 | yes | yes 284 | 270
MLP9 5 100 | 30 no no 175 280 | 276
MLP10 5 100 | 30 | no yes 265 | 252

classes). n : order of the model. ¢ : number of word classes in class-based n-grams. 4 :
number of hidden units. m : number of word features for MLPs, number of classes for
class-based n-grams. direct: whether there are direct connections from word features to
outputs. mix: whether the output probabilities of the neural network are mixed with the
output of the trigram (with a weight of 0.5 on each). The last three columns give perplexity

on the training, validation and test sets.

23

Experiments (Bengio et al., 2003)

n C h | m | direct | mix | train. | valid. | test.
MLP1 5 50 | 60 | yes no 182 284 | 268
MLP2 5 50 | 60 | yes | yes 275 | 257
MLP3 5 0|60 | yes no 201 327 | 310
MLP4 5 0|60 | yes | yes 286 | 272
MLP5 5 50 | 30 | yes no 209 296 | 279
MLP6 5 50 | 30 | yes | yes 273 | 259
MLP7 3 50 | 30 | yes no 210 309 | 293
MLPS8 3 50 | 30 | yes | yes 284 | 270
MLP9 5 100 | 30 no no 175 280 | 276
MLP10 5 100 | 30 no yes 265 | 2352

* Observations:
— hidden layer (h > 0) helps
— interpolating with n-gram model (“mix”) helps

— using higher word embedding dimensionality helps

— 5-gram model better than trigram

24

Experiments

n C h | m | direct | mix | train. | valid. | test.
MLP1 5 50 | 60 | vyes no 182 284 | 268
MLP2 5 50 | 60 | yes | yes 275 | 257
MLP3 5 0] 60 | yes no 201 327 | 310
MLP4 5 0] 60| yes | yes 286 | 272
MLP5 5 50 | 30 | yes no 209 296 | 279
MLP6 5 50 | 30 | yes | yes 273 | 259
MLP7 3 50 | 30 | yes no 210 309 | 293
MLPS 3 50 | 30 | yes | yes 284 | 270
MLP9 5 100 | 30 no no 175 280 | 276
MLP10 5 100 | 30 no yes 265 | 252
Del. Int. 3 31 352 | 336
Kneser-Ney back-off | 3 334 | 323
Kneser-Ney back-off | 4 332 | 321
Kneser-Ney back-off | 5 332 | 321
class-based back-off | 3 150 348 | 334
class-based back-off | 3 200 354 | 340
class-based back-off | 3 500 326 | 312
class-based back-off | 3 | 1000 335 | 319

25

Bengio et al. (2003)

* they discuss how the word embedding space
might be interesting to examine but they
don’t do this

* they suggest that a good way to visualize/
interpret word embeddings would be to use 2
dimensions ©

* they discussed handling polysemous words,
unknown words, inference speed-ups, etc.

Collobert et al. (2011)

Journal of Machine Learning Research 12 (2011) 2493-2537 Submitted 1/10; Revised 11/10; Published 8/11

Natural Language Processing (Almost) from Scratch

Ronan Collobert* RONAN@ COLLOBERT.COM
Jason Weston' JWESTON @ GOOGLE.COM
Léon Bottou* LEON @BOTTOU.ORG
Michael Karlen MICHAEL .KARLEN @GMAIL.COM
Koray Kavukcuoglu® KORAY @CS.NYU.EDU
Pavel Kuksa’ PKUKSA@CS.RUTGERS.EDU

NEC Laboratories America
4 Independence Way
Princeton, NJ 08540

Input Window

word of interest

Text cat sat on the mat
Feature 1 w} w% w]lv
Feature K ’wf{ ’wf ’wjl\{;

o
Lookup Table Y
LTy AN~
= S I |d
LTy x AN~ | | B B H
—conat ¥
Linear (v
M! xO N~ | |
n%z,u .
HardTanh v

/S A~ | |

Linear

M? x@ | |

np., = #tags

Collobert et al. Pairwise Ranking Loss

min Y Y[fol(@r,) + fol{wr, w5, w, 27, w1))] 4
(x1,..., x11)ET weV
* T istraining set of 11-word windows
*) isvocabulary
 What is going on here? (loss C on handout)

Collobert et al. Pairwise Ranking Loss

min Y SO fol{wr, e m1) + fol(@1, w5, 0,7, w1y
(x1,...,x11)ET weV
T is training set of 11-word windows
*) isvocabulary
 What is going on here?

— Make actual text window have higher score than
all windows with center word replaced by w

Collobert et al. Pairwise Ranking Loss

min > S (= fol(w, 1))+ fol(w1, s w0, 27, w1
<CB :U11>€T weV
T is training set of 11-word windows
*) isvocabulary

* This still sums over entire vocabulary, so it
should be as slow as log loss...

* Why can it be faster?

— when using SGD, summation = sample

