
TTIC	
 31210:	

Advanced	
 Natural	
 Language	
 Processing	

Kevin	
 Gimpel	

Spring	
 2017	

	

Lecture	
 3:	

Word	
 Embeddings	

1	

Assignment	
 1	

•  Assignment	
 1	
 due	
 tonight	

2	

Roadmap	

•  review	
 of	
 TTIC	
 31190	
 (week	
 1)	

•  deep	
 learning	
 for	
 NLP	
 (weeks	
 2-­‐4)	

•  generaMve	
 models	
 &	
 Bayesian	
 inference	
 (week	
 5)	

•  Bayesian	
 nonparametrics	
 in	
 NLP	
 (week	
 6)	

•  EM	
 for	
 unsupervised	
 NLP	
 (week	
 7)	

•  syntax/semanMcs	
 and	
 structure	
 predicMon	
 (weeks	
 8-­‐9)	

•  applicaMons	
 (week	
 10)	

3	

Neural	
 Similarity	
 Modeling	

4	

•  “Siamese	
 networks”	
 (Bromley	
 et	
 al.,	
 1993)	

–  two	
 idenMcal	
 networks	
 with	
 shared	
 parameters	

–  at	
 end,	
 similarity	
 computed	
 between	
 two	
 representaMons	

Similarity	
 FuncMons	

•  many	
 choices	
 for	
 similarity	
 funcMons	

•  we	
 talked	
 about	
 some	
 during	
 Lecture	
 2	

5	

Learning	
 for	
 Similarity	

•  We	
 want	
 to	
 learn	
 input	
 representaMon	

funcMon	
 	
 	
 	
 	
 	
 	
 as	
 well	
 as	
 any	
 parameters	
 of	

similarity	
 funcMon	

•  We’ll	
 just	
 write	
 all	
 these	
 parameters	
 as	
 	

•  How	
 about	
 this	
 loss?	
 (loss	
 A	
 on	
 your	
 handout)	

•  Any	
 potenMal	
 problems	
 with	
 this?	

6	

(Beber)	
 Learning	
 for	
 Similarity	

•  ContrasMve	
 hinge	
 loss	
 (loss	
 B	
 on	
 handout):	

•  	
 	
 	
 	
 is	
 a	
 “negaMve”	
 example	

•  Any	
 potenMal	
 problems	
 with	
 this?	
 	

7	

(Beber)	
 Learning	
 for	
 Similarity	

•  Large-­‐margin	
 contrasMve	
 hinge	
 loss:	

•  	
 	
 	
 	
 	
 is	
 the	
 “margin”	

8	

(Beber)	
 Learning	
 for	
 Similarity	

•  Large-­‐margin	
 contrasMve	
 hinge	
 loss:	

	

•  How	
 should	
 we	
 choose	
 negaMve	
 examples?	

9	

(Beber)	
 Learning	
 for	
 Similarity	

•  Large-­‐margin	
 contrasMve	
 hinge	
 loss:	

	

•  How	
 should	
 we	
 choose	
 negaMve	
 examples?	

–  random:	
 just	
 pick	
 v	
 randomly	
 from	
 the	
 data	

– max:	

– many	
 other	
 ways	
 depending	
 on	
 problem	

10	

Aside:	

11	

Recurrent	
 Neural	
 Networks	

12	

“hidden	
 vector”	

Recurrent	
 Neural	
 Networks	

13	

MulMplicaMve	
 IntegraMon	
 	

Recurrent	
 Neural	
 Networks	

14	

15	

16	

RNN	
 MI-­‐RNN	

17	

Turian	
 et	
 al.	
 (2010)	

Word	
 Embeddings	

18	

Journal of Machine Learning Research 3 (2003) 1137–1155 Submitted 4/02; Published 2/03

A Neural Probabilistic Language Model

Yoshua Bengio BENGIOY@IRO.UMONTREAL.CA
Réjean Ducharme DUCHARME@IRO.UMONTREAL.CA
Pascal Vincent VINCENTP@IRO.UMONTREAL.CA
Christian Jauvin JAUVINC@IRO.UMONTREAL.CA
Département d’Informatique et Recherche Opérationnelle
Centre de Recherche Mathématiques
Université de Montréal, Montréal, Québec, Canada

Editors: Jaz Kandola, Thomas Hofmann, Tomaso Poggio and John Shawe-Taylor

Abstract
A goal of statistical language modeling is to learn the joint probability function of sequences of
words in a language. This is intrinsically difficult because of the curse of dimensionality: a word
sequence on which the model will be tested is likely to be different from all the word sequences seen
during training. Traditional but very successful approaches based on n-grams obtain generalization
by concatenating very short overlapping sequences seen in the training set. We propose to fight the
curse of dimensionality by learning a distributed representation for words which allows each
training sentence to inform the model about an exponential number of semantically neighboring
sentences. The model learns simultaneously (1) a distributed representation for each word along
with (2) the probability function for word sequences, expressed in terms of these representations.
Generalization is obtained because a sequence of words that has never been seen before gets high
probability if it is made of words that are similar (in the sense of having a nearby representation) to
words forming an already seen sentence. Training such large models (with millions of parameters)
within a reasonable time is itself a significant challenge. We report on experiments using neural
networks for the probability function, showing on two text corpora that the proposed approach
significantly improves on state-of-the-art n-gram models, and that the proposed approach allows to
take advantage of longer contexts.
Keywords: Statistical language modeling, artificial neural networks, distributed representation,
curse of dimensionality

1. Introduction

A fundamental problem that makes language modeling and other learning problems difficult is the
curse of dimensionality. It is particularly obvious in the case when one wants to model the joint
distribution between many discrete random variables (such as words in a sentence, or discrete at-
tributes in a data-mining task). For example, if one wants to model the joint distribution of 10
consecutive words in a natural language with a vocabulary V of size 100,000, there are potentially
10000010 � 1 = 1050� 1 free parameters. When modeling continuous variables, we obtain gen-
eralization more easily (e.g. with smooth classes of functions like multi-layer neural networks or
Gaussian mixture models) because the function to be learned can be expected to have some lo-
cal smoothness properties. For discrete spaces, the generalization structure is not as obvious: any
change of these discrete variables may have a drastic impact on the value of the function to be esti-

c�2003 Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Jauvin.

•  idea:	
 use	
 a	
 neural	
 network	
 for	
 n-­‐gram	

language	
 modeling:	

19	

Journal of Machine Learning Research 3 (2003) 1137–1155 Submitted 4/02; Published 2/03

A Neural Probabilistic Language Model

Yoshua Bengio BENGIOY@IRO.UMONTREAL.CA
Réjean Ducharme DUCHARME@IRO.UMONTREAL.CA
Pascal Vincent VINCENTP@IRO.UMONTREAL.CA
Christian Jauvin JAUVINC@IRO.UMONTREAL.CA
Département d’Informatique et Recherche Opérationnelle
Centre de Recherche Mathématiques
Université de Montréal, Montréal, Québec, Canada

Editors: Jaz Kandola, Thomas Hofmann, Tomaso Poggio and John Shawe-Taylor

Abstract
A goal of statistical language modeling is to learn the joint probability function of sequences of
words in a language. This is intrinsically difficult because of the curse of dimensionality: a word
sequence on which the model will be tested is likely to be different from all the word sequences seen
during training. Traditional but very successful approaches based on n-grams obtain generalization
by concatenating very short overlapping sequences seen in the training set. We propose to fight the
curse of dimensionality by learning a distributed representation for words which allows each
training sentence to inform the model about an exponential number of semantically neighboring
sentences. The model learns simultaneously (1) a distributed representation for each word along
with (2) the probability function for word sequences, expressed in terms of these representations.
Generalization is obtained because a sequence of words that has never been seen before gets high
probability if it is made of words that are similar (in the sense of having a nearby representation) to
words forming an already seen sentence. Training such large models (with millions of parameters)
within a reasonable time is itself a significant challenge. We report on experiments using neural
networks for the probability function, showing on two text corpora that the proposed approach
significantly improves on state-of-the-art n-gram models, and that the proposed approach allows to
take advantage of longer contexts.
Keywords: Statistical language modeling, artificial neural networks, distributed representation,
curse of dimensionality

1. Introduction

A fundamental problem that makes language modeling and other learning problems difficult is the
curse of dimensionality. It is particularly obvious in the case when one wants to model the joint
distribution between many discrete random variables (such as words in a sentence, or discrete at-
tributes in a data-mining task). For example, if one wants to model the joint distribution of 10
consecutive words in a natural language with a vocabulary V of size 100,000, there are potentially
10000010 � 1 = 1050� 1 free parameters. When modeling continuous variables, we obtain gen-
eralization more easily (e.g. with smooth classes of functions like multi-layer neural networks or
Gaussian mixture models) because the function to be learned can be expected to have some lo-
cal smoothness properties. For discrete spaces, the generalization structure is not as obvious: any
change of these discrete variables may have a drastic impact on the value of the function to be esti-

c�2003 Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Jauvin.

•  this	
 is	
 not	
 the	
 earliest	
 paper	
 on	
 using	
 neural	

networks	
 for	
 n-­‐gram	
 language	
 models,	
 but	
 it’s	

the	
 most	
 well-­‐known	
 and	
 first	
 to	
 scale	
 up	

•  see	
 paper	
 for	
 citaMons	
 of	
 earlier	
 work	

Neural	
 ProbabilisMc	
 Language	
 Models	

(Bengio	
 et	
 al.,	
 2003)	

20	

A NEURAL PROBABILISTIC LANGUAGE MODEL

will focus on in this paper. First, it is not taking into account contexts farther than 1 or 2 words,1
second it is not taking into account the “similarity” between words. For example, having seen the
sentence “The cat is walking in the bedroom” in the training corpus should help us gener-
alize to make the sentence “A dog was running in a room” almost as likely, simply because
“dog” and “cat” (resp. “the” and “a”, “room” and “bedroom”, etc...) have similar semantic and
grammatical roles.

There are many approaches that have been proposed to address these two issues, and we will
briefly explain in Section 1.2 the relations between the approach proposed here and some of these
earlier approaches. We will first discuss what is the basic idea of the proposed approach. A more
formal presentation will follow in Section 2, using an implementation of these ideas that relies
on shared-parameter multi-layer neural networks. Another contribution of this paper concerns the
challenge of training such very large neural networks (with millions of parameters) for very large
data sets (with millions or tens of millions of examples). Finally, an important contribution of
this paper is to show that training such large-scale model is expensive but feasible, scales to large
contexts, and yields good comparative results (Section 4).

Many operations in this paper are in matrix notation, with lower case v denoting a column vector
and v0 its transpose, Aj the j-th row of a matrix A, and x.y= x0y.

1.1 Fighting the Curse of Dimensionality with Distributed Representations

In a nutshell, the idea of the proposed approach can be summarized as follows:

1. associate with each word in the vocabulary a distributed word feature vector (a real-
valued vector in Rm),

2. express the joint probability function of word sequences in terms of the feature vectors
of these words in the sequence, and

3. learn simultaneously the word feature vectors and the parameters of that probability
function.

The feature vector represents different aspects of the word: each word is associated with a point
in a vector space. The number of features (e.g. m =30, 60 or 100 in the experiments) is much
smaller than the size of the vocabulary (e.g. 17,000). The probability function is expressed as a
product of conditional probabilities of the next word given the previous ones, (e.g. using a multi-
layer neural network to predict the next word given the previous ones, in the experiments). This
function has parameters that can be iteratively tuned in order to maximize the log-likelihood of
the training data or a regularized criterion, e.g. by adding a weight decay penalty.2 The feature
vectors associated with each word are learned, but they could be initialized using prior knowledge
of semantic features.

Why does it work? In the previous example, if we knew that dog and cat played simi-
lar roles (semantically and syntactically), and similarly for (the,a), (bedroom,room), (is,was),

1. n-grams with n up to 5 (i.e. 4 words of context) have been reported, though, but due to data scarcity, most predictions
are made with a much shorter context.

2. Like in ridge regression, the squared norm of the parameters is penalized.

1139

Model	
 (Bengio	
 et	
 al.,	
 2003)	

21	

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

Bengio	
 et	
 al.	
 (2003)	

•  Experiments:	

–  they	
 minimized	
 log	
 loss	
 of	
 next	
 word	
 condiMoned	

on	
 a	
 fixed	
 number	
 of	
 previous	
 words	

– no	
 RNNs	
 here.	
 just	
 a	
 feed-­‐forward	
 network.	

– ~800k	
 training	
 tokens,	
 vocab	
 size	
 of	
 17k	

–  they	
 trained	
 for	
 5	
 epochs,	
 which	
 took	
 3	
 weeks	
 on	

40	
 CPUs!	

22	

Experiments	
 (Bengio	
 et	
 al.,	
 2003)	

23	

A NEURAL PROBABILISTIC LANGUAGE MODEL

n c h m direct mix train. valid. test.
MLP1 5 50 60 yes no 182 284 268
MLP2 5 50 60 yes yes 275 257
MLP3 5 0 60 yes no 201 327 310
MLP4 5 0 60 yes yes 286 272
MLP5 5 50 30 yes no 209 296 279
MLP6 5 50 30 yes yes 273 259
MLP7 3 50 30 yes no 210 309 293
MLP8 3 50 30 yes yes 284 270
MLP9 5 100 30 no no 175 280 276
MLP10 5 100 30 no yes 265 252
Del. Int. 3 31 352 336
Kneser-Ney back-off 3 334 323
Kneser-Ney back-off 4 332 321
Kneser-Ney back-off 5 332 321
class-based back-off 3 150 348 334
class-based back-off 3 200 354 340
class-based back-off 3 500 326 312
class-based back-off 3 1000 335 319
class-based back-off 3 2000 343 326
class-based back-off 4 500 327 312
class-based back-off 5 500 327 312

Table 1: Comparative results on the Brown corpus. The deleted interpolation trigram has a test per-
plexity that is 33% above that of the neural network with the lowest validation perplexity.
The difference is 24% in the case of the best n-gram (a class-based model with 500 word
classes). n : order of the model. c : number of word classes in class-based n-grams. h :
number of hidden units. m : number of word features for MLPs, number of classes for
class-based n-grams. direct: whether there are direct connections from word features to
outputs. mix: whether the output probabilities of the neural network are mixed with the
output of the trigram (with a weight of 0.5 on each). The last three columns give perplexity
on the training, validation and test sets.

probabilities. On the other hand, without those connections the hidden units form a tight bottleneck
which might force better generalization.

Table 2 gives similar results on the larger corpus (AP News), albeit with a smaller difference
in perplexity (8%). Only 5 epochs were performed (in approximately three weeks with 40 CPUs).
The class-based model did not appear to help the n-gram models in this case, but the high-order
modified Kneser-Ney back-off model gave the best results among the n-gram models.

5. Extensions and Future Work

In this section, we describe extensions to the model described above, and directions for future work.

1149

A NEURAL PROBABILISTIC LANGUAGE MODEL

n c h m direct mix train. valid. test.
MLP1 5 50 60 yes no 182 284 268
MLP2 5 50 60 yes yes 275 257
MLP3 5 0 60 yes no 201 327 310
MLP4 5 0 60 yes yes 286 272
MLP5 5 50 30 yes no 209 296 279
MLP6 5 50 30 yes yes 273 259
MLP7 3 50 30 yes no 210 309 293
MLP8 3 50 30 yes yes 284 270
MLP9 5 100 30 no no 175 280 276
MLP10 5 100 30 no yes 265 252
Del. Int. 3 31 352 336
Kneser-Ney back-off 3 334 323
Kneser-Ney back-off 4 332 321
Kneser-Ney back-off 5 332 321
class-based back-off 3 150 348 334
class-based back-off 3 200 354 340
class-based back-off 3 500 326 312
class-based back-off 3 1000 335 319
class-based back-off 3 2000 343 326
class-based back-off 4 500 327 312
class-based back-off 5 500 327 312

Table 1: Comparative results on the Brown corpus. The deleted interpolation trigram has a test per-
plexity that is 33% above that of the neural network with the lowest validation perplexity.
The difference is 24% in the case of the best n-gram (a class-based model with 500 word
classes). n : order of the model. c : number of word classes in class-based n-grams. h :
number of hidden units. m : number of word features for MLPs, number of classes for
class-based n-grams. direct: whether there are direct connections from word features to
outputs. mix: whether the output probabilities of the neural network are mixed with the
output of the trigram (with a weight of 0.5 on each). The last three columns give perplexity
on the training, validation and test sets.

probabilities. On the other hand, without those connections the hidden units form a tight bottleneck
which might force better generalization.

Table 2 gives similar results on the larger corpus (AP News), albeit with a smaller difference
in perplexity (8%). Only 5 epochs were performed (in approximately three weeks with 40 CPUs).
The class-based model did not appear to help the n-gram models in this case, but the high-order
modified Kneser-Ney back-off model gave the best results among the n-gram models.

5. Extensions and Future Work

In this section, we describe extensions to the model described above, and directions for future work.

1149

Experiments	
 (Bengio	
 et	
 al.,	
 2003)	

24	

A NEURAL PROBABILISTIC LANGUAGE MODEL

n c h m direct mix train. valid. test.
MLP1 5 50 60 yes no 182 284 268
MLP2 5 50 60 yes yes 275 257
MLP3 5 0 60 yes no 201 327 310
MLP4 5 0 60 yes yes 286 272
MLP5 5 50 30 yes no 209 296 279
MLP6 5 50 30 yes yes 273 259
MLP7 3 50 30 yes no 210 309 293
MLP8 3 50 30 yes yes 284 270
MLP9 5 100 30 no no 175 280 276
MLP10 5 100 30 no yes 265 252
Del. Int. 3 31 352 336
Kneser-Ney back-off 3 334 323
Kneser-Ney back-off 4 332 321
Kneser-Ney back-off 5 332 321
class-based back-off 3 150 348 334
class-based back-off 3 200 354 340
class-based back-off 3 500 326 312
class-based back-off 3 1000 335 319
class-based back-off 3 2000 343 326
class-based back-off 4 500 327 312
class-based back-off 5 500 327 312

Table 1: Comparative results on the Brown corpus. The deleted interpolation trigram has a test per-
plexity that is 33% above that of the neural network with the lowest validation perplexity.
The difference is 24% in the case of the best n-gram (a class-based model with 500 word
classes). n : order of the model. c : number of word classes in class-based n-grams. h :
number of hidden units. m : number of word features for MLPs, number of classes for
class-based n-grams. direct: whether there are direct connections from word features to
outputs. mix: whether the output probabilities of the neural network are mixed with the
output of the trigram (with a weight of 0.5 on each). The last three columns give perplexity
on the training, validation and test sets.

probabilities. On the other hand, without those connections the hidden units form a tight bottleneck
which might force better generalization.

Table 2 gives similar results on the larger corpus (AP News), albeit with a smaller difference
in perplexity (8%). Only 5 epochs were performed (in approximately three weeks with 40 CPUs).
The class-based model did not appear to help the n-gram models in this case, but the high-order
modified Kneser-Ney back-off model gave the best results among the n-gram models.

5. Extensions and Future Work

In this section, we describe extensions to the model described above, and directions for future work.

1149

•  ObservaMons:	

–  hidden	
 layer	
 (h	
 >	
 0)	
 helps	

–  interpolaMng	
 with	
 n-­‐gram	
 model	
 (“mix”)	
 helps	

–  using	
 higher	
 word	
 embedding	
 dimensionality	
 helps	

–  5-­‐gram	
 model	
 beber	
 than	
 trigram	

Experiments	

25	

A NEURAL PROBABILISTIC LANGUAGE MODEL

n c h m direct mix train. valid. test.
MLP1 5 50 60 yes no 182 284 268
MLP2 5 50 60 yes yes 275 257
MLP3 5 0 60 yes no 201 327 310
MLP4 5 0 60 yes yes 286 272
MLP5 5 50 30 yes no 209 296 279
MLP6 5 50 30 yes yes 273 259
MLP7 3 50 30 yes no 210 309 293
MLP8 3 50 30 yes yes 284 270
MLP9 5 100 30 no no 175 280 276
MLP10 5 100 30 no yes 265 252
Del. Int. 3 31 352 336
Kneser-Ney back-off 3 334 323
Kneser-Ney back-off 4 332 321
Kneser-Ney back-off 5 332 321
class-based back-off 3 150 348 334
class-based back-off 3 200 354 340
class-based back-off 3 500 326 312
class-based back-off 3 1000 335 319
class-based back-off 3 2000 343 326
class-based back-off 4 500 327 312
class-based back-off 5 500 327 312

Table 1: Comparative results on the Brown corpus. The deleted interpolation trigram has a test per-
plexity that is 33% above that of the neural network with the lowest validation perplexity.
The difference is 24% in the case of the best n-gram (a class-based model with 500 word
classes). n : order of the model. c : number of word classes in class-based n-grams. h :
number of hidden units. m : number of word features for MLPs, number of classes for
class-based n-grams. direct: whether there are direct connections from word features to
outputs. mix: whether the output probabilities of the neural network are mixed with the
output of the trigram (with a weight of 0.5 on each). The last three columns give perplexity
on the training, validation and test sets.

probabilities. On the other hand, without those connections the hidden units form a tight bottleneck
which might force better generalization.

Table 2 gives similar results on the larger corpus (AP News), albeit with a smaller difference
in perplexity (8%). Only 5 epochs were performed (in approximately three weeks with 40 CPUs).
The class-based model did not appear to help the n-gram models in this case, but the high-order
modified Kneser-Ney back-off model gave the best results among the n-gram models.

5. Extensions and Future Work

In this section, we describe extensions to the model described above, and directions for future work.

1149

A NEURAL PROBABILISTIC LANGUAGE MODEL

n c h m direct mix train. valid. test.
MLP1 5 50 60 yes no 182 284 268
MLP2 5 50 60 yes yes 275 257
MLP3 5 0 60 yes no 201 327 310
MLP4 5 0 60 yes yes 286 272
MLP5 5 50 30 yes no 209 296 279
MLP6 5 50 30 yes yes 273 259
MLP7 3 50 30 yes no 210 309 293
MLP8 3 50 30 yes yes 284 270
MLP9 5 100 30 no no 175 280 276
MLP10 5 100 30 no yes 265 252
Del. Int. 3 31 352 336
Kneser-Ney back-off 3 334 323
Kneser-Ney back-off 4 332 321
Kneser-Ney back-off 5 332 321
class-based back-off 3 150 348 334
class-based back-off 3 200 354 340
class-based back-off 3 500 326 312
class-based back-off 3 1000 335 319
class-based back-off 3 2000 343 326
class-based back-off 4 500 327 312
class-based back-off 5 500 327 312

Table 1: Comparative results on the Brown corpus. The deleted interpolation trigram has a test per-
plexity that is 33% above that of the neural network with the lowest validation perplexity.
The difference is 24% in the case of the best n-gram (a class-based model with 500 word
classes). n : order of the model. c : number of word classes in class-based n-grams. h :
number of hidden units. m : number of word features for MLPs, number of classes for
class-based n-grams. direct: whether there are direct connections from word features to
outputs. mix: whether the output probabilities of the neural network are mixed with the
output of the trigram (with a weight of 0.5 on each). The last three columns give perplexity
on the training, validation and test sets.

probabilities. On the other hand, without those connections the hidden units form a tight bottleneck
which might force better generalization.

Table 2 gives similar results on the larger corpus (AP News), albeit with a smaller difference
in perplexity (8%). Only 5 epochs were performed (in approximately three weeks with 40 CPUs).
The class-based model did not appear to help the n-gram models in this case, but the high-order
modified Kneser-Ney back-off model gave the best results among the n-gram models.

5. Extensions and Future Work

In this section, we describe extensions to the model described above, and directions for future work.

1149

Bengio	
 et	
 al.	
 (2003)	

•  they	
 discuss	
 how	
 the	
 word	
 embedding	
 space	

might	
 be	
 interesMng	
 to	
 examine	
 but	
 they	

don’t	
 do	
 this	

•  they	
 suggest	
 that	
 a	
 good	
 way	
 to	
 visualize/
interpret	
 word	
 embeddings	
 would	
 be	
 to	
 use	
 2	

dimensions	
 J	

•  they	
 discussed	
 handling	
 polysemous	
 words,	

unknown	
 words,	
 inference	
 speed-­‐ups,	
 etc.	

26	

Collobert	
 et	
 al.	
 (2011)	

27	

Journal of Machine Learning Research 12 (2011) 2493-2537 Submitted 1/10; Revised 11/10; Published 8/11

Natural Language Processing (Almost) from Scratch

Ronan Collobert∗ RONAN@COLLOBERT.COM
Jason Weston† JWESTON@GOOGLE.COM
Léon Bottou‡ LEON@BOTTOU.ORG
Michael Karlen MICHAEL.KARLEN@GMAIL.COM
Koray Kavukcuoglu§ KORAY@CS.NYU.EDU
Pavel Kuksa¶ PKUKSA@CS.RUTGERS.EDU
NEC Laboratories America
4 Independence Way
Princeton, NJ 08540

Editor:Michael Collins

Abstract
We propose a unified neural network architecture and learning algorithm that can be applied to var-
ious natural language processing tasks including part-of-speech tagging, chunking, named entity
recognition, and semantic role labeling. This versatility is achieved by trying to avoid task-specific
engineering and therefore disregarding a lot of prior knowledge. Instead of exploiting man-made
input features carefully optimized for each task, our system learns internal representations on the
basis of vast amounts of mostly unlabeled training data. This work is then used as a basis for
building a freely available tagging system with good performance and minimal computational re-
quirements.
Keywords: natural language processing, neural networks

1. Introduction

Will a computer program ever be able to convert a piece of English text into a programmer friendly
data structure that describes the meaning of the natural language text? Unfortunately, no consensus
has emerged about the form or the existence of such a data structure. Until such fundamental
Articial Intelligence problems are resolved, computer scientists must settle for the reduced objective
of extracting simpler representations that describe limited aspects of the textual information.

These simpler representations are often motivated by specific applications (for instance, bag-
of-words variants for information retrieval), or by our belief that they capture something more gen-
eral about natural language. They can describe syntactic information (e.g., part-of-speech tagging,
chunking, and parsing) or semantic information (e.g., word-sense disambiguation, semantic role
labeling, named entity extraction, and anaphora resolution). Text corpora have been manually an-
notated with such data structures in order to compare the performance of various systems. The
availability of standard benchmarks has stimulated research in Natural Language Processing (NLP)

∗. Ronan Collobert is now with the Idiap Research Institute, Switzerland.
†. Jason Weston is now with Google, New York, NY.
‡. Léon Bottou is now with Microsoft, Redmond, WA.
§. Koray Kavukcuoglu is also with New York University, New York, NY.
¶. Pavel Kuksa is also with Rutgers University, New Brunswick, NJ.

c⃝2011 Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu and Pavel Kuksa.

28	

NATURAL LANGUAGE PROCESSING (ALMOST) FROM SCRATCH

Input Window

Lookup Table

Linear

HardTanh

Linear

Text cat sat on the mat

Feature 1 w1
1 w1

2 . . . w1

N
.
.
.

Feature K wK
1 wK

2 . . . wK
N

LTW 1

.

.

.

LTW K

M1
× ·

M2
× ·

word of interest

d

concat

n
1
hu

n
2
hu

= #tags

Figure 1: Window approach network.

complex features (e.g., extracted from a parse tree) which can impact the computational cost which
might be important for large-scale applications or applications requiring real-time response.

Instead, we advocate a radically different approach: as input we will try to pre-process our
features as little as possible and then use a multilayer neural network (NN) architecture, trained in
an end-to-end fashion. The architecture takes the input sentence and learns several layers of feature
extraction that process the inputs. The features computed by the deep layers of the network are
automatically trained by backpropagation to be relevant to the task. We describe in this section a
general multilayer architecture suitable for all our NLP tasks, which is generalizable to other NLP
tasks as well.

Our architecture is summarized in Figure 1 and Figure 2. The first layer extracts features for
each word. The second layer extracts features from a window of words or from the whole sentence,
treating it as a sequence with local and global structure (i.e., it is not treated like a bag of words).
The following layers are standard NN layers.

3.1 Notations

We consider a neural network fθ(·), with parameters θ. Any feed-forward neural network with L
layers, can be seen as a composition of functions f lθ(·), corresponding to each layer l:

fθ(·) = f Lθ (f L−1θ (. . . f 1θ (·) . . .)) .

2499

Collobert	
 et	
 al.	
 Pairwise	
 Ranking	
 Loss	

29	

•  	
 	
 	
 	
 	
 	
 is	
 training	
 set	
 of	
 11-­‐word	
 windows	

•  	
 	
 	
 	
 	
 	
 is	
 vocabulary	

•  What	
 is	
 going	
 on	
 here?	
 (loss	
 C	
 on	
 handout)	

Collobert	
 et	
 al.	
 Pairwise	
 Ranking	
 Loss	

30	

•  	
 	
 	
 	
 	
 	
 is	
 training	
 set	
 of	
 11-­‐word	
 windows	

•  	
 	
 	
 	
 	
 	
 is	
 vocabulary	

•  What	
 is	
 going	
 on	
 here?	

– Make	
 actual	
 text	
 window	
 have	
 higher	
 score	
 than	

all	
 windows	
 with	
 center	
 word	
 replaced	
 by	
 w	

Collobert	
 et	
 al.	
 Pairwise	
 Ranking	
 Loss	

31	

•  	
 	
 	
 	
 	
 	
 is	
 training	
 set	
 of	
 11-­‐word	
 windows	

•  	
 	
 	
 	
 	
 	
 is	
 vocabulary	

•  This	
 sMll	
 sums	
 over	
 enMre	
 vocabulary,	
 so	
 it	

should	
 be	
 as	
 slow	
 as	
 log	
 loss…	

•  Why	
 can	
 it	
 be	
 faster?	

– when	
 using	
 SGD,	
 summaMon	
 à	
 sample	

