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1 Binary hypothesis testing

In this lecture, we apply the tools developed in the past few lectures to understand the
problem of distinguishing two distributions (special cases of which have been discussed
in the previous lectures). This problem is also known as the hypothesis testing. Suppose
we have two distributions P0 and P1 on a finite universe U. The “universe” chooses one of
the two distributions and generates the dats, which consists of a sequence x ∈ Un chosen
either from Pn

0 or Pn
1 . The true distribution is unknown to us, but we are guaranteed that

once P0 or P1 is chosen, all n samples in the sequence x are sampled independently from
the chosen distribution. The goal is to distinguish between the following two hypotheses:

• H0: The true distribution is P0.

• H1: The true distribution is P1.

Sometimes H0 is also referred to as the null (default) hypothesis. We will consider (deter-
ministic) tests T : Un → {0, 1}, which take the sequence of samples x as input and select
one of the hypotheses. There are two types of errors we will be concerned with

α(T) := P
x∼Pn

0

[T(x) = 1] (False Positive)

β(T) := P
x∼Pn

1

[T(x) = 0] (False Negative) .

The following claim is easy to prove based on the properties of total-variation distance
considered earlier.

Claim 1.1 minT {α(T) + β(T)} = 1− δTV (Pn
0 , Pn

1 ).

Recall that optimal test for the above claim should be of the form

T(x) =

1 if Pn
1 (x) ≥ P0(x)

0 if Pn
1 (x) < Pn

0 (x)
.
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One may ask why should be should we only consider the optimal tests for minimizing the
sum α(T) + β(T). We may care more about a false positive than a false negative, and may
want to minimize a weighted sum (or some other monotone function) of the errors. The
following lemma shows that all optimal tests should be of the form above, which make a
decision only based on the ratio Pn

0 (x)/Pn
1 (x)

Lemma 1.2 (Neyman-Pearson Lemma) Let T be a test of the form

T(x) =

1 if Pn
1 (x)/Pn

0 (x) ≥ ∆

0 if Pn
0 (x)/Pn

1 (x) < ∆ ,

for some constant ∆ ≥ 0. Let T′ be any other test. Then,

α(T′) ≥ α(T) or β(T′) ≥ β(T) .

Proof: The proof follows simply from the observation that for all x ∈ Un(
T(x)− T′(x)

)
· (Pn

1 (x)− ∆ · Pn
0 (x)) ≥ 0 .

This is true because if Pn
1 (x) − ∆ · Pn

0 (x), then T(x) = 1 and the first quantity is non-
negative. Similarly, when Pn

1 (x)− ∆ · Pn
0 (x) is negative, T(x) = 0 and T(x)− T′(x) ≤ 0.

Summing over all x ∈ Un on both sides gives

E
se∼Pn

1 (x)

[
T(x)− T′(x)

]
− ∆ · E

x∼Pn
1

[
T(x)− T′(x)

]
≥ 0

⇒
(
(1− β(T))− (1− β(T′))

)
− ∆ ·

(
α(T)− α(T′)

)
≥ 0

⇒ β(T′)− β(T)
α(T)− α(T′)

≥ ∆ ≥ 0 .

Thus, α(T)− α(T′) ≥ 0 implies β(T′)− β(T) ≥ 0.

We now discuss how to analyze the error probabilities for the optimal tests as characterized
by the Neyman-Pearson lemma. As before, let Px denote the type (empirical distribution
on U) of the sequence x. Check that the test T(x) considered above can be written in the
following form

Pn
1 (x)

Pn
0 (x)

≥ ∆ ⇔ D(Px‖P0)− D(Px‖P1) ≥
1
n
· log ∆ .

We define the following sets of probability distributions.

Π :=
{

P | D(P‖P0)− D(P‖P1) ≥
1
n
· log ∆

}
Πc :=

{
P | D(P‖P0)− D(P‖P1) <

1
n
· log ∆

}
Check the following property of the sets Π and Πc.
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Exercise 1.3 Check that both the sets Π and Πc are convex (and are in fact defined by linear
inequalities in the distributions P). Also, check that Π is a closed set.

We know from Sanov’s theorem that

α(T) = P
x∼Pn

0

[Px ∈ Π] ≈ 2−n·D(P∗0 ‖P0)

β(T) = P
x∼Pn

1

[Px ∈ Πc] ≈ 2−n·D(P∗1 ‖P1) ,

where P0 = arg minP∈Π {D(P‖P0)}. Also, since Πc is not a closed set, we define P∗1 with
respect to the closure of Πc of Πc i.e., P1 = arg minP∈Πc {D(P‖P1)}. We will see later how
to compute the distributions which minimize the KL-divergence (known as I-projections)
as in the bounds above. The distributions P∗0 and P∗1 in the above bounds turn out to be of
the form

P∗0 (x) = P∗1 (x) =
Pλ

0 (x) · P1−λ
1 (x)

∑y∈U Pλ
0 (y) · P

1−λ
1 (y)

,

where λ is the solution to an optimization problem. While the above analysis gives the
optimal bounds for optimal all tests characterized by the Neyman-Pearson lemma, the
bound we will use the most is the lower bound in terms of the total variation distance i.e.,

min
T
{α(T) + β(T)} ≥ 1− δTV(P0, P1) .

We will now develop such a bound for the case of multiple hypotheses.

2 Fano’s inequality and multiple hypothesis testing

Fano’s inequality is concerned with Markov chains, which we saw before in the context
of data processing inequality. We will denote the Markov chain as Z → Y → Ẑ. In the
context of hypothesis testing, we can think of Z as the choice of an unknown hypothesis
from some finite set (hypothesis class) UZ. We think of Y as the “data” generated from this
hypothesis, say a sequence x of n independent samples. Finally, we think of Ẑ as a “guess”
for Z, which depends only on the data. Fano’s inequality is concerned with the probability
of error in the guess, defined as pe = P

[
Ẑ 6= Z

]
. We have the following statement

Lemma 2.1 (Fano’s inequaity) Let Z → Y → Ẑ be a Markov chain, and let pe = P
[
Ẑ 6= Z

]
.

Let H(pe) denote the binary entropy function computed at pe. Then,

H(pe) + pe · log (|UZ| − 1) ≥ H(Z|Ẑ) ≥ H(Z|Y) .
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Proof: We define a binary random variable, which indicates an error i.e

E :=

1 if Ẑ 6= Z

0 if Ẑ = Z

The bound in the ineuality then follows from considering the entroy H(Z, E|Ẑ).

H(Z, E|Ẑ) = H(Z|Ẑ) + H(E|Z, , Ẑ) = H(Z|Ẑ) ,

since H(E|Z, Ẑ) = 0 (why?) Another way of computing this entropy is

H(Z, E|Ẑ) = H(E|Ẑ) + H(Z|E, Ẑ)

= H(E|Ẑ) + pe · H(Z|E = 1, Ẑ) + (1− pe) · H(Z|E = 0, Ẑ)

≤ H(E) + pe · H(Z|E = 1, Ẑ)
≤ H(pe) + pe · log (|UZ| − 1) .

Comparing the two expressions them proves the claim.

We can use Fano’s inequality to derive a convenient way of obtaining a lower bound for
testing multiple hypotheses. However, we need the following property of KL-divergence.

Exercise 2.2 Prove that KL-divergence is (strictly) convex in both it’s arguments i.e., ∀α ∈ (0, 1)
and all P1 6= P2, Q1 6= Q2,

D(α · P1 + (1− α) · P2‖Q) < α · D(P1‖Q) + (1− α) · D(P2‖Q)

D(P‖α ·Q1 + (1− α) ·Q2) < α · D(P‖Q1) + (1− α) · D(P‖Q2)

In fact, KL-divergence is jointly convex in both its arguments but we will need this property.

Let {Pv}v∈V be a collection of hypotheses. Let the environment choose one of the hypothe-
ses uniformly at random (denoted by a random vaiable V) and let x ∼ Pn

v be a sequence
of independent samples from a chosen disribution Pv (denoted by the random variable X).
We will now bound the probability of error for a classifier V̂ for V. Note that V → X→ V̂
is a Markov chain.

Proposition 2.3 Let V → X→ V̂ be the Markov chain as above. Then,

pe = P
[
V 6= V̂

]
≥ 1− n ·Ev1,v2∈V [D(Pv1‖Pv2)] + 1

log |V| .
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Proof: From Fano’s inequality, we have that

1 + pe · log |V| ≥ H(pe) + pe · log |V| ≥ H(V|X) = log |V| − I(V; X) .

We can now analyze the mutual information between V and x using the equivalent expres-
sion in terms of KL-divergence.

I(V; x) = D(P(V, X)‖P(V)P(X))

= D(P(V)‖P(V)) + E
v∈V

[
D(P(X|V = v)‖P(X))

]
= E

v∈V

[
D(Pn

v ‖P)
]

,

where P = Ev∈V [P]
n
v denotes the marginal distribution of X. Using the convexity of

KL-divergence in the second argument, Jensen’s inequality and the chain rule for KL-
divergence, we get

E
v∈V

[
D(Pn

v ‖P)
]
≤ E

v1,v2∈V

[
D(Pn

v1
‖Pn

v2
)
]

= n · E
v1,v2∈V

[D(Pv1‖Pv2)] .

Combining the bounds gives

1 + pe · log |V| ≥ log |V| − n · E
v1,v2∈V

[D(Pv1‖Pv2)] ,

which proves the claim.
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