1. **Field trip.**
 Recall that for a prime p, $\mathbb{F} = \mathbb{Q}^2$ (sets of pairs of rational numbers) is a field with the notions of addition and multiplication defined as
 $$(a, b) + (c, d) = (a + c, b + d) \quad \text{and} \quad (a, b) \cdot (c, d) = (ac + pbd, ad + bc).$$
 (a) Does p have to be prime for \mathbb{F} to be a field with these operations? Prove or give a counterexample.
 (b) Show that when p is such that \mathbb{F} defined above is a field, the set
 $$S = \{a + b\sqrt{p} \mid a, b \in \mathbb{Q}\}$$
 can be thought of as a subspace of \mathbb{R} over the field \mathbb{Q}. What is its dimension?

2. **Linear equations.**
 Let $A \in \mathbb{F}_2^{m \times n}$ be a matrix with entries in the field \mathbb{F}_2 and let $m < n$. Let all rows of A be linearly independent in the vector space \mathbb{F}_2^n over the field \mathbb{F}_2.
 (a) What is the dimension of the space $\ker(A)$?
 (b) How many vectors $x \in \mathbb{F}_2^n$ satisfy the system of equations $Ax = 0$? (Note that here 0 denotes the zero vector in \mathbb{F}_2^n.)
 (c) Let $b \in \mathbb{F}_2^m$ be such that the system of equations $Ax = b$ has at least one solution, say x_0. Show that $\{x - x_0 \mid Ax = b\} = \ker(A)$. What is the total number of solutions to the system $Ax = b$?

 For this problem you may use the fact that for a matrix $A \in \mathbb{F}^{m \times n}$ for any field \mathbb{F}, if $R \subseteq \mathbb{F}^m$ denotes the set of its rows and $C \subseteq \mathbb{F}^n$ denotes the set of its columns, then
 $$\dim(\text{Span}(R)) = \dim(\text{Span}(C)).$$
 The quantity $\dim(\text{Span}(R))$ is called the row-rank of A and $\dim(\text{Span}(C))$ is called the column-rank of A.

Note: You may discuss these problems in groups. However, you must write up your own solutions and mention the names of the people in your group. Also, please do mention any books, papers or other sources you refer to. It is recommended that you typeset your solutions in \LaTeX.
3. The space above.

Let \(V \) be a vector space over the field \(\mathbb{F} \) (not necessarily \(\mathbb{R} \) or \(\mathbb{C} \)) and let \(f : V \to [0,1] \) be a function satisfying \(f(c \cdot v + d \cdot w) \geq \min \{f(v), f(w)\} \) for all \(c, d \in \mathbb{F} \) and all \(v, w \in V \). Show that

(a) \(f(0_v) \geq f(v) \) for all \(v \in V \).
(b) For any \(t \in [0, f(0_v)] \), the space \(V_t = \{v \in V \mid f(v) \geq t\} \) is a subspace of \(V \).

4. Inner Products.

Consider the vector space \(\mathbb{R}[x] \) of polynomials in a single variable \(x \) with coefficients in \(\mathbb{R} \). Define the function \(\mu : \mathbb{R}[x] \times \mathbb{R}[x] \to \mathbb{R} \) as

\[
\mu(P, Q) = \text{degree}(P \cdot Q) \quad \text{for all } P, Q \in \mathbb{R}[x],
\]

where \(P \cdot Q \) denotes the product of the two polynomials \(P \) and \(Q \) (which is another polynomial). Is the function \(\mu \) an inner product? Justify your answer.

5. Eigenvalues.

Let \(V \) be a finite dimensional vector space over a field \(\mathbb{F} \) and \(\alpha, \beta : V \to V \) be linear operators. Show that for every \(\lambda \in \mathbb{F} \) (including \(0_\mathbb{F} \)), \(\lambda \) is an eigenvalue of \(\alpha \beta \) if and only if \(\lambda \) is an eigenvalue of \(\beta \alpha \). Here, \(\alpha \beta \) denotes the linear transformation \(\alpha \circ \beta \) defined as \(\alpha \beta(v) = \alpha(\beta(v)) \forall v \in V \) (and \(\beta \alpha \) is defined similarly).

6. Projections.

A linear operator \(\varphi : V \to V \) is called a projection if \(\varphi^2 = \varphi \) i.e., \(\varphi^2(v) = \varphi(v) \forall v \in V \). For the parts below, let \(V \) be a (not necessarily finite dimensional) vector space over a field \(\mathbb{F} \) and let \(\varphi : V \to V \) be a projection.

(a) Show that \(\psi : V \to V \) defined as \(\psi(v) = v - \varphi(v) \) is also a projection.
(b) Show that \(\ker(\varphi) = \text{im}(\psi) \) and \(\text{im}(\varphi) = \ker(\psi) \).
(c) Show that any \(v \in V \) can be uniquely decomposed as \(v = u + w \), with \(u \in \text{im}(\varphi) \) and \(w \in \ker(\varphi) \). We say that those two subspaces are complementary.
(d) What are the possible eigenvalues \(\lambda \) of \(\varphi \) and the respective eigenspaces, i.e., \(U_\lambda := \{v \mid \varphi(v) = \lambda v\}\)?
(e) Deduce that \(\varphi \) (and thus \(\psi \)) is diagonalizable.

For the remaining parts, we will call a projection \(\varphi \) an orthogonal projection \(\ker(\varphi) = \text{im}(\varphi)^\perp \), where \(W^\perp := \{v \in V \mid \langle v, w \rangle = 0 \forall w \in W\} \) i.e., these two subspaces are orthogonal complements.
(g) Let \(V = \mathbb{R}^2 \) with the usual inner product, show that \(\varphi_1(x, y) = \left(\frac{x+y}{2}, \frac{x+y}{2} \right) \) and \\
\(\varphi_2(x, y) = \left(\frac{2x+y}{3}, \frac{2x+y}{3} \right) \) are projections with the same image. Are their kernels the same?

(h) Which of \(\varphi_1 \) and \(\varphi_2 \) is orthogonal and which isn’t? Can you suggest a different inner product on \(\mathbb{R}^2 \) which flips your answer?

7. **Adjoint**.

Let \(V, W \) be finite-dimensional inner product spaces \(\varphi : V \to W \) and let \(\varphi^* : W \to V \) denote the adjoint of \(\varphi \). Prove the following:

(a) \((\varphi^*)^* = \varphi \).

(b) \(\ker(\varphi) = (\operatorname{im}(\varphi^*))^\perp \).

(c) \(\operatorname{im}(\varphi) = (\ker(\varphi^*))^\perp \).

(d) \(\operatorname{rank}(\varphi) = \operatorname{rank}(\varphi^*) \).

(e) If \(A \in \mathbb{C}^{m \times n} \) is a matrix, then show that row-rank of \(A \) equals the column-rank of \(A \).

Note that the above only proves row-rank equals column-rank when \(A \) is a matrix with entries in \(\mathbb{C} \) (or \(\mathbb{R} \)). There is actually a much simpler proof which proves this over all fields! We will discuss this in class later.