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Abstract

In this paper, we present an algorithm for real-time
tracking of articulated structures in dense disparity maps
derived from stereo image sequences. A statistical image
formation model that accounts for occlusions plays the
central role in our tracking approach. This graphical
model (a Bayesian network) assumes that the range image
of each part of the structure is formed by drawing the
depth candidates from a 3-D Gaussian distribution. The
advantage over the classical  mixture of Gaussians is that
our model takes into account occlusions by picking the
minimum depth (which could be regarded as a
probabilistic version of z-buffering). The model also
enforces articulation constraints among the parts of the
structure. The tracking problem is formulated as an
inference problem in the image formation model. This
model can be extended and used for other tasks in
addition to the one described in the paper and can also be
used for estimating probability distribution functions
instead of the ML estimates of the tracked parameters.
For the purposes of real-time tracking, we used certain
approximations in the inference process, which resulted in
a real-time two-stage inference algorithm. We were able
to successfully track upper human body motion in real
time and in the presence of self-occlusions.

1. Introduction
Tracking non-rigid motion in image sequences has

been of great interest to the computer vision community.
The problem is generally divided into studies of two
categories of motion: deformable object motion and the
motion of an articulated object. The latter is of great
interest to the HCI (human computer interaction)
community as the human body is an articulated object.
The current commercially available motion capture
systems are either based on magnetic or optical trackers
that require the subject to wear a special suit with markers
on it, or even to be attached to the system by cables. A
more general solution based on passive sensing would be
more convenient, less constraining, and attractive for a
variety of uses.

There have been several approaches to human body
tracking, ranging from detailed model-based approaches
[1,2] to the simplified, but faster statistical algorithms [3]
and cardboard models [4]. In [3], 2-D tracking based on
Gaussian blobs has been proposed. To track human
motion in full 3-D, an extension of this approach based on
the input from two cameras was proposed in [5] and tested
on upper-body tracking. However, only the hands and
head are tracked while the position and orientation of the
torso and lower and upper arms is ambiguous. The two
cameras are not used to calculate a dense disparity map,
but rather to estimate 2-D blob parameters in each image.
In [6] an Extended Kalman Filter imposes articulation
constraints on the rest of the body which provides a guess
about the full posture, but measuring just three points on a
human body does not provide enough information for
unambiguous posture tracking. Knowledge of the
dynamics of human motion is believed to be helpful for
tracking [6,7].

In [15], a nice model-based approach to tracking self-
occluding articulated structures is proposed. However, the
algorithm is based on template matching and is sensitive
to lighting changes. One of the great advantages to stereo
cues is that the disparity computed based on correlation is
less sensitive to the intensity changes.

There have been reports on several simple but fast
tracking schemes based on stereo [8] or an integration of
stereo with other cues [14]. These papers dealt primarily
with head tracking and did not model the articulation
constraints and self-occlusions.

In this paper, we propose a tracking algorithm that uses
the input from two cameras approximately 8cm apart
(Section 2). The disparity map is computed at frame rate
by commercially available software [8]. The tracking
algorithm is based on a generative statistical model of
image formation, specifically tuned to rough but fast
tracking in the presence of self-occlusions among the
articulated 3-D Gaussian models (Sections 3 and 4). This
model falls into a broad category of graphical models
(Bayesian networks) that have been very successful in
diverse applications at formalizing generative processes in
ways that allow probabilistic inference [9]. In our case, a
maximum likelihood estimate of the posture of an
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articulated structure is achieved by a simplified, but very
fast inference algorithm that consists of two stages
(Section 5). In the first stage, the disparity map is
segmented into different parts of the articulated structure
based on the estimated state of the Gaussian mixture using
the maximum likelihood principle with an additional
mechanism for filling in the missing data due to
occlusions. Then, the statistical properties of the
individual parts are re-estimated. In the second stage of
the inference algorithm, an Extended Kalman Filter (EKF)
enforces the articulation constraints and can also improve
the tracking performance by modeling the dynamics of the
tracked object (as in [6,7]). In Section 6, we describe our
experiments on tracking upper human body motion and
give our conclusions.

2. Real-time Disparity Map Computation
In our experiments, we used the commercially

available real-time stereo system built by SRI [17].
Currently, this system runs at rates of up to 90Hz with
image resolution of 160x120, and gives for each pixel the
disparity between the images from a stereo pair. The
following equations describe the relationship between the
3D coordinates [x y z]’ of a point imaged by the stereo
pair, the coordinates of the point’s perspective projection
onto the image plane [X Y]’ and the disparity in the two
images D(X,Y):
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b denotes the baseline length,  and f is the focal length of
the cameras. In Fig. 1, an example of a disparity map
D(X,Y) is given.

3. Tracking Articulated Motion
An articulated object’s posture can be parameterized in

many different ways. One possibility is to use a redundant
set of parameters such as the position and orientation
parameters of individual parts and impose the constraints
in a Lagrangian form [1,2,6]. Another approach is to use
the kinematic chain equations and select parameters that

are not redundant, such as the orientations of the
individual parts and the position of a reference point
[10,11].  We used the latter type of parameterization.

The 3-D posture of an articulated structure is defined
by

{ }KQQQ ,...,,, 211µα = (2)

where  µ1 is the center of  the reference part, and Qk  is the
quaternion representation of the global orientation of the
k-th part. In particular, a position vector in the local
coordinate system is transformed into the position vector
in the global coordinate system by

 klocalkglobal pQRp µ+= )( ,

where µk is the position of part k (and the origin of the
coordinate system attached to that part) and Rk=R(Qk) is
the rotation matrix corresponding to the quaternion Qk

[12].

Given the posture parameters α, the individual
positions and orientations of the parts of the articulated
structure can be computed. If Ji

(k) is the position of the i-th
joint in the local coordinate system of the k-th part, we can
write the kinematic chain equations like the one illustrated
in Fig. 2 as:
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The positions of the joints in their local coordinate
systems do not change over time.

To predict the range data, in addition to the
articulation model, we need the models of individual parts,
which could range from complex geometrical models [1,2]
to statistical models such as the one in [3]. Shortly, we
shall define a particular statistical body part model and the
model of the image formation process, but for the
moment, let us go on with the definition of the tracking
problem and its general solution.

Figure 2: Articulated model – the local coordinate
systems and joints.

1
2

3

Figure 1: Left intensity image and the disparity
map.  Black indicates no good data.
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on of the parameters α conditioned on the past of the
system P(αt| past), and the probabilistic image formation
model P(Dt|αt), where Dt is the observed data at time t, the
dynamics of the system can be represented by a Markov
chain as shown in Fig. 3. We assume that the state of the
system αt can be augmented (by derivatives, for example),
so that the previous state
αt-1 contains all the necessary information for conditioning
the distribution of αt, i.e., P(αt| past)= P(αt| αt-1).

The tracking problem consists of finding the sequence
{αt } that maximizes the likelihood of the observed data
Dt, which in our case is the disparity map adhering to the
imaging equations in Eq. 1. In the next two sections, we
define a statistical image formation model P(Dt|αt) (Fig.
4), and an approximate, but fast inference algorithm that
updates the parameters of the articulated model based on
the current disparity map.

4. Image Formation Model
In the previous section, we left out the model of the

individual parts of the tracked articulated structure. Since
we are motivated by real-time applications, we are willing
to sacrifice the precision of the model to reduce the
computational complexity. Simple blob-type statistical
models of  regions in an image have been used in similar
situations in the past.  Our blobs are defined in the 3-D
space on the points satisfying the imaging equations given
in Eq. 1. Each pixel in the image is associated with an
observation O that consists of a color c=[Y U V]’ and a 3-
D position p=[x y z]’.  Of course, other features could be
added. We make an assumption that the observation
probability density is normal (Gaussian):
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The color and position parts of the observation vector
are not in general correlated (or rather, this correlation can
not be adequately captured by a simple Gaussian model),
so the covariance matrix can be assumed to be block-
diagonal. In this case the probability distribution can be

expressed as the product of two Gaussians. In the
following discussion, as well as in our experiments, the
color information is not used.  However the separability of
the probability distributions would make it easy to add
color information as described in [3]. We concentrate
instead on using the range data which is directly obtained
from the disparity map: z(X,Y)=bf/D(X,Y), and we shall
assume that:

’x y zpO(X,Y) ][== .

We note that the points available from the disparity
map are on the frontal surface of the imaged body (Fig. 1).
Therefore, our Gaussian blobs are meant to model the
points on the parts of the body facing the camera. The
parameters of the Gaussian distribution βk=(µk, Kk)
capture the position, size and orientation of body part k.
The position is determined by the mean µk, while the
orientation and size are captured in the covariance matrix
Kk that can be decomposed as:

)()’( kQRkkQRkK Λ=   (5)

Λk is a diagonal matrix whose non-zero elements are
the eigenvalues of the covariance matrix that determine
the size of the body part model along the three orthogonal
directions aligned with the local coordinate system
attached to the part. R(Qk) is the rotation matrix that was
defined in Section 3.  Since we are modeling the data
directly in 3-D, it can be assumed that Λk (blob size)

P(αt|αt-1) P(αt+1|αt)

P(Dt-1|αt-1) P(Dt|αt) P(Dt+1|αt+1)

  Dt-1
  Dt Dt+1

Figure 3: Markov chain representation of the tracking
problem.
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Figure 4: Bayesian net representation
image formation
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remains constant in time. This is a significant advantage
over the 2-D blob trackers that have to allow the change of
both the eigenvalues and eigenvectors of the covariance
matrix. By keeping the size parameters fixed, the
algorithm becomes more stable.

It can be readily seen that the individual blob
parameters β={βk}k=1,N are related to the parameters of the
articulation model α:
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where h is the collection of the kinematic chain equations
such as Eq. 3, and the collection of decompositions of
covariance matrices (Eq. 5). These relationships are
nonlinear due to the quaternion parameterization of the
rotation matrices, and this nonlinearity cannot be avoided
by other parameterizations.

Another way of looking at this probabilistic model is
to study the measured value of depth z=bf/D for the pixel
(X,Y). As can be seen in Eq. 1, the 3-D position vector of
the image point is related to the depth z as:

.

1

/

/

,
















== fY

fX

rwherezrp  (7)

Given the blob k and its parameters βk, the distribution
of the depth z along the ray r is given by:
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where γ is a scaling constant. In this equation, index k=0
is reserved for the background model, which can either be
formed by observing the empty scene prior to the entrance
of the subject, or simply by defining a bimodal
distribution in which the likelihood of the background
class is very large for the points farther than some
threshold. In other words, effective background
subtraction in range images can be done by simple
thresholding, which is what we did in our experiments.
One of the big advantages of the depth stereo map as a
visual cue is the easier background subtraction (for
example, see [8]).

The parameters (µzk, σ2
zk) of the normal distribution of

z along the line of sight (r) for pixel (X,Y) can be easily
identified in the exponent of the Gaussian N(zr; µk, Kk):
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Studying the probability distribution of the depth
along the line of sight (r) will soon prove to be useful for
elegantly modeling occlusions in a statistical framework.
However, normalizing this distribution destroys the
sensitivity of the probabilistic model to the distance
between the line of the sight and the mean of the blob. In

other words, even the blobs whose means are far away
from the ray r can have substantial likelihood near the
projection of their mean onto this ray. This is a natural
result of the dimensionality reduction in Eq. 8, but the lost
information can be easily restored by introduction of the
class indicator variables sk∈{0,1} for each pixel (X,Y). sk

is a random variable indicating if the appropriate blob
takes part in the imaging process. The mixing proportions
pk can be approximated using the definition of the
Gaussian blobs in Eq. 4. Value µzk is the most likely value
for the blob k along the line of sight r(X,Y). Thus, the
probability that blob k will produce a point at (X,Y) can be
defined as:
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where dk(•,•) is the Mahalonobis distance based on the
covariance matrix Kk. In terms of the graphical model in
Fig. 4, Eq. 10 determines conditional probability
p(sk|X,Y,βk).

The simple mixture of 3-D Gaussians is now
substituted by a more complex probabilistic model
consisting of the depth distribution along the line of sight
for each blob and the a priori probability of each blob for
a given pixel. However, we are now able to define the
occlusion in our generative model as follows.

In the model of the image formation process, sk is set
to one with the probability pk. Let V={k | sk=1} be the set
of selected classes (sk=1). For each k∈V, a value zk is
drawn from the distribution for the k-th blob (with
parameters in Eq. 9). Finally, the range image is formed
by picking the 3D blob point closest to the image plane:
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We keep s0=1, so that the background model always
participates in the imaging process. Eq. 11 describes the
deterministic decision in the last stage of Fig. 4.

Given the blob parameters β and the set of selected
classes V, the distribution of z for the imaging process of
Eq. 11 is given by:
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The probability of the set V is given by:
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The complete image formation process for the pixel
(X,Y) can be depicted by the graphical model in Fig. 4.
The imaging model is conditioned on the probability



IEEE International Conference on Computer Vision, Corfu, Greece, September 1999

density of the postures α given the past of the tracker. The
parameters βk of individual blobs depend deterministically
on the parameters α (Eq. 6). The blob parameters affect
the stochastic selection of several depth candidates and
finally, the minimum of these candidates (the one closest
to the imaging system) is selected.

This process has two nonlinearities given by Eqs. 6
and 11. By making appropriate linearizations, it might be
possible to derive an Extended  Kalman Filter that would
use the depth values for each pixel as the measurements to
update the state of the articulated model. However, the
large number of pixels in the disparity map makes this
approach computationally expensive.

In the next section we derive a fast, two-stage
approximate solution to the problem of inference in the
graphical model of Fig. 4.

5. Tracking Algorithm
In order to achieve real-time speeds and utilize all the

available pixels in the disparity image, we propose a two
stage process in updating the state of the articulation
model α. These two stages deal with the two halves of the
graphical model shown separated by a dashed line in Fig.
4.

5.1 Re-estimation of the blob parameters β
Without the nonlinear process of Eq. 11, the lower half

of Fig. 4 would represent an ordinary mixture of
Gaussians (with distributions given by Eq. 4), which could
be trained using several iterations of the EM algorithm
[16]. In the exact EM algorithm, the pixels in the disparity
map are assigned a probability for each blob k in the E-
step, thus softly clustering the data points. Alternatively,
hard clustering could be performed, where each pixel is
assigned to a single class. This speeds up the subsequent
computation as each pixel is included in the statistics of a
single class only. Sacrificing the optimal E-step is less
serious when plenty of data is available, which is the case
in our experiments, as the subjects occupy a significant
portion of the image. A support map defining the hard
clustering of the data is computed as:
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k
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where the likelihood is computed using the current
estimate of the blob parameters β.

Given the support map, the blob parameters can be re-
estimated using a well-known formula for Gaussian
training (M step):
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In the past, similar techniques have been used for 2-D
tracking. In [3], for each new frame, only a single iteration
of Eq. 14 and 15 is applied, starting from the predicted
values of the blobs’ parameters. The prediction is based
on Kalman filtering.

5.2 Occlusion detection and filling the missing data
Simply iterating Eqs. 14 and 15 without taking into

account Eq. 11 creates numerous occlusion problems. The
main problem stems from the fact that the blobs, though 3-
D objects, compete on the 2-D image plane. As result of
the application of Eqs. 14 and 15, the occluding blob will
push the occluded blob away, considerably affecting its
mean and covariance matrices. The appropriate solution is
based on maximizing the probability in Eq. 12, averaged
over all possible sets V and blob parameters β. It can be
shown that with certain approximations, this solution
reduces to inserting into the Eqs. 14 and 15 the estimate of
the data missing due to occlusions. For the sake of brevity
we choose to omit this derivation, since the intuitive
explanation that follows better captures the essence of our
occlusion handling approach.

Eqs. 14 and 15 are an approximation based on hard
clustering to the exact EM algorithm and they take into
account the visible data when updating the blob’s
parameters. To handle occlusions, we continue along the
same lines of hard decision approximations. After the
pixel (X,Y) has been assigned to a class k*=S(X,Y), we can
study the image formation model of the previous section
to estimate which blobs had made it into the selected set
V={k|sk=1} before the minimum value z(X,Y)=zk* was
picked. Instead of the soft decision based on the mixing
probabilities, we make a hard decision by thresholding the
mixing probabilities in Eq. 10 and estimate the set V as

},|{ˆ zrppkV zkTk >>= µ , (16)

where pT is a threshold on the mixing probabilities, and pk

and µzk in Eqs. 9 and 10 are computed using the current
estimates of the blob parameters βk. In essence, the blobs
in the estimated set V would have been likely to produce a
point at the location X,Y (since pk is high), but were
occluded by the winner k* (as the measured depth is
smaller than the most likely depths the blobs in V would
have produced).  Not knowing which value zk was drawn
from k-th distribution (since the point was occluded), our
best guess is the mean of the distribution of z along the
line of sight r, i.e., zkµ=kẑ , where µzk is given in Eq. 9.

In other words, the missing 3D point is assumed to be µzkr.
Now, the estimation equations can be rewritten as:
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where Nk is the total number of pixels used for updating
the parameters of the blob k. In these equations, the
observed values are included in the same fashion as in the
regular M step of the EM training of a Gaussian mixture.
However, these equations are also supplemented by the
data that might have been lost due to occlusions. Starting
with the predicted blob parameters βk(t|t-1) and  applying
these equations to the new frame, we get new estimates of
these parameters that take into account all pixels in the
disparity map in an approximate, but computationally very
efficient manner. These new estimates are forwarded to
the second stage of the estimation algorithm (the upper
half of Fig. 4) whose goal is to re-estimate the posture α
for the current frame and predict the posture in the next
time step, thus providing the estimate of individual blob
parameters for the next frame.

5.2.1 On the exact EM algorithm for inference of β
From the above discussion and Fig. 4 it is not difficult

to see that a better inference in the lower part of the
formation model is based on iterating the soft-clustered
versions of Eqs. 14, 16 and 17.  In particular, in the first
part of each of the two estimate equations in Eq. 17, the
measured depth zr (see Eq. 7) should be scaled by
p(k|x,y,z)=Pk(x,y,z)/ΣPi(x,y,z), where Pk is given in Eq. 4.
In the second part (occluded data filling), the estimated
depth should be scaled by the probability pk of Eq. 10 and
thus the set V should include all blobs.

Such an approach would lead to a better estimate of
the blob parameters in the first stage of our inference

algorithm, but even though only three or four iterations of
EM would be sufficient, this would hurt the real-time
performance of the system. Just using soft clustering
instead of the hard decisions in Eqs. 14 and 16 and still
performing only a single re-estimation of blob parameters
also reduces the speed a bit (as more multiplications
become necessary), but this overhead is much less
significant. In our experiments, to achieve the best frame
rate, we used Eqs. 14 and 16 as they are. Furthermore,
only a single iteration of Eqs. 14 and 17 is applied in each
frame, as we rely on the good estimate of the blob
parameters provided by the EKF described in the next
section.

5.3 The Extended Kalman Filter (EKF) with
Implicit Articulation Constraints

Since we are tracking dynamical systems, the transition
of the system (horizontal direction in Fig. 3) can be
captured by a linear system (for larger orders, we need to
augment the state α with its derivatives). We assume that
Eq.17 represents noisy measurements of the true values of
β.  Therefore, the estimation of articulation model
parameters can be done in the Extended Kalman Filtering
framework [13], where the transition is captured by a
linear equation (with added noise) and the measurement
equations are nonlinear and noisy:
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where h is given by Eqs. 3, 5, and 6 in Section 2. The EKF
linearizes h around the current estimate of α to create the
Jacobian matrix that plays the role of the measurement
matrix in the regular linear Kalman Filter.

      Our parameterization of the articulated model is non-
redundant, so that each combination of the parameters
corresponds to a posture in which the blobs are connected
at the joints. Thus, the EKF enforces the articulation
constraints on the blob parameters. Matrix F captures the

Figure 5: The block diagram of the tracking algorithm.

Model parameters  α

EKF based on the
articulation model

Re-estimation
of blob statistics:
βk=(µk, Kk)

Pixel classification

S(X,Y)

Occlusion detection
and handling:
V(X,Y);  µzk

Z-1
Range
image
Dt(X,Y)

Computation of
blob statistics



IEEE International Conference on Computer Vision, Corfu, Greece, September 1999

dynamics of the system, but in the simplest version it can
be set to the identity matrix.

      The simple block diagram in Fig. 5 summarizes the
tracking algorithm described in this section.

6. Experimental Results and Conclusion
In order to perform experiments on our system, we

used a simple initialization algorithm in which the subject
is expected to assume a certain pose based on marks in the
image, after which the different regions in the image are
assigned to different body parts – e.g., the head, torso,
upper arm, and forearm. The statistical parameters of the
initial blobs are computed, and the eigenvalues of the
covariance matrices are found. The joints are also
assumed to be at certain fixed positions in the image plane
during initialization. This initialization routine proved to
be sufficient for testing the overall algorithm, but the
effects of bad initialization are often visible. However, the
model initialization problem can be solved with some of
the heuristic techniques used by other tracking algorithms
found in the literature.

In the first series of experiments, we used a simple
two-part model of the upper human body consisting of the
head and the torso blobs (Fig. 6). The crude initialization
technique worked sufficiently well for this purpose. The
tracker is insensitive to the scale change and even recovers
from complete breakdowns such as the ones that
inevitably occur when the subject wanders completely out
of the field of view and then returns. To make the
recovery from breakdowns faster, gravity and antigravity
forces can be applied. The gravity force, pulling the blob
down, is applied to the torso blob, while the antigravity
force, pulling the blob up, is applied to the head blob.
Apart from robustness to scale change, the advantage of
this type of tracking is its insensitivity to illumination
changes and the changes in the far background. The
tracker is not dependent on the color information, though
it can be easily incorporated in the model as an additional
modality. Furthermore, in addition to segmenting the head
and torso in the images, the tracker also gives their 3D
positions. Using the two connected blobs in this fashion
proved to considerably add to the robustness of the
tracker. A single blob tracker could wonder off the head
and down to the torso. The EKF measurement equations
assume constant eigenvalues of the covariance matrix,
thus preventing the blobs from “eating each other.” The
tracker operates at around 20Hz (including disparity map
computation) on a 333MHz Pentium, and this speed was
achieved without much effort invested in optimization.
This tracker can be combined with existing (less robust
but more precise) face trackers and face pose estimators to
create a robust and precise system.

In the second set of experiments (Fig. 7), we tracked
an articulated structure consisting of 4 blobs representing
the head, torso, lower arm and the upper arm. In this case,

the sensitivity to the initial model parameters becomes an
issue. However, once the initial model is properly selected
(by experimenting, taking body measurements or
combining the above with the joint refinement), the
tracking becomes reliable and the tracker handles self-
occlusions well – such as when the forearm occludes part
of the upper arm or torso. In Fig. 7 we demonstrate
tracking that uses a non-perfect model which resulted from
initialization based on a single frame. It can be seen that
the model is not of the right size, which creates some
artifacts, but the tracker remains on the body at all times
(see also the movies on the web page).

There is still more effort to be invested in proper
selection of the measurement noise model and the state
transition equations in the EKF, which we expect to
further improve the robustness and speed of tracking. The
current speed is limited by the rather conservative
estimates of the measurement noise. The computation (in
our non-optimized code) limits the four-blob tracker’s
speed to around 10-15Hz, but the assumption of high
measurement noise prevents tracking of rapid motions; the
user must still move slowly.

Overall, the system proved to be insensitive to depth-
dependent scale changes, as this is taken into account in
Eq. 1. In fact, scale changes in the image even helps the
tracker indirectly, as the size parameters of the 3-D blob
model are fixed, and the scale change due to the
perspective projection becomes an additional depth cue.
The system operates well under serious self-occlusions as
in Fig. 7.  Since it is based only on range data and a crude
statistical model, the system has difficulties estimating a
rotation about an axis parallel to the image plane, even
though it segments the disparity image correctly. In the
current framework, the blobs represent the frontal surface
points that were imaged by the cameras, and therefore
always float on the frontal parts of the body surface, like
some sort of an articulated mask. This is sufficient for
estimating the body posture, as many applications treat the
arms as sticks, i.e., only the direction of the major
eigenvector is important (e.g., for pointing), while the
torso’s orientation is highly constrained by the shoulder
and neck joints. These constraints help in correctly
estimating all rotational degrees of freedom. However, the
current model can not capture the head pose sufficiently
well (namely, the degree of rotation around the vertical
axis), but it can segment the head for further processing by
other algorithms. We plan to add a more complex
statistical model that captures the visible, frontal part as
well as the back part of the head. Better pose estimate will
be possible with such a model and the additional
constraints from the optical flow in the intensity images
(which captures well the image motion due to the object
rotation around an axis parallel to the image plane; see the
approach in [10]).
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The potential applications of an articulated tracker
such as this one are in vision-based interfaces, such as
tracking people, detecting pointing gestures, and
computing the direction of pointing. The captured motion
can also be used to animate computer graphics characters
or the avatars in video conferencing software and VR
applications. The tracker can also be used as the first stage
of a gesture understanding system.

[Note:  The sequences from which Fig. 6 and 7 were taken
are available at www.ifp.uiuc.edu/~jojic]
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Figure 6: Three frames in tracking of the connected head and torso blobs.

Figure 7: Two frames demonstrating the initialization and tracking in the presence of self-occlusions. One set of lines connect
the neck, shoulder and elbow joints, while the line segments on the lower arm, head and torso extend from the joints
in the direction of the appropriate blob centers but go further so that their lengths represent the sizes of the blobs.


