
CMSC 35900-2: A Probabilistic Approach to Machine
Learning

Problem set 2

Due last day of term

The Probit

The main response (“squash”) function we looked at was the logistic response. In this question
we will consider the probit response function, given by:

g(z) =

∫ z

t=−∞

1√
2π
e−t

2/2dt.

Try plotting this function, as well as the logistic response, and verify that they have a similar, but
not identical, shape. We will consider a Gaussian Process classification model specified by:

f ∼ GP (K)

fi = f(Xi)

πi = g(fi)

yi ∼ Ber(πi)

(1)

Problem 1

1. Verify that the probit response is symmetric. That is, that P (yi|fi) = g(yifi).

2. Prove that the probit model of (1) is equivalent to the following specification:

f ∼ GP (K)

fi = f(Xi)

εi ∼ N (0, 1)

zi = fi + εi

yi = sign(zi)

(2)

That is, the joint distribution over yi is the same under both models.

3. Write down the conditional distribution of z1, . . . , zN |x1, . . . , xN under the model (2) ex-
plicitly (marginalizing out f and fi).
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Markov Chain Monte Carlo Sampling

It is often beneficial to combine several different suggestion distributionsQi(X
′|X). A particular

case of interest is when each suggestion distribution changes a different component of X =
(X[1], X[2], . . . , X[N ]), i.e. where Qi(X

′|X) = 0 unless X[j] = X ′[j] for all j 6= i. As
discussed in class, Gibbs Sampling is a special case of the Metropolis-Hasting method with
multiple such suggestion distribution and Qi(X

′|X) = P (X ′[i]|X[−i]) when X[j] = X ′[j] for
all j 6= i. We will provide a rigorous basis for combining different suggestion distributions, and
so also for Gibbs Sampling.

Problem 2 We first consider choosing between the different suggestion distributions at ran-
dom. That is, given suggestion distributions Q1, . . . , QN and a probability distribution p =
(p1, . . . , pN) ∈ 4N , we consider a joint suggestion distribution Q by first picking a random
index i according to p and then picking X ′ according to Qi(X

′|X). That is:

Q(X ′|X) =
∑
i

piQi(X
′|X) (3)

To complete a Metropolis-Hasting step with suggestion distribution Q, we need to compute the
acceptance probability

a = min

(
1,
P (X ′)Q(X|X ′)
P (X)Q(X ′|X)

)
. (4)

1. Prove that if each suggestion distribution Qi changes a different component of X , then the
acceptance probability can be equivalently computed using only Qi:

a = min

(
1,
P (X ′)Qi(X|X ′)
P (X)Qi(X ′|X)

)
. (5)

2. We would also like to consider suggestion distributions for which the above property
(changing only different components) does not hold. For example, for X ∈ RD, we
might consider a low-variance random Gaussian move and a high-variance random Gaus-
sian move. Explain why (4) and (5) are not always equivalent in the general case of multiple
suggestion distributions, and write down the expression for the correct acceptance proba-
bility, in the case of two suggestion distributions Q1 and Q2, in terms of P,Q1 and Q2.

We now turn to combining Metropolis-Hasting moves deterministically, according to some pre-
specified schedule. Each suggestion distribution Qi(X

′|X) defines a random transition probabil-
ity Ti(Xn+1|Xn) defined by the acceptance procedure:

• Pick X ′ according to Qi(X
′|Xn)

• Calculate the acceptance probability a according to (5)
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• Set Xn+1 = X ′ with probability a and Xn+1 = Xn otherwise.

Considering applying T1, T2, . . . , TN sequentially and cyclically. That is, the following sampling
procedure:

• Start with at some initial X0 and n = 0.

• Repeat:

– For i = 1, . . . , N ,

∗ Pick X ′ according to Qi(X
′|Xn)

∗ Calculate a according to (5)
∗ Set Xn+1 = X ′ with probability a and Xn+1 = Xn otherwise.
∗ Increase n← n+ 1.

Problem 3

1. Prove that if the two transition probabilities T1(X
′|X) and T2(X

′|X) maintain detailed
balance (i.e. are reversible) with respect to the same stationary distribution P (X), then the
transition obtained by applying them one after the other, T (X ′′|X) =

∑
X′ T1(X

′|X)T2(X
′′|X ′),

also maintains detailed balance with respect to P (X).

2. Use this to argue that the stationary distribution of the Markov chain Xi described above is
in-fact P (X) (assuming the the chain is ergodic).

Problem 4 Consider a modified procedure where we choose which suggestion distribution to
use based on Xi:

• Start with at some initial X0 and n = 0.

• Repeat:

– Pick i based on Xn using some pre-specified, perhaps randomized, procedure.

– Pick X ′ according to Qi(X
′|Xn)

– Calculate a according to (5)

– Set Xn+1 = X ′ with probability a and Xn+1 = Xn otherwise.

– Increase n← n+ 1.

Explain how in the previous Problem we relied on the fact that the order in which we apply the
moves Ti does not depend on the sequence Xi. Provide a simple example of a distribution P (X),
two suggestion distribution Q1(X

′|X) and Q2(X
′|X) and a procedure for picking i based on Xn

such that the resulting chain Xn is ergodic, but its stationary distribution is not P (X).
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Boltzmann Machines

Consider a Boltzmann Machines involving both observed variables X = (X[1], . . . , X[D]) and
latent variables Z = (Z[1], . . . , Z[K]). For convenience we consider the concatenated vector
Y = (X,Z) ∈ {±1}D+K containing both observed and latent variables. The joint distribution,
parametrized by W ∈ R(D+K)×(D+K) is given by:

P (Y |W ) ∝ e
1
2
Y ′WY . (6)

Our goal is to find the maximum likelihood estimator forW , given i.i.d. observationsX1, . . . , XN

drawn from the marginal P (X|W ):

ŴML = arg max
W

P (X1, . . . , XN |W ). (7)

To do so, we will consider the gradient of the log-likelihood with respect to W .

Problem 5

1. Prove that for each data point Xn, the gradient of the log-likelihood of Xn is given by:

∂ logP (Xn|W )

∂Wij

= E [Y [i]Y [j]|Y [1, . . . , D] = Xn,W ]− E [Y [i]Y [j]|W ] (8)

2. Describe how you would estimate the gradient of the log-likelihood ∂ logP (X1,...,XN |W )
∂Wij

. In
particular, how many runs of Gibbs sampling are required, and what are the details of each
such run.

3. How would your answer to the previous question change if the weight matrix W was
constrained such that Wij = 0 for all i, j > D (i.e. all weights between hidden units are
zero)?
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