Convex Optimization Lecture 16

Today:

- Projected Gradient Descent
- Conditional Gradient Descent
- Stochastic Gradient Descent
- Random Coordinate Descent

Recall: Gradient Descent

Gradient descent algorithm:

$$
\begin{array}{ll}
\text { Init } & x^{(0)} \in \operatorname{dom}(f) \\
\text { Iterate } & x^{(k+1)} \leftarrow x^{(k)}-t^{(k)} \nabla f\left(x^{(k)}\right)
\end{array}
$$

Convergence: ${ }^{1}$

	$\begin{gathered} \text { \#iter } \\ \mu \preccurlyeq \nabla^{2} \preccurlyeq M \end{gathered}$	\#iter $\nabla^{2} \preccurlyeq M$	$\begin{gathered} \text { \#iter } \\ \\|\nabla\\| \leq L \end{gathered}$	$\begin{gathered} \\|\nabla\\| \leq L \\ \mu \preccurlyeq \nabla^{2} \end{gathered}$	Oracle/ops
GD	$\kappa \log 1 / \epsilon$	$\frac{M\left\\|x^{*}\right\\|^{2}}{\epsilon}$	$\frac{L^{2}\left\\|x^{*}\right\\|^{2}}{\epsilon^{2}}$	$\frac{L^{2}}{\mu \epsilon}$	$\nabla f+O(n)$

$$
{ }^{1} \kappa=M / \mu
$$

Smoothness and Strong Convexity

Def: f is μ-strongly convex

Can be viewed as a condition on the directional $2^{\text {nd }}$ derivatives

$$
\mu \leq f_{v}^{\prime \prime}(x)=\frac{\partial^{2}}{\partial t^{2}} f(x+t v)=v^{\top} \nabla^{2} f(x) v \leq M \quad\left(\text { for }\|v\|_{2}=1\right)
$$

What about constraints?

$\min _{x} f(x)$
s.t. $x \in \mathcal{X}$

where \mathcal{X} is convex

Projected Gradient Descent

Idea: make sure that points are feasible by projecting onto \mathcal{X}

Algorithm:

- $y^{(k+1)}=x^{(k)}-t^{(k)} g^{(k)}$
where $g^{(k)} \in \partial f\left(x^{(k)}\right)$
- $x^{(k+1)}=\Pi_{\mathcal{X}}\left(y^{(k+1)}\right)$

The projection operator $\Pi_{\mathcal{X}}$ onto \mathcal{X} :

$$
\Pi_{\mathcal{X}}(x)=\min _{z \in \mathcal{X}}\|x-z\|
$$

Notice: subgradient instead of gradient (even for differentiable functions)

Projected gradient descent - convergence rate:

$\mu \preceq \nabla^{2} \preceq M$	$\nabla^{2} \preceq M$	$\\|\nabla\\| \leq L$	$\\|\nabla\\| \leq L$, $\mu \preceq \nabla^{2}$
$\kappa \log \frac{1}{\epsilon}$	$\frac{M\left\\|x^{*}\right\\|^{2}+\left(f\left(x_{1}\right)-f\left(x^{*}\right)\right)}{\epsilon}$	$\frac{L^{2}\left\\|x^{*}\right\\|^{2}}{\epsilon^{2}}$	$\frac{L^{2}}{\mu \epsilon}$

Same as unconstrained case!
But, requires projection... how expensive is that?
Examples:
Euclidean ball
PSD constraints
Linear constraints $A x \leq b$
Sometimes as expensive as solving the original optimization problem!

Conditional Gradient Descent

A projection-free algorithm!
Introduced for QP by Marguerite Frank and Philip Wolfe (1956)

Algorithm

- Initialize: $x^{(0)} \in \mathcal{X}$
- $s^{(k)}=\underset{s \in \mathcal{X}}{\operatorname{argmin}}\left\langle\nabla f\left(x^{(k)}\right), s\right\rangle$
- $x^{(k+1)}=x^{(k)}+t^{(k)}\left(s^{(k)}-x^{(k)}\right)$

Notice

- f assumed M-smooth
- \mathcal{X} assumed bounded
- First-order oracle
- Linear optimization (in place of projection)
- Sparse iterates (e.g., for polytope constraints)

Convergence rate
For M-smooth functions with step size $t^{(k)}=\frac{2}{k+1}$:

$$
\text { \# iterations required for } \epsilon \text {-optimality: } \frac{M R^{2}}{\epsilon}
$$

where $R=\sup _{x, y \in \mathcal{X}}\|x-y\|$

Proof

$$
\begin{array}{rlr}
f\left(x^{(k+1)}\right) & \leq f\left(x^{(k)}\right)+\left\langle\nabla f\left(x^{(k)}\right), x^{(k+1)}-x^{(k)}\right\rangle+\frac{M}{2}\left\|x^{(k+1)}-x^{(k)}\right\|^{2} & \text { [smoothness] } \\
& =f\left(x^{(k)}\right)+t^{(k)}\left\langle\nabla f\left(x^{(k)}\right), s^{(k)}-x^{(k)}\right\rangle+\frac{M}{2}\left(t^{(k)}\right)^{2}\left\|s^{(k)}-x^{(k)}\right\|^{2} & \quad \text { [update] } \\
& \leq f\left(x^{(k)}\right)+t^{(k)}\left\langle\nabla f\left(x^{(k)}\right), x^{*}-x^{(k)}\right\rangle+\frac{M}{2}\left(t^{(k)}\right)^{2} R^{2} \\
& \leq f\left(x^{(k)}\right)+t^{(k)}\left(f\left(x^{*}\right)-f\left(x^{(k)}\right)\right)+\frac{M}{2}\left(t^{(k)}\right)^{2} R^{2} & \text { [convexity] }
\end{array}
$$

Define: $\delta^{(k)}=f\left(x^{(k)}\right)-f\left(x^{*}\right)$, we have:

$$
\delta^{(k+1)} \leq\left(1-t^{(k)}\right) \delta^{(k)}+\frac{M\left(t^{(k)}\right)^{2} R^{2}}{2}
$$

A simple induction shows that for $t^{(k)}=\frac{2}{k+1}$:

$$
\delta^{(k)} \leq \frac{2 M R^{2}}{k+1}
$$

Same rate as projected gradient descent, but without projection!
Does need linear optimization

What about strong convexity?
Not helpful! Does not give linear rate $(\kappa \log (1 / \epsilon))$

* Active research

Randomness in Convex Optimization

Insight: first-order methods are robust - inexact gradients are sufficient
As long as gradients are correct on average, the error will vanish
Long history (Robbins \& Monro, 1951)

Stochastic Gradient Descent

Motivation

Many machine learning problems have the form of empirical risk minimization

$$
\min _{x \in \mathbb{R}^{n}} \sum_{i=1}^{m} f_{i}(x)+\lambda \Omega(x)
$$

where f_{i} are convex and λ is the regularization constant
Classification: SVM, logistic regression
Regression: least-squares, ridge regression, LASSO
Cost of computing the gradient?
$m \cdot n$
What if m is VERY large?
We want cheaper iterations

Idea: Use stochastic first-order oracle: for each point $x \in \operatorname{dom}(f)$ returns a stochastic gradient

$$
\tilde{g}(x) \quad \text { s.t. } \mathbb{E}[\tilde{g}(x)] \in \partial f(x)
$$

That is, \tilde{g} is an unbiased estimator of the subgradient
Example

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{m} \sum_{i=1}^{m} \overbrace{\left(f_{i}(x)+\lambda \Omega(x)\right)}^{F_{i}(x)}
$$

For this objective, select $j \in\{1, \ldots, m\}$ u.a.r. and return $\nabla F_{j}(x)$ Then,

$$
\mathbb{E}[\tilde{g}(x)]=\frac{1}{m} \sum_{i} \nabla F_{i}(x)=\nabla f(x)
$$

SGD iterates:

$$
x^{(k+1)} \leftarrow x^{(k)}-t^{(k)} \tilde{g}\left(x^{(k)}\right)
$$

How to choose step size $t^{(k)}$?

- Lipschitz case: $t^{(k)} \propto \frac{1}{\sqrt{k}}$
- μ-strongly-convex case: $t^{(k)} \propto \frac{1}{\mu k}$

Note: decaying step size!

(Figures borrowed from Francis Bach's slides)

Convergence rates

	$\mu \preceq \nabla^{2} \preceq M$	$\nabla^{2} \preceq M$	$\\|\nabla\\| \leq L$	$\\|\nabla\\| \leq L$, $\mu \preceq \nabla^{2}$
GD	$\kappa \log \frac{1}{\epsilon}$	$\frac{M\left\\|x^{*}\right\\|^{2}}{\epsilon}$	$\frac{L^{2}\left\\|x^{*}\right\\|^{2}}{\epsilon^{2}}$	$\frac{L^{2}}{\mu \epsilon}$
SGD	$?$	$?$	$\frac{B^{2}\left\\|x^{*}\right\\|^{2}}{\epsilon^{2}}$	$\frac{B^{2}}{\mu \epsilon}$

Additional assumption: $\mathbb{E}\left[\|\tilde{g}(x)\|^{2}\right] \leq B^{2}$ for all $x \in \operatorname{dom}(f)$
Comment: holds in expectation, with averaged iterates

$$
\mathbb{E}\left[f\left(\frac{1}{K} \sum_{k=1}^{K} x^{(k)}\right)\right]-f\left(x^{*}\right) \leq \ldots
$$

Similar rates as with exact gradients!

| | $\mu \preceq \nabla^{2} \preceq M$ | $\nabla^{2} \preceq M$ | $\\|\nabla\\| \leq L$ | $\\|\nabla\\| \leq L$,
 $\mu \preceq \nabla^{2}$ | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| GD | $\kappa \log \frac{1}{\epsilon}$ | $\frac{M\left\\|x^{*}\right\\|^{2}}{\epsilon}$ | $\frac{L^{2}\left\\|x^{*}\right\\|^{2}}{\epsilon^{2}}$ | $\frac{L^{2}}{\mu \epsilon}$ |
| AGD | $\sqrt{\kappa} \log \frac{1}{\epsilon}$ | $\frac{M\left\\|x^{*}\right\\|^{2}}{\sqrt{\epsilon}}$ | \times | \times |
| SGD | $?$ | $\frac{\left\\|x^{*}\right\\| \\| \sigma}{\epsilon^{2}}+\frac{M\left\\|x^{*}\right\\|^{2}}{\epsilon}$ | $\frac{B^{2}\left\\|x^{*}\right\\| 2^{2}}{\epsilon^{2}}$ | $\frac{B^{2}}{\mu \epsilon}$ |

where $\mathbb{E}\left[\|\nabla f(x)-\tilde{g}(x)\|^{2}\right] \leq \sigma^{2}$
Smoothness?
Not helpful! (same rate as non-smooth)
Lower bounds (Nemirovski \& Yudin, 1983)

* Active research

Acceleration?
Cannot be easily accelerated!
Mini-batch acceleration

* Active research

Random Coordinate Descent

Recall: cost of computing exact GD update: $m \cdot n$ What if n VERY is large?
We want cheaper iterations
Random coordinate descent algorithm:

- Initialize: $x^{(0)} \in \operatorname{dom}(f)$
- Iterate: pick $i(k) \in\{1, \ldots, n\}$ randomly

$$
x^{(k+1)}=x^{(k)}-t^{(k)} \nabla_{i(k)} f\left(x^{(k)}\right) e_{i(k)}
$$

where we denote: $\nabla_{i} f(x)=\frac{\partial f}{\partial x_{i}}(x)$
Assumption: f is convex and differentiable

What if f not differentiable?

(Figures borrowed from Ryan Tibshirani's slides)

Iteration cost? $\nabla_{i} f(x)+O(1)$
Compare to $\nabla f(x)+O(n)$ for GD
Example: quadratic

$$
\begin{aligned}
f(x) & =\frac{1}{2} x^{\top} Q x-v^{\top} x \\
\nabla f(x) & =Q x-v \\
\nabla_{i} f(x) & =q_{i}^{\top} x-v_{i}
\end{aligned}
$$

Can view CD as SGD with oracle: $\tilde{g}(x)=n \nabla_{i} f(x) e_{i}$ Clearly,

$$
\mathbb{E}[\tilde{g}(x)]=\frac{1}{n} n \sum_{i} \nabla_{i} f(x) e_{i}=\nabla f(x)
$$

Can replace individual coordinates with blocks of coordinates

Example: SVM
Primal:

$$
\min _{w} \frac{\lambda}{2}\|w\|^{2}+\sum_{i} \max \left(1-y_{i} w^{\top} z_{i}, 0\right)
$$

Dual:

$$
\begin{array}{ll}
\min _{\alpha} & \frac{1}{2} \alpha^{\top} Q \alpha-1^{\top} \alpha \\
\text { s.t. } & 0 \leq \alpha_{i} \leq 1 / \lambda \quad \forall i
\end{array}
$$

where $Q_{i j}=y_{i} y_{j} z_{i}^{\top} z_{j}$

(Shalev-Schwartz \& Zhang, 2013)

Convergence rate

Directional smoothness for f : there exist M_{1}, \ldots, M_{n} s.t. for any $i \in\{1, \ldots, n\}$, $x \in \mathbb{R}^{n}$, and $u \in \mathbb{R}$

$$
\left|\nabla_{i} f\left(x+u e_{i}\right)-\nabla_{i} f(x)\right| \leq M_{i}|u|
$$

Note: implies f is M-smooth with $M \leq \sum_{i} M_{i}$
Consider the update:

$$
x^{(k+1)}=x^{(k)}-\frac{1}{M_{i(k)}} \nabla_{i(k)} f\left(x^{(k)}\right) \cdot e_{i(k)}
$$

No need to know M_{i} 's, can be adjusted dynamically

Rates (Nesterov, 2012):

	$\mu \preceq \nabla^{2} \preceq M$	$\nabla^{2} \preceq M$	$\\|\nabla\\| \leq L$	$\\|\nabla\\| \leq L$, $\mu \preceq \nabla^{2}$
$\mathbf{G D}$	$\kappa \log \frac{1}{\epsilon}$	$\frac{M\left\\|x^{*}\right\\|^{2}}{\epsilon}$	$\frac{L^{2}\left\\|x^{*}\right\\|^{2}}{\epsilon^{2}}$	$\frac{L^{2}}{\mu \epsilon}$
$\mathbf{C D}$	$n \kappa \log \frac{1}{\epsilon}, \kappa=\frac{\sum_{i} M_{i}}{\mu}$	$\frac{n\left\\|x^{*}\right\\|^{2} \sum_{i} M_{i}}{\epsilon}$	\times	\times

Same total cost as GD, but with much cheaper iterations
Comment: holds in expectation

$$
\mathbb{E}\left[f\left(x^{(k)}\right)\right]-f^{*} \leq \ldots
$$

Acceleration?
Yes!

* Active research

