Convex Optimization Lecture 16

Today:

- Projected Gradient Descent
- Conditional Gradient Descent
- Stochastic Gradient Descent
- Random Coordinate Descent

Recall: Gradient Descent

Gradient descent algorithm:

Init
$$x^{(0)} \in dom(f)$$

Iterate $x^{(k+1)} \leftarrow x^{(k)} - t^{(k)} \nabla f(x^{(k)})$

Convergence:¹

	#iter $\mu \preccurlyeq abla^2 \preccurlyeq M$	#iter $\nabla^2 \leqslant M$	#iter $\ \nabla\ \leq L$	$egin{array}{l} \ abla\ \leq L \ \mu \leqslant abla^2 \end{array}$	Oracle/ops
GD	$\kappa \log 1/\epsilon$	$\frac{M\ x^*\ ^2}{\epsilon}$	$\frac{L^2 \ x^*\ ^2}{\epsilon^2}$	$rac{L^2}{\mu\epsilon}$	$\nabla f + O(n)$

 $^{1}\kappa = M/\mu$

Smoothness and Strong Convexity

Def:
$$f$$
 is μ -strongly convex
 $f(x) + \langle \nabla f(x), \Delta x \rangle + \frac{\mu}{2} \|\Delta x\|_2^2 \le f(x + \Delta x) \le f(x) + \langle \nabla f(x), \Delta x \rangle + \frac{M}{2} \|\Delta x\|_2^2$

Can be viewed as a condition on the directional 2nd derivatives

$$\boldsymbol{\mu} \leq f_{\nu}^{\prime\prime}(x) = \frac{\partial^2}{\partial t^2} f(x+t\nu) = \nu^{\mathsf{T}} \nabla^2 f(x) \nu \leq \boldsymbol{M} \quad (\text{for } \|\nu\|_2 = 1)$$

$$f(x) + \langle \nabla f(x), \Delta x \rangle + \frac{M}{2} \|\Delta x\|^2$$

$$f(x+\Delta x)$$

$$f(x) + \langle \nabla f(x), \Delta x \rangle + \frac{\mu}{2} \|\Delta x\|^2$$

$$f(x) + \langle \nabla f(x), \Delta x \rangle$$

What about constraints?

 $\min_{x} f(x)$
s.t. $x \in \mathcal{X}$

where \mathcal{X} is convex

Projected Gradient Descent

Idea: make sure that points are feasible by projecting onto ${\mathcal X}$

Notice: subgradient instead of gradient (even for differentiable functions)

Projected gradient descent – convergence rate:

$\mu \preceq \nabla^2 \preceq M$	$ abla^2 \preceq M$	$\ \nabla\ \le L$	$\begin{aligned} \ \nabla\ \le L, \\ \mu \preceq \nabla^2 \end{aligned}$
$\kappa \log rac{1}{\epsilon}$	$\frac{M\ x^*\ ^2 + (f(x_1) - f(x^*))}{\epsilon}$	$\frac{L^2 x^* ^2}{\epsilon^2}$	$\frac{L^2}{\mu\epsilon}$

Same as unconstrained case! But, requires projection... how expensive is that?

Examples: Euclidean ball PSD constraints Linear constraints $Ax \leq b$

Sometimes as expensive as solving the original optimization problem!

Conditional Gradient Descent

A projection-free algorithm! Introduced for QP by Marguerite **Frank** and Philip **Wolfe** (1956)

Algorithm

- Initialize: $x^{(0)} \in \mathcal{X}$
- $s^{(k)} = \underset{s \in \mathcal{X}}{\operatorname{argmin}} \langle \nabla f(x^{(k)}), s \rangle$

•
$$x^{(k+1)} = x^{(k)} + t^{(k)}(s^{(k)} - x^{(k)})$$

<u>Notice</u>

- f assumed M-smooth
- \mathcal{X} assumed bounded
- First-order oracle
- Linear optimization (in place of projection)
- Sparse iterates (e.g., for polytope constraints)

 $\frac{\text{Convergence rate}}{\text{For } M\text{-smooth functions with step size } t^{(k)} = \frac{2}{k+1}$

iterations required for ϵ -optimality: $\frac{MR^2}{\epsilon}$

where $R = \sup_{x,y \in \mathcal{X}} \|x - y\|$

Proof

$$\begin{split} f(x^{(k+1)}) &\leq f(x^{(k)}) + \langle \nabla f(x^{(k)}), x^{(k+1)} - x^{(k)} \rangle + \frac{M}{2} \|x^{(k+1)} - x^{(k)}\|^2 \qquad \text{[smoothness]} \\ &= f(x^{(k)}) + t^{(k)} \langle \nabla f(x^{(k)}), s^{(k)} - x^{(k)} \rangle + \frac{M}{2} (t^{(k)})^2 \|s^{(k)} - x^{(k)}\|^2 \qquad \text{[update]} \\ &\leq f(x^{(k)}) + t^{(k)} \langle \nabla f(x^{(k)}), x^* - x^{(k)} \rangle + \frac{M}{2} (t^{(k)})^2 R^2 \\ &\leq f(x^{(k)}) + t^{(k)} (f(x^*) - f(x^{(k)})) + \frac{M}{2} (t^{(k)})^2 R^2 \qquad \text{[convexity]} \end{split}$$

Define: $\delta^{(k)} = f(x^{(k)}) - f(x^*)$, we have:

$$\delta^{(k+1)} \le (1 - t^{(k)})\delta^{(k)} + \frac{M(t^{(k)})^2 R^2}{2}$$

A simple induction shows that for $t^{(k)} = \frac{2}{k+1}$:

$$\delta^{(k)} \le \frac{2MR^2}{k+1}$$

Same rate as projected gradient descent, but without projection! Does need linear optimization What about strong convexity? Not helpful! Does not give linear rate $(\kappa \log(1/\epsilon))$ \star Active research

Randomness in Convex Optimization

Insight: first-order methods are robust – inexact gradients are sufficient

As long as gradients are correct on average, the error will vanish

Long history (Robbins & Monro, 1951)

Stochastic Gradient Descent

Motivation

Many machine learning problems have the form of *empirical risk minimization*

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^m f_i(x) + \lambda \Omega(x)$$

where f_i are convex and λ is the regularization constant

Classification: SVM, logistic regression Regression: least-squares, ridge regression, LASSO

Cost of computing the gradient? $m \cdot n$

What if *m* is VERY large?

We want cheaper iterations

<u>Idea:</u> Use *stochastic* first-order oracle: for each point $x \in \text{dom}(f)$ returns a stochastic gradient

$$\tilde{g}(x)$$
 s.t. $\mathbb{E}[\tilde{g}(x)] \in \partial f(x)$

That is, \tilde{g} is an *unbiased estimator* of the subgradient

Example

$$\min_{x \in \mathbb{R}^n} \frac{1}{m} \sum_{i=1}^m \underbrace{(f_i(x) + \lambda \Omega(x))}_{F_i(x)}$$

For this objective, select $j \in \{1, \ldots, m\}$ u.a.r. and return $\nabla F_j(x)$ Then,

$$\mathbb{E}[\tilde{g}(x)] = \frac{1}{m} \sum_{i} \nabla F_i(x) = \nabla f(x)$$

SGD iterates:

$$x^{(k+1)} \leftarrow x^{(k)} - t^{(k)} \tilde{g}(x^{(k)})$$

How to choose step size $t^{(k)}$?

- Lipschitz case: $t^{(k)} \propto \frac{1}{\sqrt{k}}$
- μ -strongly-convex case: $t^{(k)} \propto \frac{1}{\mu k}$

Note: decaying step size!

Convergence rates

	$\mu \preceq \nabla^2 \preceq M$	$\nabla^2 \preceq M$	$\ \nabla\ \le L$	$\begin{aligned} \ \nabla\ \leq L, \\ \mu \preceq \nabla^2 \end{aligned}$
\mathbf{GD}	$\kappa \log \frac{1}{\epsilon}$	$\frac{M\ x^*\ ^2}{\epsilon}$	$\frac{L^2 \ x^*\ ^2}{\epsilon^2}$	$\frac{L^2}{\mu\epsilon}$
SGD	?	?	$\frac{B^2 \ x^*\ ^2}{\epsilon^2}$	$\frac{B^2}{\mu\epsilon}$

Additional assumption: $\mathbb{E}[\|\tilde{g}(x)\|^2] \leq B^2$ for all $x \in \text{dom}(f)$

Comment: holds in expectation, with averaged iterates

$$\mathbb{E}\left[f\left(\frac{1}{K}\sum_{k=1}^{K}x^{(k)}\right)\right] - f(x^*) \le \dots$$

Similar rates as with exact gradients!

	$\mu \preceq \nabla^2 \preceq M$	$\nabla^2 \preceq M$	$\ \nabla\ \le L$	$\begin{aligned} \ \nabla\ \leq L, \\ \mu \preceq \nabla^2 \end{aligned}$
GD	$\kappa \log rac{1}{\epsilon}$	$\frac{M\ x^*\ ^2}{\epsilon}$	$\frac{L^2 \ x^*\ ^2}{\epsilon^2}$	$\frac{L^2}{\mu\epsilon}$
AGD	$\sqrt{\kappa}\log\frac{1}{\epsilon}$	$\frac{M\ x^*\ ^2}{\sqrt{\epsilon}}$	×	×
SGD	?	$\frac{\ x^*\ \sigma}{\epsilon^2} + \frac{M\ x^*\ ^2}{\epsilon}$	$\frac{B^2 \ x^*\ ^2}{\epsilon^2}$	$\frac{B^2}{\mu\epsilon}$

where $\mathbb{E}[\|\nabla f(x) - \tilde{g}(x)\|^2] \le \sigma^2$

Smoothness?

Not helpful! (same rate as non-smooth) Lower bounds (Nemirovski & Yudin, 1983) * Active research

Acceleration? Cannot be easily accelerated! Mini-batch acceleration * Active research

Random Coordinate Descent

Recall: cost of computing exact GD update: $m \cdot n$ What if n VERY is large? We want cheaper iterations

Random coordinate descent algorithm:

- Initialize: $x^{(0)} \in \operatorname{dom}(f)$
- Iterate: pick $i(k) \in \{1, \ldots, n\}$ randomly

$$x^{(k+1)} = x^{(k)} - t^{(k)} \nabla_{i(k)} f(x^{(k)}) e_{i(k)}$$

where we denote: $\nabla_i f(x) = \frac{\partial f}{\partial x_i}(x)$

Assumption: f is convex and differentiable

(Figures borrowed from Ryan Tibshirani's slides)

Iteration cost? $\nabla_i f(x) + O(1)$ Compare to $\nabla f(x) + O(n)$ for GD

Example: quadratic

$$f(x) = \frac{1}{2}x^{\top}Qx - v^{\top}x$$
$$\nabla f(x) = Qx - v$$
$$\nabla_i f(x) = q_i^{\top}x - v_i$$

Can view CD as SGD with oracle: $\tilde{g}(x) = n \nabla_i f(x) e_i$ Clearly,

$$\mathbb{E}[\tilde{g}(x)] = \frac{1}{n}n\sum_{i}\nabla_{i}f(x)e_{i} = \nabla f(x)$$

Can replace individual coordinates with blocks of coordinates

Example: SVM Primal:

$$\min_{w} \frac{\lambda}{2} \|w\|^2 + \sum_{i} \max(1 - y_i w^{\top} z_i, 0)$$

Dual:

$$\min_{\alpha} \frac{1}{2} \alpha^{\top} Q \alpha - 1^{\top} \alpha$$

s.t. $0 \le \alpha_i \le 1/\lambda \quad \forall i$

Convergence rate

Directional smoothness for f: there exist M_1, \ldots, M_n s.t. for any $i \in \{1, \ldots, n\}$, $x \in \mathbb{R}^n$, and $u \in \mathbb{R}$

$$|\nabla_i f(x + ue_i) - \nabla_i f(x)| \le M_i |u|$$

Note: implies f is M-smooth with $M \leq \sum_i M_i$

Consider the update:

$$x^{(k+1)} = x^{(k)} - \frac{1}{M_{i(k)}} \nabla_{i(k)} f(x^{(k)}) \cdot e_{i(k)}$$

No need to know M_i 's, can be adjusted dynamically

Rates (Nesterov, 2012):

	$\mu \preceq \nabla^2 \preceq M$	$ abla^2 \preceq M$	$\ \nabla\ \le L$	$ \begin{aligned} \ \nabla\ \le L, \\ \mu \preceq \nabla^2 \end{aligned} $
GD	$\kappa \log \frac{1}{\epsilon}$	$\frac{M\ x^*\ ^2}{\epsilon}$	$\frac{L^2 \ x^*\ ^2}{\epsilon^2}$	$\frac{L^2}{\mu\epsilon}$
CD	$n\kappa\log\frac{1}{\epsilon}, \ \kappa = \frac{\sum_i M_i}{\mu}$	$\frac{n\ x^*\ ^2 \sum_i M_i}{\epsilon}$	×	×

Same total cost as GD, but with much cheaper iterations

Comment: holds in expectation

$$\mathbb{E}\left[f(x^{(k)})\right] - f^* \le \dots$$

Acceleration? Yes! * Active research