Convex Optimization

Optional Enrichment Problem Set $1 \frac{1}{2}$

Please do not turn this in-it will not be graded

1 Conjugate Direction Methods

Recall that $v^{(1)}, \ldots, v^{(k)} \in \mathbb{R}^{n}$ are H-conjugate iff for every $i \neq j$ we have $\left(v^{(i)}\right)^{T} H v^{(j)}=0$. That is, $\tilde{v}^{(i)}=H^{1 / 2} v^{(i)}$ are orthogonal.

1.1 Conjugate Direction Minimization of a Quadratic Objective

Let $f(x)=\frac{1}{2} x^{T} H x-b^{T} x$, with H positive semi-definite, be a convex quadratic objective. Let $\Delta x^{(0)}, \ldots, \Delta x^{(n-1)}$ be non-zero H-conjugate directions. Consider iterative minimization along these directions, starting from some $x^{(0)}$:

1. For $i=0$ to $n-1$
2. $t^{(i)} \leftarrow \arg \min _{t} f\left(x^{(i)}+t \Delta x^{(i)}\right)$
3. $x^{(i+1)} \leftarrow x^{(i)}+t^{(i)} \Delta x^{(i)}$

1.1.1

Prove that:

$$
t^{(i)}=\frac{\left(\Delta x^{(i)}\right)^{T}\left(H x^{(i)}-b\right)}{\left(\Delta x^{(i)}\right)^{T} H \Delta x^{(i)}}
$$

1.1.2

The principal result about conjugate directions is that the current point $x^{(k)}$ at each step k of the method above minimizes the quadratic objective $f(x)$ over the k-dimensional affine subspace spanned by $\Delta x^{(0)}, \ldots, \Delta x^{(k-1)}$. That is:

$$
\begin{equation*}
x^{(k)}=\arg \min _{x \in M^{k}} f(x) \tag{1}
\end{equation*}
$$

where

$$
M^{k}=\left\{x \mid x=x^{0}+\sum_{i=0}^{k-1} \beta_{i} \Delta x^{(i)}, \beta_{i} \in \mathbb{R}\right\}
$$

Prove equation (1):

1. Show that for all $i<k: \nabla f\left(x^{(k)}\right)^{T} \Delta x^{(i)}=\nabla f\left(x^{(i+1)}\right)^{T} \Delta x^{(i)}$. (Hint: write $x^{(k)}$ in terms of $x^{(i+1)}, t^{(i+1)}, \ldots, t^{(k-1)}$ and $\left.\Delta x^{(i+1)}, \ldots, \Delta x^{(k-1)}\right)$
2. Show that $\nabla f\left(x^{(i+1)}\right)^{T} \Delta x^{(i)}=0$. Conclude that $\nabla f\left(x^{(k)}\right)^{T} \Delta x^{(i)}=0$ for $i<k$. (Hint: Consider the derivative of $f\left(x^{(i)}+t \Delta x^{(i)}\right)$ with respect to t).
3. Prove equation (1) by considering the derivatives of $x^{0}+\sum_{i=0}^{k-1} \beta_{i} \Delta x^{(i)}$ with respect to β_{i}.

1.2 Generating Conjugate Directions

Let $\Delta x^{(0)}, \ldots, \Delta x^{(k-1)}$ be H-conjugate and d a non-zero vector which is not spanned by $\Delta x^{(0)}, \ldots, \Delta x^{(k-1)}$. Let

$$
\begin{equation*}
\Delta x^{(k)}=d-\sum_{i=0}^{k-1} \frac{d^{T} H \Delta x^{(i)}}{\left(\Delta x^{(i)}\right)^{T} H \Delta x^{(i)}} \Delta x^{(i)} \tag{2}
\end{equation*}
$$

1.2.1

Prove that $\Delta x^{(0)}, \ldots, \Delta x^{(k)}$ are H-conjugate and that they span the same subspace as $\Delta x^{(0)}, \ldots, \Delta x^{(k-1)}, d$.

1.3 The Conjugate Gradient Method for a Quadratic Function

In the conjugate gradient method for a quadratic function $f(x)=\frac{1}{2} x^{\prime} H x-b^{\prime} x$, each iteration starts with the negative gradient $d=-\nabla f(x)$ and applies equation (2) to obtain only the part of d that is conjugate to all previous directions:

1. For $i=0$ to $n-1$
2. $\quad d^{(i)}=-\nabla f\left(x^{(i)}\right)$
3. If $d^{(i)}=0$ then terminate
4. Calculate $\Delta x^{(i)}$ using equation (2)
5. $\quad t^{(i)}=\frac{\left(\Delta x^{(i)}\right)^{T}\left(H x^{(i)}-b\right)}{\left(\Delta x^{(i)}\right)^{T} H \Delta x^{(i)}}$
6. $x^{(i+1)} \leftarrow x^{(i)}+t^{(i)} \Delta x^{(i)}$

1.3.1

Explain why after running the above method, if the method does not terminate early, than $x^{(n)}$ is an optimal point. If the method does terminate early, the last iterate is an optimal point.

1.3.2

The key to the conjugate gradient method is that the calculation of the direction $\Delta x^{(i)}$ can be greatly simplified. In particular, we have:

$$
\begin{equation*}
\Delta x^{(k)}=d^{(k)}+\beta^{(k)} \Delta x^{(k-1)} \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
\beta^{(k)}=\frac{\left(d^{(k)}\right)^{T} d^{(k)}}{d^{(k-1)} d^{(k-1)}} \tag{4}
\end{equation*}
$$

Prove equation (3):

1. Prove that $d^{(k)}$ is orthogonal to $\Delta x^{(0)}, \ldots, \Delta x^{(k-1)}$ and hence also to $d^{(0)}, \ldots, d^{(k-1)}$. (Hint: Use the partial optimality property given in equation (1)).
2. Show that $t^{(i)} H \Delta x^{(i)}=d^{(i)}-d^{(i+1)}$. (Hint: expand the gradients and consider the update rule for $x^{(i+1)}$).
3. Using the above relation and the orthogonality of $d^{(0)}, \ldots, d^{(k)}$, evaluate $\left(d^{(i)}\right)^{T} H \Delta x^{(j)}$ for $j<i$. (Hint: For all but one value of j, this will be zero).
4. Similarly, evaluate $\left(\Delta x^{(j)}\right)^{T} H \Delta x^{(j)}$.
5. Substitute the above two relations into equation (2) and obtain equation (3), with $\beta^{(k)}$ expressed in terms of $d^{(k)}, d^{(k-1)}$ and $\Delta x^{(k-1)}$. Now, show that $\beta^{(k)}$ can be calculated as in equation (4) by expanding $\Delta x^{(k-1)}$ using equation (3), the orthogonality of $d^{(k)}$ and $d^{(k-1)}$ and the orthogonality of $\Delta x^{(k-2)}$ and $d^{(k)}-d^{(k-1)}$.

This concludes the proof of equations (3) and (4). We will actually prefer a slightly different form of equation (4):

$$
\begin{equation*}
\beta^{(k)}=\frac{\left(d^{(k)}\right)^{T}\left(d^{(k)}-d^{(k-1)}\right)}{d^{(k-1)} d^{(k-1)}} \tag{5}
\end{equation*}
$$

6. Show that equation (5) is also valid and equivalent to equation (4) (when minimizing a quadratic function with exact line search).

Each iteration of the method therefore requires only vector-vector operations with computational cost $O(n)$, once the gradient has been computed. For a quadratic function, the most expansive operation is therefore computing the gradient which takes time $O\left(n^{2}\right)$.

2 Quasi-Newton Methods

In quasi-Newton methods the descent direction is given by:

$$
\Delta x^{(k)}=-D^{(k)} \nabla f\left(x^{(k)}\right)
$$

In the exact Newton method, the matrix $D^{(k)}$ is the inverse Hessian. Quasi-Newton methods avoid calculating the Hessian and inverting it by updating an approximation of the inverse Hessian using the change in the gradients. For a quadratic function, the change in gradient is described by:

$$
q^{(k)}=\left(\nabla^{2} f\right) p^{(k)}
$$

where $p^{(k)}=x^{(k+1)}-x^{(k)}$ and $q^{(k)}=\nabla f\left(x^{(k+1)}\right)-\nabla f\left(x^{(k)}\right)$. We therefore seek an approximation $D^{(k)}$ to the inverse Hessian that approximately satisfies:

$$
p^{(k)} \approx D q^{(k)}
$$

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method updates $D^{(k)}$ by making the smallest change, under some specific weighted norm, that agrees with the latest change in the gradient:

$$
\begin{equation*}
D^{(k+1)}=\arg \min _{p^{(k)}=D q^{(k)}}\left\|W^{1 / 2}\left(D-D^{(k)}\right) W^{\frac{1}{2}}\right\|_{F} \tag{6}
\end{equation*}
$$

where $\|A\|_{F}=\sqrt{\sum_{i j} A_{i j}^{2}}$ is the Frobenius norm and W is any matrix such that $q^{(k)}=W p^{(k)}$.

2.1

Show that the solution of equation (6) is given by:

$$
\begin{equation*}
D^{(k+1)}=D^{(k)}+\frac{p^{(k)}\left(p^{(k)}\right)^{T}}{\left(p^{(k)}\right)^{T} q^{(k)}}-\frac{D^{(k)} q^{(k)}\left(q^{(k)}\right)^{T} D^{(k)}}{\left(q^{(k)}\right)^{T} D^{(k)} q^{(k)}}+\tau^{(k)} v^{(k)}\left(v^{(k)}\right)^{T} \tag{7}
\end{equation*}
$$

where $\tau^{(k)}=\left(q^{(k)}\right)^{T} D^{(k)} q^{(k)}$, and:

$$
v^{(k)}=\frac{p^{(k)}}{\left(p^{(k)}\right)^{T} q^{(k)}}-\frac{D^{(k)} q^{(k)}}{\tau^{(k)}}
$$

The BFGS method is therefore given by (ignoring the stopping condition):

1. Start from some $x^{(0)}$ and an initial $D^{(0)}$
2. For $i \in\{0,1,2, \ldots\}$
3. $\Delta x^{(i)} \leftarrow-D^{(i)} \nabla f\left(x^{(i)}\right)$
4. $\quad t^{(i)} \leftarrow \arg \min _{t} f\left(x^{(i)}+t \Delta x^{(i)}\right)$
5. $x^{(i+1)} \leftarrow x^{(i)}+t^{(i)} \Delta x^{(i)}$
6. Calculate $D^{(i+1)}$ according to equation (7)

2.2

We now consider applying BFGS to a quadratic objective $f(x)=\frac{1}{2} x^{\prime} H x-b^{\prime} x$ with $x \in \mathbb{R}^{n}$ and H positive definite.

2.2.1

Show that for all $i<k \leq n$ we have $D^{(k)} q^{(i)}=p^{(i)}$. That is, for a quadratic objective, the approximate inverse Hessian matches all the changes in the gradient so far. Conclude that $D^{(n)}=$ H^{-1}, i.e. after n iterations the correct Hessian is recovered.

2.2.2

Show that $\Delta x^{(0)}, \ldots, \Delta x^{(n-1)}$ are H-conjugate.

2.2.3

Show that with $D^{(0)}=I$, the sequence of iterates $x^{(i)}$ generated by BFGS is identical to those generated by the conjugate gradient method described above. It is important to note that this holds only for a quadratic objective, and when exact line search is used. For non-quadratic objectives, or when approximate line search is used, the two methods typically differ.

