Convex Optimization

Optional Enrichment Problem Set 1%

Please do not turn this in—it will not be graded

1 Conjugate Direction Methods

Recall that vV, ... v*®) € R" are H-conjugate iff for every i # j we have (v(i))THv(j) = 0.
That is, 9 = H'/?v(® are orthogonal.

1.1 Conjugate Direction Minimization of a Quadratic Objective

Let f(x) = %xTH x — bTx, with H positive semi-definite, be a convex quadratic objective. Let
Az© Az be non-zero H-conjugate directions. Consider iterative minimization along
these directions, starting from some (%:

1. Fori =0ton —1
2.t «— argmin, f (x(i) + tAZL‘(i))
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1.1.1
Prove that: o .
i _ (D) (Ha —b)
(Az)" HAz®)
1.1.2

The principal result about conjugate directions is that the current point *) at each step k of the
method above minimizes the quadratic objective f (z) over the k-dimensional affine subspace
spanned by Az .. Az*~Y_ That is:

z® = arg min f (z) (1)
zeMk



where

k-1
MF = {x |z = x0+ZﬁiAa:(i),ﬁi € R}

=0

Prove equation (1):

1. Show that foralli < k: Vf (x(’“))T Az =V f (x(i“))T Az® (Hint: write *) in terms
of x0+D G+D) (=1 and AgC+D) o Az(k-D)

2. Show that V£ (z(+1)" Az = 0. Conclude that V f (z®)" Az) = 0 for i < k. (Hint:
Consider the derivative of f (2" 4 tAz®) with respect to ¢).

3. Prove equation (1) by considering the derivatives of 2° + Zf;ol B; Az with respect to f3;.

1.2 Generating Conjugate Directions

Let Az©® ... Az(*~1) be H-conjugate and d a non-zero vector which is not spanned by Az, ... Az=1,
Let
— dTHAx :
Az®) =g — ~ Az ()
A:z:(Z HAz®
1.2.1
Prove that Az® ... Az(®) are H-conjugate and that they span the same subspace as Az ... Az*=1) 4.

1.3 The Conjugate Gradient Method for a Quadratic Function

In the conjugate gradient method for a quadratic function f (z) = 12/Hx — V'z, each iteration
starts with the negative gradient d = —V f (x) and applies equation (2) to obtain only the part of d
that is conjugate to all previous directions:

1. Fortr=0ton —1
2. A9 =~V f ()
3.  Ifd% = 0 then terminate

4.  Calculate Az using equation (2)

s 40— (2e®)" (Hat)—b)
' o (Ax(i))THAwW
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1.3.1

Explain why after running the above method, if the method does not terminate early, than (™ is
an optimal point. If the method does terminate early, the last iterate is an optimal point.

1.3.2

The key to the conjugate gradient method is that the calculation of the direction Az can be
greatly simplified. In particular, we have:

Ax®) = gk 4 B(k)Ax(k_l) 3)
with .
(k) (k)
Bk = M (4)
20— 1)
Prove equation (3):
1. Prove that d*) is orthogonal to Az(® ... Az~ and hence also to d©, ..., d*~Y. (Hint:

Use the partial optimality property given in equation (1)).

2. Show that t® HAz® = d® — d@+1  (Hint: expand the gradients and consider the update
rule for z(+1).

3. Using the above relation and the orthogonality of d©, ..., d*), evaluate (d(i))T HAzY for
J < i. (Hint: For all but one value of 7, this will be zero).

4. Similarly, evaluate (Aa:(j))T HAzO,

5. Substitute the above two relations into equation (2) and obtain equation (3), with 5 ex-
pressed in terms of d® d* =1 and Az* Y. Now, show that B(’“) can be calculated as in
equation (4) by expanding Az*~1) using equation (3), the orthogonality of d*) and d*~1)
and the orthogonality of Az*~2) and d*) — @V,

This concludes the proof of equations (3) and (4). We will actually prefer a slightly different

form of equation (4):

RN (k) _ g(k—1)
w (@) (d® —d*Y)
g = dk=1) (k—1) ®)

6. Show that equation (5) is also valid and equivalent to equation (4) (when minimizing a
quadratic function with exact line search).

Each iteration of the method therefore requires only vector-vector operations with computational
cost O (n), once the gradient has been computed. For a quadratic function, the most expansive
operation is therefore computing the gradient which takes time O (n?).



2  Quasi-Newton Methods

In quasi-Newton methods the descent direction is given by:
Ax®) — _D(k’)vf (:E(k))

In the exact Newton method, the matrix D*) is the inverse Hessian. Quasi-Newton methods avoid
calculating the Hessian and inverting it by updating an approximation of the inverse Hessian using
the change in the gradients. For a quadratic function, the change in gradient is described by:

q® = (sz) pk)
where p*) = k1) — 2 and ¢¥) = V f (zk+)) — V f (). We therefore seek an approxima-
tion D to the inverse Hessian that approximately satisfies:
p(k) ~ Dq(k)

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method updates D*) by mak-
ing the smallest change, under some specific weighted norm, that agrees with the latest change in
the gradient:

D*Y = arg min_||WY? (D — D®)) Wz 6)
p(k):Dq(k) F
where || Al|, = /37, A, is the Frobenius norm and W' is any matrix such that q® =wph),
2.1
Show that the solution of equation (6) is given by:
® (pENT W E) ()T pk)
D+ — pk) 4 P (™) DWg®W(¢™) D + 7Ry ®) (07 %

(p*N)T g®) ()" Dk g

where 7(F) = (q(k))T D" ¢*) "and:
pH DB
(ptn gk Tk

o) —

The BFGS method is therefore given by (ignoring the stopping condition):

1. Start from some z(*) and an initial D(®)
2. Fori €{0,1,2,...}

3. Az« —DOVF (2)

4. t9 « argmin, f (:E(i) + tAx(i))

5. 20 20 L tOAZ0)
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Calculate D*+1) according to equation (7)
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2.2

We now consider applying BFGS to a quadratic objective f (z) = %x’ Hx — bz with x € R" and
H positive definite.

221

Show that for all © < k& < n we have D(k)q(i) = p(i). That is, for a quadratic objective, the
approximate inverse Hessian matches all the changes in the gradient so far. Conclude that D™ =
H~', i.e. after n iterations the correct Hessian is recovered.

2.2.2

Show that Az, ... Az("=Y are H-conjugate.

2.23

Show that with D(® = I, the sequence of iterates 2(Y) generated by BFGS is identical to those
generated by the conjugate gradient method described above. It is important to note that this holds
only for a quadratic objective, and when exact line search is used. For non-quadratic objectives, or
when approximate line search is used, the two methods typically differ.



