Convex Optimization

Problem set 3

Due Wednesday, April 14th

1. Consider the log-barrier method for solving an optimization problem with a single semidefinite constraint:

minimize_{$$x \in \mathbb{R}^n$$} $f_0(x)$
s.t. $f_1(x) \preccurlyeq 0$
 $Ax = b$ (1)

where $f_1 : \mathbb{R}^n \to S^k$, $A \in \mathbb{R}^{n \times p}$ and $b \in \mathbb{R}^p$. That is, the semi-definite constraint is on a $k \times k$ matrix. We assume here the problem is feasible.

In order to solve the above problem, we will use the barrier problems:

minimize_{$$x \in \mathbb{R}^n$$} $f_0(x) - \frac{1}{t} \log \det(-f_1(x))$
s.t. $Ax = b$ (2)

Let $x^*(t)$ and $\nu^*(t)$ be primal and dual optimal solutions of (2) and set $\lambda^*(t) = -\frac{1}{t}x^*(t)^{-1}$.

(a) Prove that $x^*(t)$ is feasible for (1) and $\lambda^*(t)$, $\nu^*(t)$ is feasible for its dual, attaining the dual objective:

$$g(\lambda^*(t),\nu^*(t)) = f_0(x^*(t)) - \frac{k}{t}$$

- (b) Conclude that $x^*(t)$ is $\frac{k}{t}$ -suboptimal for (1).
- (c) Consider a problem with multiple semi-definite constraints:

minimize_{$$x \in \mathbb{R}^n$$} $f_0(x)$
s.t. $f_i(x) \preccurlyeq 0, \quad i = 1, \dots, m$
 $Ax = b$ (3)

where $f_i : \mathbb{R}^n \to S^{k_i}$, $A \in \mathbb{R}^{n \times p}$ and $b \in \mathbb{R}^p$. The associated barrier problems are:

minimize_{$$x \in \mathbb{R}^n$$} $f_0(x) - \frac{1}{t} \sum_{i=1}^m \log \det(-f_i(x))$
s.t. $Ax = b$ (4)

Let $x^*(t)$ be an optimum of (4) and prove that it is $\frac{1}{t} \sum_{i=1}^{m} k_i$ -suboptimal for (3) (Hint: reduce the problem to a problem with a single semi-definite constraint, and be sure to show that the barrier problems remain unchanged).

- 2. Boyd and Vandenberghe Problem 10.2
- 3. Boyd and Vandenberghe Problem 11.6