
What have we learned?
Why Machine Learning?

Pipeline and Practical Examples
Naive Bayes

Lecture 1: From Coins to Machine Learning

Pedro Savarese

TTI

2018

1/22



What have we learned?
Why Machine Learning?

Pipeline and Practical Examples
Naive Bayes

Table of Contents

1 What have we learned?

2 Why Machine Learning?

3 Pipeline and Practical Examples

4 Naive Bayes

2/22



What have we learned?
Why Machine Learning?

Pipeline and Practical Examples
Naive Bayes

So far

Probability:

Expectation
Conditional Probability
Concentration bounds (Markov)

Coins:

How to estimate bias of a coin (Maximum Likelihood
Estimation)
How to distinguish two coins (Bayes Rule)
How to get performance guarantees (Hoeffding and Chernoff
bounds)
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Now

Introduction to Machine Learning

Actually, we have been doing Machine Learning already!

Distinguishing two coins is similar to:

Distinguishing between pictures of dogs and cats (computer
vision)
Distinguishing between steering a car to the left and right
(autonomous cars)
Distinguishing between texts written by myself and by
someone else (non-intrusive biometry, security)

We will do exactly that today: distinguish between spam and
non-spam e-mail

4/22



What have we learned?
Why Machine Learning?

Pipeline and Practical Examples
Naive Bayes

Table of Contents

1 What have we learned?

2 Why Machine Learning?

3 Pipeline and Practical Examples

4 Naive Bayes

5/22



What have we learned?
Why Machine Learning?

Pipeline and Practical Examples
Naive Bayes

Why Machine Learning?

Problem: spam detection

Spam e-mail:
”FREE POLYPHONIC RINGTONE Text SUPER to 87131 to
collect FREE POLY TONE of the week now!”
”WIN: We have a winner! YOU won an iPod!”

Not spam:
”pedro why didn’t u call on your lunch?”
”No. Yes please. Been swimming?”

Goal: design computer program f that tells if e-mail x is spam
or not

f (x) = ”spam” if e-mail x is spam
f (x) = ”not spam” if e-mail x is not spam
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Manual Problem Solving

Algorithm 1 Spam Detection Algorithm

1: Input: e-mail string x
2: if (”free” or ”now!” or ”collect” or ”win” or ”won” in x), then
3: return ”spam”
4: else
5: return ”not spam”
6: end if

7/22



What have we learned?
Why Machine Learning?

Pipeline and Practical Examples
Naive Bayes

Manual Problem Solving

How good is the program?

Manually designing solutions: complex, requires time and
effort

Machine Learning: program learns to detect spam from
examples

Automated problem solving, little human effort
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Machine Learning

Machine Learning pipeline:

1 Collect examples X = (x(1), x(2), x(3), . . . )

2 Collect labels y = (y(1), y(2), y(3), . . . )

For spam problem, y(i) = {spam, not spam}
3 Use X, y to train model f

What model do we use? How do we train it? Focus of next
lectures

4 Use f to classify new observations: f (x) = ŷ
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Machine Learning

Machine Translation:
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Machine Learning

Object Detection:
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Machine Learning

Colorization:
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Bernoulli Language Model

X is collection of sentences

Each sentence x ∈ X is composed of words: x = {x1, x2, . . . }
Goal: learn a language model p(x)

How? Maximum Likelihood Estimation: maximize
L =

∏
x∈X p(x)

Bernoulli model for p(x)

Have |V| independent biased coins (V is set of all words)
Coin corresponding to word v has heads probability p(v)
If heads, then word v occurs in x
p(x) =

∏
v∈V p(v)1{v∈x}(1− p(v))1{v /∈x}

MLE: p(v) =
∑

x∈X 1{v∈x}
|X|
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Naive Bayes

Spam detection with coins

Goal: learn p(x, y) = p(y)p(x|y)
Here x is an e-mail and y ∈ {spam, not spam}
Again, model as collection of coins, but words depend on y
Intuition:

First flip y coin, if heads then x is spam, if tails then not spam
Flip word coins p(v |y) for occurrences: coins are different
depending on y

p(x|y) =
∏
v∈V

p(v |y)1{v∈x}(1− p(v |y))1{v /∈x}

The joint probability will be:

p(x, y) = p(spam)1{y=spam}(1− p(spam))1{y=not spam}

×
∏
v∈V

p(v |y)1{v∈x}(1− p(v |y))1{v /∈x}

16/22



What have we learned?
Why Machine Learning?

Pipeline and Practical Examples
Naive Bayes

Naive Bayes

Final step: learn p(spam) and p(v |y) for each v ∈ V
Use Maximum Likelihood Estimation
Likelihood:

L =
∏

(x,y)∈(X,y)

(
p(spam)1{y=spam}(1− p(spam))1{y=not spam}

×
∏
v∈V

p(v |y)1{v∈x}(1− p(v |y))1{v /∈x}
)

Log-likelihood:

logL =
∑

(x,y)∈(X,y)

(
1{y = spam} log p(spam)

+ 1{y = not spam} log(1− p(spam))

+
∑
v∈V

1{v ∈ x} log p(v |y) + 1{v /∈ x} log(1− p(v |y))
)
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Naive Bayes

MLE for p(spam):

∂ logL
∂p(spam)

=
∑

(x,y)∈(X,y)

1{y = spam}
p(spam)

− 1{y = not spam}
1− p(spam)

= 0

p(spam) =
c(spam)

N
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Naive Bayes

MLE for p(v ′|y ′):

∂ logL
∂p(v ′|y ′)

=
∑

(x,y)∈(X,y)

1{v ′ ∈ x ∧ y = y ′}
p(v ′|y ′)

−1{v ′ /∈ x ∧ y = y ′}
1− p(v ′|y ′)

= 0

p(v ′|y ′) =
c(v ′ ∧ y ′)

c(y ′)
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Naive Bayes

Solutions:

p(spam) =
c(spam)

N

p(v ′|spam) =
c(v ′ ∧ spam)

c(spam)

p(v ′|not spam) =
c(v ′ ∧ not spam)

c(not spam)
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Naive Bayes

Once we learn p(x, y), how do we classify e-mails?

Bayes: p(spam|x) = p(spam)p(x|spam)
p(x)

Predict spam if: p(spam|x) > p(not spam)p(x|not spam)

...if p(spam)p(x|spam)
p(x) > p(not spam)p(x|not spam)

p(x)

...if p(spam)p(x|spam) > p(not spam)p(x|not spam)
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Naive Bayes

Now: try on real data

Estimate p(spam)
Estimate p(v |spam) and p(v |not spam) for each word v ∈ V
Implement prediction: compute p(spam)p(x|spam) and
p(not spam)p(x|not spam), implement prediction rule
Check words v with highest p(v |spam) and p(v |not spam)

Check words v with highest p(v |spam)
p(v |not spam)
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