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Recap: Naive Bayes

Naive Bayes

o Learn p(x,y) = p(y)p(x|y)
@ Training: Maximum Likelihood Estimation
@ Issues?

o Why learn p(x,y) if we only use p(y|x)?
o Is Naive assumption realistic? Are words independent given y?
e Is Bernoulli assumption realistic? What about repeated words?
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Recap: Naive Bayes

Naive Bayes

@ Let's analyze the prediction rule. Denote 'spam’ as 1 and 'not
spam’ as 0. We predict 1 if:

[y POV (1L = p(v))P - p(0)
[oey PVIOHEH1 — p(v]0) 8 = 75 p(1)
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Naive Bayes

Denote 1{v € x} as ¢,(x):

I,ey p(vrmv(*)(l—p(vu)) o p(O)
[T,cv (v[0)2 )1 — p(v]0))-40) ~ 8 p(1)

log (
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Recap: Naive Bayes

Naive Bayes

So why all this math?

Z¢V(x)-wv+b> 0

vey
Is just a linear function! A Naive Bayes model is, in reality,
equivalent to learning to separate spam / not spam with a
line.
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Logistic Regression
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Logistic Regression

Logistic Regression

We only care about p(y|x), so why learn p(x,y)?
Learn p(y|x) directly, through a linear model
Spam detection: learn f : x — p(spam|x)

First, learn linear score function s : x — R

o We want s(x) to be high if p(spam|x) ~ 1
o And s(x) to be low if p(spam|x) ~ 0

Linear model for s: s(x) = (w,x) + b

Remaining: map s(x) to p(spam|x): use sigmoid function
0(z) = 2= Facts:
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Logistic Regression

Logistic Regression

Sigmoid function o:

o
un
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Logistic Regression

Logistic Regression

e Model: p(spam|x) = 0(<w,x> + b)
@ Parameters: w and b

@ Learning: Maximum Likelihood Estimation (for conditional
likelihood!!)

= ] pUx

(x.y)e(Xyy)

= H p(spam]x)l{y:Spam}(l _ p(Spam‘X))l{y:nOt spam}
(x.y)e(Xyy)

= H O‘(<W,X> + b)l{y:spam}(l _ U(<W,x> + b))l{y:not spam
(x.y)e(Xyy)

10/23



Logistic Regression

Logistic Regression

o Log-Likelihood:

log £ = Z (1{y = spam} log o({(w, x) + b)
(xy)e(Xy)

+ 1{y = not spam} log(1 — o({w,x) + b)))

alg\iﬁz Z x(l{y:spam}—a(<w,x>+b)>

(x.y)e(X,y)

OlogL B
on = O Uy=spam}—o((w,x) +b)
(x.y)e(Xyy)

@ Not possible to solve 8355 = 0 analytically: non-linear system
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Logistic Regression

Logistic Regression

@ Alternative: gradient ascent
dlog L

@ “5= is direction (in w) that increases log £ the most
@ Gradient ascent: move w in direction 6Ig‘%£, iteratively:
Odlog L
W< W-+7
ow
W w+7 Z x(l{y = spam} — o((w, x) + b))
(x.y)e(Xy)
Odlog L
b+ b
—b+n b
b« b+n Z 1{y = spam} — o((w, x) + b)
(xy)E(Xy)
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Logistic Regression

Logistic Regression

o Classifying emails: predict spam if:

p(spam|x) > p(not spam|x)
p(
p(spam|x) > 0.5
o({w,x) + b) > 0.5
(w,x) +b>0

spam|x) > 1 — p(spam|x)

Looks familiar?
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Input Encoding and Spam Detection
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Input Encoding and Spam Detection

Input Encoding

@ x and w must have same dimensionality
@ Must represent data as fixed-dimensional vector

@ Common encoding in Natural Language Processing:
x(e-mail); = 1{word v; of the vocabulary V is in e-mail} =
by (x)

@ Then x(e-mail) is always |V|-dimensional
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Input Encoding and Spam Detection

Spam Detection

Quick coding session:
@ Implement input encoding: transform emails into fixed-length
vector
@ Implement logistic model p(spam|x) = o(s(x))
@ Implement gradient computation for w and b

@ Implement gradient ascent and train model
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Feedforward Neural Networks
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Feedforward Neural Networks

Sigmoid Feedforward Neural Networks

Logistic Regression: prediction is given by linear function

Many simple problems are not linearly separable, example:
o V = {human, dog}
o Possible combinations: {}, {human}, {dog}, {human, dog}
e Task: classify single-word email versus non-single word

Idea: model p(spam|x) with non-linear function instead

Sigmoid Feedforward Neural Networks: " composition of
logistic models”
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Feedforward Neural Networks

Sigmoid Feedforward Neural Networks

Sigmoid Feedforward Neural Network:

Input Layer Hidden Layer Output Layer

* Output
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Feedforward Neural Networks

Sigmoid Feedforward Neural Networks

Sigmoid Feedforward Neural Network:

h; = 0'<< (h) >—|—b(h))
plylx) = o (W), h) + b))

Each h; is called a hidden neuron. Note that we can have as
many hidden neurons as desired.
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Feedforward Neural Networks

Sigmoid Feedforward Neural Networks

Advantages of Neural Networks:
@ Cybenko'89: given enough hidden neurons, neural networks
can approximate any function arbitrarily well
e Easy to train: gradient ascent / descent
@ In practice: hidden neurons act as feature extractors

@ Can control model complexity by adding more hidden neurons
or more layers (Deep Learning)
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Feedforward Neural Networks

Quick Coding Session:

@ Understand neural network code, and difference from logistic
regression

@ Train neural network. Do same settings from Logistic
Regression work?

@ Add more layers and train network again
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Feedforward Neural Networks

Is data often not linearly separable?

@ Problem: vocabulary of 10 words
o Task: given email, classify as 1 if it has 5 or 6 words

@ Is problem easy?
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