The winning challenge entry

Ruotian Luo¹, Gilad Vered², Lior Bracha², Gal Chechik², Greg Shakhnarovich¹

TTI-Chicago¹ Bar Ilan University ²
Overview of our submissions

- Two types of captioning models:
 - Attention based LSTM
 - Transformer
- Novel component: "drop worst" mechanism to make learning more robust in presence of many poorly grounded captions
- Two submissions:
 - Ensemble of 3 models: LSTM and two transformer models
 -- trained with CIDEr optimization (reinforcement learning)
 -- second place on CIDEr (0.99); top human rating
 - Ensemble of 5 models (including both LSTMs and transformers)
 -- trained with cross-entropy loss +drop worst
 -- first place on CIDEr (1.04); ranked 4th in human rating
Model type 1: Attention LSTM

- We use att2in model proposed in Rennie et al.
- A variant of the original attention-LSTM captioner in Xu et al.

Model type 2: Transformer

- State of the art seq2seq model
- Base model is the same as in Vaswani et al.
- Huge model has larger hidden size.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>d_{model}</th>
<th>d_{ff}</th>
<th>h</th>
<th>d_{k}</th>
<th>d_{v}</th>
<th>P_{drop}</th>
</tr>
</thead>
<tbody>
<tr>
<td>base</td>
<td>6</td>
<td>512</td>
<td>2048</td>
<td>8</td>
<td>64</td>
<td>64</td>
<td>0.1</td>
</tr>
<tr>
<td>huge</td>
<td>6</td>
<td>1024</td>
<td>4096</td>
<td>8</td>
<td>64</td>
<td>64</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Image Encoder

Image features in both types of models: following Anderson et al., 2018 (bottom-up attention)

- Image encoding size: $K \times 2048$
- K : number of detection boxes scoring above threshold,

$10 \leq K \leq 100$

Drop worst: motivation

- Many captions in the dataset appear to be poorly grounded

football team will play for the first time next season
this princess cross stitch pattern is special because it is modern minimalist suitable for both children and adults

reach new heights on your trip with an adventure
In contrast: grounded/descriptive captions

green basket with yellow flowers of dandelions on the brown wooden background

starfish and seashell with hearts on the sandy beach by the ocean
Drop worst cross entropy

- Normal cross entropy: equal impact of all training samples

\[L = -\frac{1}{N} \sum_i \log P(c_i|I_i) \]

- Idea: examples with highest loss (lowest probability) may be too hard (not grounded) -- so give up on them for now! ("hard negative culling")

- For each batch (after certain epoch), drop (ignore) 20% of the examples with the highest cross entropy loss in that batch

\[L = -\text{Mean} \left[\text{Top}_{80\%} \left\{ \log P(c_i|I_i) \right\} \right] \]
Examples: top probability within a batch

actor during an interview with comedian

football player and battle for the ball
Examples: lowest probability within a batch (dropped)

- shirt graphic created for powder
- sponsored video this application requires programming language
CIDEr optimization

- We directly optimize CIDEr score of generated captions using Policy Gradient methods.
- This is the loss we are optimizing.
- \((R^m\) is the CIDEr score of sampled caption \(c^m\), \(b^m\) is baseline)

\[
L = -\frac{1}{M} \sum_{m=1}^{M} (R^m - b^m) \log P(c^m | I)
\]

\[
b^m = \frac{1}{M - 1} \sum R^\backslash m
\]

12
Other details

- Training setup:
 - Batch size 250 (drop 20% worst after 6 epochs)
 - Learning rate 5e-4, decay by 0.8 every 3 epochs
 - For transformer, warmup step is 40000 iterations.
 - CIDEr optimization: lr 1e-5; batch size 50.

- At test time (submissions):
 - Beam search with beam size 5
 - Decoding constraints ¹
 - Remove bad endings ²

Analysis
Effect of drop worst

- Results on val set

- Baseline model: LSTM
- Consistent improvement with drop worst; use for all models
Results on automatic metrics of different models

- Results on val set with cross-entropy trained models
Combining models (weighted avg. of posteriors)

- Results using beam search with beam size 5, combining LSTM and Transformer-huge

<table>
<thead>
<tr>
<th>LSTM weight</th>
<th>Transformer weight</th>
<th>CIDEr</th>
<th>SPICE</th>
<th>ROUGE_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.7734</td>
<td>0.1586</td>
<td>0.2467</td>
</tr>
<tr>
<td>0.8</td>
<td>0.2</td>
<td>0.8501</td>
<td>0.1692</td>
<td>0.2549</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.9235</td>
<td>0.1757</td>
<td>0.2590</td>
</tr>
<tr>
<td>0.3</td>
<td>0.7</td>
<td>0.9169</td>
<td>0.1750</td>
<td>0.2567</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0.8987</td>
<td>0.1719</td>
<td>0.2520</td>
</tr>
</tbody>
</table>

- Use uniform weights for all ensembles
CIDEr score distribution (val set)

- Frequency of CIDEr scores:
- CIDEr=10 means perfect prediction of GT caption
- Can look in detail at those perfect predictions
The dataset is not balanced

The 10 most frequent captions in training set (counts / frequency)

actor arrives at the premiere 7227/0.23
image may contain person on stage and playing a musical instrument 4986/0.159
digital art selected for the # 4707/0.15
image may contain person on stage playing a musical instrument and guitar 2491/0.08
actor attends the world premiere 2229/0.07
image may contain person on stage playing a musical instrument and indoor 2223/0.07
a model walks the runway at the fashion show during event 2037/0.07
image may contain person on stage playing a musical instrument and night 1862/0.06
football player and battle for the ball 1811/0.06
actor attends the premiere during festival 1701/0.05
Do well on frequent captions

The frequency of top 100 frequent training captions in generated captions.
Other perfectly predicted (unique) captions

- The model is able to generate perfect captions that only appear once or even never in the training set
- Some may be memorization

train

- gingerbread little men on the beach

val

- statue of builder on the cross
- spiral in a circle drawn by the brush painted black paint
Other perfectly predicted unique captions

- women praying in a mosque
- builder on the cross stock photo
- bicycles parked in the snow
Other perfectly predicted captions

- Can even generate previously unseen GT captions
- Rare: 5 new captions out of total 281 perfectly predicted GT captions in val
CIDEr optimization

- Direct CIDEr optimization (with RL) did not work as well as on COCO or other datasets. (on COCO, the CIDEr increases drastically once RL kicks in).
- Performance may recover after a while, but that takes much longer. We didn’t fully explore this due to time limits

The scores are evaluated on an unofficial train-val split
CIDEr score distribution: a different story?

- Lower proportion on CIDEr 10.
- (For Trans-base+RL, it has higher CIDEr than Trans-base, but it still get lower fraction of CIDEr 10.)
Drop worst for CIDEr optimization?

\[L = -\frac{1}{M} \sum_{m=1}^{M} (R^m - b^m) \log P(c^m | I) \]

\[b^m = \frac{1}{M - 1} \sum R \backslash m \]

- Two cases when \(R^m - b^m \) will be zero:
 - All the samples are equally bad. (The ground truth is hard.)
 - All the samples are equally good. (The model is confident.)
Qualitative results
Models we will look at

Three individual (single) models trained with cross-entropy+drop-worst:
- LSTM
- Transformer base
- Transformer huge

Ensemble-CE (top CIDEr on test):
- The above three models
- plus another trans-huge and lstm model trained on another train-val split.

Ensemble-RL (top human rating, 2nd CIDEr on test):
- Same three models trained with CIDEr+RL
LSTM: a view of the lake

Trans-base: a city on the water

Trans-huge: reflections in the early morning

Ensemble-CE: reflections in the water on a cold winter morning

Ensemble-RL: a view of the lake in the winter
LSTM: the road through the forest

Trans-base: driving through a redwood forest

Trans-huge: a view of the forest

Ensemble-CE: a drive through a redwood forest

Ensemble-RL: a view of the trees in the forest
LSTM: a helicopter prepares to land

Trans-base: the amphibious assault ship arrives

Trans-huge: a helicopter takes off from ship

Ensemble-CE: a helicopter takes off from the flight deck of the amphibious assault ship

Ensemble-RL: a helicopter on the flight deck of the ship
LSTM: a table full of food
Trans-base: a table full of food
Trans-huge: the art of wedding photography
Ensemble-CE: breakfast in bed with a dog
Ensemble-RL: a woman with her dog at the table
LSTM: football player makes a save during the match

Trans-base: football player scores the first goal for football team

Trans-huge: football player scores the opening goal

ensemble: football player scores his team 's first goal during the match

ensemble: football player scores his team 's second goal during the match
LSTM: a view of the mountains

Trans-base: person working in the field

Trans-huge: the hills are alive with the sound of music

Ensemble-CE: the hills are alive with the sound of music

Ensemble-RL: person on the road in the field
LSTM: a model wears a creation during event

Trans-base: a model wears a creation as part of fashion collection presented

Trans-huge: person poses for a photo

Ensemble-CE: person poses for a photo with a fan before the start of the race

Ensemble-RL: a model walks the runway at the fashion show during event
Resources

- Code available on Github:
 https://github.com/ruotianluo/GoogleConceptualCaptioning

- Docker image: can use to deploy trained models
 Dockerhub: ruotianluo/conceptual_ens3

- Acknowledgement: tools to download the data
 https://github.com/igorbrigadir/DownloadConceptualCaptions
Additional thoughts
Discriminability objective

- Discriminative captions: allow us to identify the image by its caption
 (see our CVPR’18 paper)

- Did not explore for the challenge; may be useful even for the less grounded captions

Luo, Price, Cohen, Shakhnarovich, “Discriminability Objective for Training Descriptive Captions”, CVPR 2018
Mixture models for captioning

- Since there are multiple types of captions in the data set representing style of captioning may be helpful

 person in a gym with towel around neck
 the front of the house with the wrap - around deck
 mother and child: person was married until last year to ice hockey player
 complete your look with a handbag, scarf and belt, and watch heads turn!
 this image is described in surrounding text
 author usually lets his subjects do the talking

- One could apply mixture models to get captions of different styles
- A related issue: diversity of captions
 - Here, can consider diversity of styles

(Yet another) alternative to ImageNet?

- Idea: Use conceptual captions as target to train a backbone CNN model from scratch
- Unlike classification labels, bounding boxes, segmentation masks: a more natural way of providing human supervision?
- Concerns:
 - Noisy;
 - Arbitrary;
 - Probably expensive?