FOLDING LEARNED NETWORKS INTO EXPLICITLY RECURRENT FORMS

Stage 1 LSM
- Wide Residual Networks (WRNs) [7]
 - Conv $\otimes W$ \rightarrow 1 layers
 - ResNet, ResNetV2 [9], DenseNet [11] all serve as additional comparison points

Stage 2 LSM
- Shared Wide Residual Networks (SWRNs)
 - $\otimes\otimes W$ \rightarrow 4 parameter templates per group of layers
 - Groups consist of layers with the same parameters via template tensor
 - Setting $k = 1 \rightarrow 4$ yields one template per layer; denote such model as SWR-1

Stage 3 LSM
- Performance boost at one template per layer (i.e., without any parameter reduction)
- 2 templates per 6-layers (SWRN-XX-2): even better on CIFAR-10, competitive on CIFAR-100

COMPARISON TO NEURAL ARCHITECTURE SEARCH
- Faster training than recent gradient-based NAS, but...
 - less parameter efficient
- Non-NAS techniques (e.g., cutout, auxiliary towers, hyper-level optimisation) contribute to gains reported in many NAS results
- Cutout regularization boosts baseline WRN model... and on SWRN models (see Table to the right)

EXTRAPOLATION BIAS
- Challenge: Learn Shortest-Paths Algorithm:
 - Faster adaptation to harder examples
 - Better overall accuracy

EVALUATION OF SHARING PATTERNS
- Structure emerges quickly in the first epochs of CIFAR-10 training
- Folding possible after only 22% of total training iterations
- Faster evolution & stronger patterns via reparameterization

IMPROVED PARAMETER EFFICIENCY

Baseline Models:
- WRN-L \rightarrow 2 layers
 - $\otimes\otimes W$ \rightarrow 4 parameter templates per group of layers
 - Groups consist of layers with the same parameters via template tensor
 - Setting $k = 1 \rightarrow 4$ yields one template per layer; denote such model as SWR-1

Our Models:
- SWRN-L $\rightarrow 2$ layers
 - 4 parameter templates per group of layers
 - Groups consist of layers with the same parameters via template tensor
 - Setting $k = 1 \rightarrow 4$ yields one template per layer; denote such model as SWR-L

Results:
- Performance boost at one template per layer (i.e., without any parameter reduction)
- 2 templates per 6-layers (SWRN-XX-2): even better on CIFAR-10, competitive on CIFAR-100

Experimental Results:
- Classification: better accuracy and smaller CNNs
- Learning may discover explicitly recurrent architectures (new form of architecture search)
- Synthetic task: improved extrapolation ability

Soft Parameter Sharing:
- Trained networks present excessive redundancy
- Possible cause: different layers cannot re-use parameters
- Proposed method: layers learn to share parameters, alternatively seen as re-parametrization

Approach:
- Share parameters across layers in a neural network
- Soft sharing: relaxation of discrete optimization problem of selecting layers from a pool

Consequences:
- Decomposes parameter count from network depth
- Imposes inductive bias similar to RNNs
- Benefits optimization: accelerates learning of layers with similar functionality (redundant parameters \rightarrow shared parameters)

Parameters (M)
- SWRN 28-2-1
- SWRN 28-4-2
- SWRN 28-10-2
- SWRN 28-16-2
- SWRN 28-18-2
- WRN 28-10
- WRN 40-4
- RNX 8x64
- RNX 16x64
- DN 40-12
- DN 100-24

Test Error (%):
- SWRN 28-2-1
- SWRN 28-4-2
- SWRN 28-10-2
- SWRN 28-16-2
- SWRN 28-18-2
- WRN 28-10
- WRN 40-4
- RNX 8x64
- RNX 16x64
- DN 40-12
- DN 100-24

Soft Parameter Sharing
- Trained networks present excessive redundancy
- Possible cause: different layers cannot re-use parameters
- Proposed method: layers learn to share parameters, alternatively seen as re-parametrization

Approach:
- Share parameters across layers in a neural network
- Soft sharing: relaxation of discrete optimization problem of selecting layers from a pool

Consequences:
- Decomposes parameter count from network depth
- Imposes inductive bias similar to RNNs
- Benefits optimization: accelerates learning of layers with similar functionality (redundant parameters \rightarrow shared parameters)

Parameters (M):
- SWRN 28-2-1
- SWRN 28-4-2
- SWRN 28-10-2
- SWRN 28-16-2
- SWRN 28-18-2
- WRN 28-10
- WRN 40-4
- RNX 8x64
- RNX 16x64
- DN 40-12
- DN 100-24

Test Error (%):
- SWRN 28-2-1
- SWRN 28-4-2
- SWRN 28-10-2
- SWRN 28-16-2
- SWRN 28-18-2
- WRN 28-10
- WRN 40-4
- RNX 8x64
- RNX 16x64
- DN 40-12
- DN 100-24