
Read, Attend and Pronounce:
An Attention-Based Approach for Grapheme-To-Phoneme Conversion

Shubham Toshniwal, Karen Livescu

Toyota Technological Institute at Chicago
{shtoshni, klivescu}@ttic.edu

Abstract
We propose an attention-enabled encoder-decoder model for the
problem of grapheme-to-phoneme conversion. Most previous
work has tackled the problem via joint sequence models that re-
quire explicit alignments for training. In contrast, the attention-
enabled encoder-decoder model allows for jointly learning to
align and convert characters to phonemes. With this approach,
we achieve state-of-the-art results on the CMUDict data set with
a Word Error Rate (WER) of 23.62%. The performance is com-
parable even to that of models trained using aligned training
data.
Index Terms: grapheme-to-phoneme, LSTM, encoder-
decoder, attention

1. Introduction
Grapheme-to-phoneme conversion (“G2P”) is the task of con-
verting a from a spelling (a grapheme sequence) to its pronun-
ciation (a phoneme or phone sequence1). For example, given a
word able, the task is to output its pronunciation [EY B AH
L]. This conversion is a frequent component of text-to-speech
(TTS) and automatic speech recognition (ASR) systems. While
static dictionaries exist, they are finite; G2P models are essential
for handling out-of-vocabulary words.

One of the main challenges in G2P conversion is that the
pronunciation of any grapheme depends on its context. This is
exacerbated by the fact that the lengths of the input sequence
and output sequence might be different. For example, the pro-
nunciation for blaze, a word consisting of 5 characters, is the
sequence [B L EY Z] consisting of 4 phones. On the other
hand, the very similar grapheme sequence blase is pronounced
in a very different way, [B L AA Z EY], because of its origin in
French. Thus, the alignment between grapheme and phoneme
sequences is non-trivial.

A typical approach in previous work involves using joint se-
quence models, where the model is provided the alignment via
some external aligner [1, 2, 3]. However, since the alignment is
a latent varible and a means to an end rather than the end itself,
it is interesting to consider whether we can do away with such
explicit alignments.

Some recent work on the G2P problem has used neural
network-based approaches. Specifically, long short-term mem-
ory (LSTM) networks have recently been explored for model-
ing the grapheme and phoneme sequences [4, 5]. LSTMs (and,
more generally, recurrent neural networks) can model varying
contexts (“memory”) and have been successful for a number of
sequence prediction tasks. When used in an encoder-decoder

1We will generally use the term “phoneme” to encompass any sub-
word unit of pronunciation.

approach, as in [5], they in principle require no alignment be-
tween the input (grapheme sequence) and output (phoneme se-
quence) and are therefore quite natural for this task. How-
ever, to date the best-performing approaches still use align-
ments. In this paper we explore an extension of encoder-
decoder networks based on an attention mechanism, which has
proven useful in other sequence prediction tasks. The attention
mechanism endows encoder-decoder networks with the ability
to consider “soft” alignments, and to learn these alignments
jointly with the sequence prediction task. We show that we can
achieve state-of-the-art G2P results with such attention-enabled
encoder-decoder models.

2. Model
In this section, we describe the various components of our
model.

2.1. Encoder-decoder framework

We briefly describe the encoder-decoder framework proposed
by [6]. An encoder-decoder model includes an encoder, which
reads in the input (grapheme) sequence, and a decoder, which
generates the output (phoneme) sequence. In our model, the
encoder is a bidirectional long short-term memory (BiLSTM)
network; we use a bidirectional network in order to capture
the context on both sides of each grapheme. The encoder
reads the grapheme sequence, a sequence of vectors x =
(x1, · · · , xTg), and outputs a sequence of hidden state vectors,
h = (h1, · · · , hTg), given by:

−→
h t = f(xt,

−→
h t−1)

←−
h t = f ′(xt,

←−
h t+1)

ht = (
−→
h t;
←−
h t)

We use separate stacked (deep) LSTMs to model f and f ′.
A “context vector” c is computed from the encoder’s state se-
quence:

c = f({h1, · · · , hTg})

This context vector is passed as an input to the decoder.
The decoder, g(.), is modeled by another stacked (unidirec-
tional) LSTM, which predicts each phoneme yt given the con-
text vector c and all of the previously predicted phonemes
{y1, · · · , yt−1} in the following way:

p(yt|{y1, · · · , yt−1}, c) = g(yt−1, dt, c)

where dt is the hidden state of the decoder LSTM.

2.2. Attention mechanism

One of the crucial extensions to encoder-decoder models is the
use of attention mechanisms to adapt the context vector c for
every output label prediction. Here the attention mechanism can
be seen as a soft alignment between the grapheme sequence and
phoneme sequence. We used the attention mechanism proposed
by [7], where the context vector ct at time t is given by:

uit = vT tanh(W1hi +W2dt)

αit = softmax(uit)

ct =

Tg∑
i=1

αithi

The score αit is a weight that represents the importance of hid-
den encoder state hi in generating the phoneme yt.

3. Experiments
3.1. Data

In order to compare directly with earlier results, we use CMU-
Dict pronouncing dictionary and the same experimental setup
as in [1].2 The dictionary uses 27 graphemes and 39 phonemes.
It is split into a 106,837-word train set and a 12,000-word test
set. As in previous work, we use 2,670 words sampled from the
train set as a validation set, which is used for tuning.

3.2. Evaluation

We evaluate our performance using the standard measures of
word error rate (WER) and phoneme error rate (PER). PER is
equal to the Levenshtein distance of the predicted phoneme se-
quence from the ground truth divided by the total number of
phonemes in the ground truth. WER is equal to the total num-
ber of word errors divided by the total number of words. As
in prior work, for words with multiple ground-truth pronuncia-
tions, we choose the ground truth that results in the lowest PER.

3.3. Training

Our stacked LSTMs have 3 layers, each with 512 units, and 512-
dimensional embeddings. We use minibatch stochastic gradient
descent (SGD) together with Adagrad to train our model. We
use an initial learning rate of 0.08 (per example) and a batch
size of 256. Our model is trained for 100 epochs. To prevent
overfitting we: (a) introduce a dropout layer between every pair
of consecutive layers of the stacked LSTMs (b) use scheduled
sampling [8], with a linear decay, on the decoder side.

3.4. Inference

We use a greedy decoder (beam size = 1) to decode the phoneme
sequence during inference.

3.5. Results

We compare the results of our model with some of the best pre-
vious results in Table 1. The entries in the first part of the table
use an external aligner, while the entries in the second part do
not. Our model significantly outperforms the previous models
that do not use an external aligner. Moreover, its performance
is comparable to models that do use external aligners. We note
that, since our model parameters are quite different from those

2We are grateful to Stan Chen for providing the data.

Method PER (%) WER (%)
BiDir LSTM + Alignment [5] 5.45 23.55
Kneser Ney 9-gram model [2] 5.88 24.53
Encoder-decoder [5] 7.63 28.61
DBLSTM-CTC [4] - 25.8
Encoder-decoder + Attention 5.73± 0.15 23.62± 0.6

Table 1: Comparison of our model’s performance with the pre-
vious best-performing published results.

in [5], we cannot necessarily attribute the performance boost
entirely to the addition of the attention mechanism.

4. Conclusion
In this work, we have applied an attention-enabled encoder-
decoder model for the problem of grapheme-to-phoneme con-
version. The model achieves state-of-the-art WER results on the
CMUDict data set, and is comparable to models that use exter-
nal alignment. In future work, we plan to compare different at-
tention models for this task. In particular, local attention models
may be particularly well-suited to exploit the almost monotonic
alignments between graphemes and phonemes.

5. References
[1] S. F. Chen, “Conditional and joint models for grapheme-to-

phoneme conversion,” in Eurospeech, 2003.

[2] M. Bisani and H. Ney, “Joint-sequence models for
grapheme-to-phoneme conversion,” Speech Commun.,
vol. 50, no. 5, pp. 434–451, May 2008.

[3] S. Jiampojamarn, G. Kondrak, and T. Sherif, “Applying
many-to-many alignments and hidden markov models to
letter-to-phoneme conversion,” in HLT-NAACL, 2007.

[4] K. Rao, F. Peng, H. Sak, and F. Beaufays, “Grapheme-to-
phoneme conversion using long short-term memory recur-
rent neural networks,” in ICASSP, 2015.

[5] K. Yao and G. Zweig, “Sequence-to-sequence neural net
models for grapheme-to-phoneme conversion,” in Inter-
speech, 2015.

[6] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to se-
quence learning with neural networks,” in NIPS, 2014.

[7] O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever, and
G. E. Hinton, “Grammar as a foreign language,” in NIPS,
2015.

[8] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Sched-
uled sampling for sequence prediction with recurrent neural
networks.” CoRR, vol. abs/1506.03099, 2015.

