
Lecture 10
CNNs on Graphs

CMSC 35246: Deep Learning

Shubhendu Trivedi
&

Risi Kondor

University of Chicago

April 26, 2017

Lecture 10 CNNs on Graphs CMSC 35246

Two Scenarios

For CNNs on graphs, we have two distinct scenarios:

• Scenario 1: Each data point lives in Rd, but the dataset
has an underlying graph structure

I Each coordinate is a value associated with a vertex of
underlying graph

I For images: The underlying graph is always a grid of fixed
dimensions

• Scenario 2: Each data point is itself a graph (Example
regression task: Molecules as input, boiling points as
output)

I Each graph can be of different size
I Sub-problem: Given a graph G, find an embedding φ : G → Rp

Lecture 10 CNNs on Graphs CMSC 35246

Scenario 1

CNNs on data in irregular domains

Lecture 10 CNNs on Graphs CMSC 35246

CNNs on Grids

So far we have defined CNNs on grids

We model images and feature maps as functions on a
rectangular domain

f : Z2 → RK

In general the grid can be Zd

CNNs are able to exploit various structures that reduce
sample complexity

• Translation structure (allowing use of filters)
• Metric on the grid (allows compactly supported filters)
• Multiscale structure of the grid (allows subsampling)

Lecture 10 CNNs on Graphs CMSC 35246

CNNs on Grids

Z2(i− i0)

Z2(i)

The translation group acts on Z2

We are able to exploit this symmetry of the grid in CNNs

Lecture 10 CNNs on Graphs CMSC 35246

CNNs on Grids

If we have n input pixels, a fully connected network with m
outputs has nm parameters, roughly O(n2)

With k filters, each with support S we have O(kS)
(independent of n)

Using multiscale nature, we can pool, and reduce the number
of parameters further

Lecture 10 CNNs on Graphs CMSC 35246

Data on Irregular Domains

Often we can have structured data defined over coordinates
that does not enjoy any of these properties

Example: 3-D mesh data (each coordinate might be surface
tension)

More: Social network data, protein interaction networks etc.

In each case we again have n coordinates but which don’t live
on a regular grid

Figure source: Eurocom Face Modeling

Lecture 10 CNNs on Graphs CMSC 35246

Functions on Graphs

We can think of a n dimensional image as a function defined
on the vertices of a graph G = (Ω, E) with |Ω| = n

G just happens to be a grid graph with strong local structure
which makes CNNs useful

In general we can have signals defined over a general graph:

Lecture 10 CNNs on Graphs CMSC 35246

Functions on Graphs

1

2 3

4 5

6

7

8

9

Ω is the vertex set (input coordinates), Wi,j the similarity
between any two coordinates i and j

Note: Wi,j is similarity between coordinates, not datapoints

Lecture 10 CNNs on Graphs CMSC 35246

Functions on Graphs

1

2 3

4 5

6

7

8

9

If the underlying graph structure is known, Wi,j will be
available

If unknown: Need to estimate it from training data

Lecture 10 CNNs on Graphs CMSC 35246

Spatial Construction

Locally Connected Networks

Lecture 10 CNNs on Graphs CMSC 35246

Spatial Construction

So we replace a grid by a general graph G = (Ω, E)

The notion of locality can be generalized easily via W

For given W and threshold δ, we have neighborhoods:

Nδ(j) = {i ∈ Ω : Wi,j > δ}

Can have filters with receptive fields given by these
neighborhoods

Number of parameters: O(Sn) (S is average neighbhorhood
size)

Lecture 10 CNNs on Graphs CMSC 35246

Spatial Construction

To mimic subsampling and pooling, we can do a multiscale
clustering of the graph (K scales)

Set Ω0 = Ω, at each level k = 1, . . . ,K define Ωk and Ωk−1

Ωk is a partition of Ωk−1 in dk clusters

Around every element of Ωk−1, we can define the
neighborhood

Nk = {Nk,i : i = 1 . . . dk−1}

Lecture 10 CNNs on Graphs CMSC 35246

Defining the Network

Let number of filters at layer be given by fk

Every layer will transform a fk−1 dimensional signal, indexed
by Ωk−1 into a fk indexed by Ωk

If xk = (xk,i; i = 1 . . . fk−1) is the dk−1 × fk−1 dim input to
layer k, the output is defined as:

xk+1,j = Lkh

(fk−1∑
i=1

Fk,i,jxk,i

)
with j = 1 . . . fk

Fk,i,j is a dk−1 × dk−1 sparse matrix with Nk indicated by
zeros

h is the non-linearity and Lk is the pooling operation

Lecture 10 CNNs on Graphs CMSC 35246

Locally Connected Networks: In Pictures

Level 1 clustering

This and next few illustrations are by Joan Bruna

Lecture 10 CNNs on Graphs CMSC 35246

Locally Connected Networks: In Pictures

Pooling to get Ω1

Lecture 10 CNNs on Graphs CMSC 35246

Locally Connected Networks: In Pictures

Pooling to get Ω1

Lecture 10 CNNs on Graphs CMSC 35246

Locally Connected Networks: In Pictures

Level 2 clustering

Lecture 10 CNNs on Graphs CMSC 35246

Locally Connected Networks: In Pictures

Multiple Feature maps: Level 1

Lecture 10 CNNs on Graphs CMSC 35246

Locally Connected Networks: In Pictures

Multiple Feature maps: Level 2

Lecture 10 CNNs on Graphs CMSC 35246

Spectral Construction

Spectral Networks

Lecture 10 CNNs on Graphs CMSC 35246

Quick Digression: The Graph Laplacian

Lecture 10 CNNs on Graphs CMSC 35246

Spectral Networks

Again consider W ∈ Rd×d, the weighted adjacency matrix for
G = (Ω, E)

We consider the following definition of the Graph Laplacian:

L = I −D−1/2WD−1/2

D is a diagonal matrix; the degree matrix with Di,i =
∑

iWi,:

Let U = [u1, . . . , ud] be the eigenvectors of L

Lecture 10 CNNs on Graphs CMSC 35246

Graph Convolution in Frequency Domain

Define convolution of input signal x with filter g on G as:

x ∗G g = UT (Ux� Ug)

Learning filters on a graph =⇒ learning spectral weights:

x ∗G g = UT (diag(wg)Ux)with wg = (w1, . . . , wd)

Lecture 10 CNNs on Graphs CMSC 35246

Local Filters

Notice that g has support over all vertices

But we want filters that are local

Observation: Smoothness in frequency domain =⇒ spatial
decay

Solution: Consider a smoothing kernel K ∈ Rd×d0 and search
for multipliers:

wg = Kw̃g

Lecture 10 CNNs on Graphs CMSC 35246

Graph Convolution Layer

Forward Pass:

• For input x, compute interpolated weights wf ′f = Kw̃f ′f
• Compute the output: ysf ′ = UT (

∑
f Uxsf � wf ′f)

Backward Pass:

• Compute gradient w.r.t input ∆xsf
• Compute gradient w.r.t interpolated weights ∆wf ′f
• Compute gradient w.r.t weight ∆w̃f ′f = KT∆wf ′f

Lecture 10 CNNs on Graphs CMSC 35246

What if Graph Structure is unknown?

Estimate it from data:

Method 1: Unsupervised

• Given dataset X ∈ RN×d, compute distance d(i, j)
between features:

d(i, j) = ‖Xi −Xj‖22

• Then compute Wi,j = exp−
d(i,j)

σ2

Lecture 10 CNNs on Graphs CMSC 35246

What if Graph Structure is unknown?

Estimate it from data:

Method 2: Supervised

• Given dataset X ∈ RN×d and labels y ∈ {1, . . . , C}L,
train a fully connected MLP with K layers, with weights
W1, . . . ,WK

• Pass data through network, extract K layer features
WK ∈ RN×mk , then compute:

d(i, j) = ‖Wki −Wkj‖22

• Use Gaussian kernel as before to get Wi,j

Lecture 10 CNNs on Graphs CMSC 35246

Scenario 2

Learning Embeddings of Graphs

Lecture 10 CNNs on Graphs CMSC 35246

Example Task: Regression

Input: Organic Compounds (graphs)

Output: Boiling point

Lecture 10 CNNs on Graphs CMSC 35246

Graph Embedding: Simple Algorithm

Algorithm 1 Generation of embedding

Require: G = (V,E), radius δ, Hidden Weights: H1
1 , . . . ,H

δ
l , Out-

put Weights: W1, . . . ,Wδ

Initialize: Embedding φ← 0 Initialize: For every vertex rv ← Ψ(v)
(local vertex features)

1: for all L = 1 to δ (for every layer) do
2: for each vertex v in graph do
3: r1, . . . , rN = neighbors(v)
4: v ← rv +

∑N
i=1 ri

5: rv ← σ(vHN
L)

6: i← softmax(rvWL)
7: Update: φ← φ+ i
8: end for
9: end for

10: Output embedding φ

Lecture 10 CNNs on Graphs CMSC 35246

