Lecture 10
 CNNs on Graphs
 CMSC 35246: Deep Learning

Shubhendu Trivedi
\&

Risi Kondor

University of Chicago
April 26, 2017

Two Scenarios

- For CNNs on graphs, we have two distinct scenarios:
- Scenario 1: Each data point lives in \mathbb{R}^{d}, but the dataset has an underlying graph structure
- Each coordinate is a value associated with a vertex of underlying graph
- For images: The underlying graph is always a grid of fixed dimensions
- Scenario 2: Each data point is itself a graph (Example regression task: Molecules as input, boiling points as output)
- Each graph can be of different size
- Sub-problem: Given a graph \mathcal{G}, find an embedding $\phi: \mathcal{G} \rightarrow \mathbb{R}^{p}$

Scenario 1

CNNs on data in irregular domains

CNNs on Grids

- So far we have defined CNNs on grids
- We model images and feature maps as functions on a rectangular domain

$$
f: \mathbb{Z}^{2} \rightarrow \mathbb{R}^{K}
$$

- In general the grid can be \mathbb{Z}^{d}
- CNNs are able to exploit various structures that reduce sample complexity
- Translation structure (allowing use of filters)
- Metric on the grid (allows compactly supported filters)
- Multiscale structure of the grid (allows subsampling)

CNNs on Grids

- The translation group acts on \mathbb{Z}^{2}
- We are able to exploit this symmetry of the grid in CNNs

CNNs on Grids

- If we have n input pixels, a fully connected network with m outputs has $n m$ parameters, roughly $O\left(n^{2}\right)$
- With k filters, each with support S we have $O(k S)$ (independent of n)
- Using multiscale nature, we can pool, and reduce the number of parameters further

Data on Irregular Domains

- Often we can have structured data defined over coordinates that does not enjoy any of these properties

- Example: 3-D mesh data (each coordinate might be surface tension)
- More: Social network data, protein interaction networks etc.
- In each case we again have n coordinates but which don't live on a regular grid

Figure source: Eurocom Face Modeling

Functions on Graphs

- We can think of a n dimensional image as a function defined on the vertices of a graph $\mathcal{G}=(\Omega, E)$ with $|\Omega|=n$
- \mathcal{G} just happens to be a grid graph with strong local structure which makes CNNs useful
- In general we can have signals defined over a general graph:

Functions on Graphs

- Ω is the vertex set (input coordinates), $W_{i, j}$ the similarity between any two coordinates i and j
- Note: $W_{i, j}$ is similarity between coordinates, not datapoints

Functions on Graphs

- If the underlying graph structure is known, $W_{i, j}$ will be available
- If unknown: Need to estimate it from training data

Spatial Construction

Locally Connected Networks

Spatial Construction

- So we replace a grid by a general graph $\mathcal{G}=(\Omega, E)$
- The notion of locality can be generalized easily via W
- For given W and threshold δ, we have neighborhoods:

$$
N_{\delta}(j)=\left\{i \in \Omega: W_{i, j}>\delta\right\}
$$

- Can have filters with receptive fields given by these neighborhoods
- Number of parameters: $O(S n)$ (S is average neighbhorhood size)

Spatial Construction

- To mimic subsampling and pooling, we can do a multiscale clustering of the graph (K scales)
- Set $\Omega_{0}=\Omega$, at each level $k=1, \ldots, K$ define Ω_{k} and Ω_{k-1}
- Ω_{k} is a partition of Ω_{k-1} in d_{k} clusters
- Around every element of Ω_{k-1}, we can define the neighborhood

$$
N_{k}=\left\{N_{k, i}: i=1 \ldots d_{k-1}\right\}
$$

Defining the Network

- Let number of filters at layer be given by f_{k}
- Every layer will transform a f_{k-1} dimensional signal, indexed by Ω_{k-1} into a f_{k} indexed by Ω_{k}
- If $x_{k}=\left(x_{k, i} ; i=1 \ldots f_{k-1}\right)$ is the $d_{k-1} \times f_{k-1}$ dim input to layer k, the output is defined as:

$$
x_{k+1, j}=L_{k} h\left(\sum_{i=1}^{f_{k-1}} F_{k, i, j} x_{k, i}\right) \text { with } j=1 \ldots f_{k}
$$

- $F_{k, i, j}$ is a $d_{k-1} \times d_{k-1}$ sparse matrix with \mathcal{N}_{k} indicated by zeros
- h is the non-linearity and L_{k} is the pooling operation

Locally Connected Networks: In Pictures

- Level 1 clustering

This and next few illustrations are by Joan Bruna

Locally Connected Networks: In Pictures

- Pooling to get Ω_{1}

Locally Connected Networks: In Pictures

- Pooling to get Ω_{1}

Locally Connected Networks: In Pictures

- Level 2 clustering

Locally Connected Networks: In Pictures

- Multiple Feature maps: Level 1

Locally Connected Networks: In Pictures

- Multiple Feature maps: Level 2

Spectral Construction

Spectral Networks

Quick Digression: The Graph Laplacian

Spectral Networks

- Again consider $W \in \mathbb{R}^{d \times d}$, the weighted adjacency matrix for $\mathcal{G}=(\Omega, E)$
- We consider the following definition of the Graph Laplacian:

$$
L=I-D^{-1 / 2} W D^{-1 / 2}
$$

- D is a diagonal matrix; the degree matrix with $D_{i, i}=\sum_{i} W_{i, \text { : }}$
- Let $U=\left[u_{1}, \ldots, u_{d}\right]$ be the eigenvectors of L

Graph Convolution in Frequency Domain

- Define convolution of input signal x with filter g on \mathcal{G} as:

$$
x *_{\mathcal{G}} g=U^{T}(U x \odot U g)
$$

- Learning filters on a graph \Longrightarrow learning spectral weights:

$$
x *_{\mathcal{G}} g=U^{T}\left(\operatorname{diag}\left(w_{g}\right) U x\right) \text { with } w_{g}=\left(w_{1}, \ldots, w_{d}\right)
$$

Local Filters

- Notice that g has support over all vertices
- But we want filters that are local
- Observation: Smoothness in frequency domain \Longrightarrow spatial decay
- Solution: Consider a smoothing kernel $\mathcal{K} \in \mathbb{R}^{d \times d_{0}}$ and search for multipliers:

$$
w_{g}=\mathcal{K} \tilde{w}_{g}
$$

Graph Convolution Layer

- Forward Pass:
- For input x, compute interpolated weights $w_{f^{\prime} f}=\mathcal{K} \tilde{w}_{f^{\prime} f}$
- Compute the output: $y_{s f^{\prime}}=U^{T}\left(\sum_{f} U x_{s f} \odot w_{f^{\prime} f}\right)$
- Backward Pass:
- Compute gradient w.r.t input $\Delta x_{s f}$
- Compute gradient w.r.t interpolated weights $\Delta w_{f^{\prime} f}$
- Compute gradient w.r.t weight $\Delta \tilde{w}_{f^{\prime} f}=\mathcal{K}^{T} \Delta w_{f^{\prime} f}$

What if Graph Structure is unknown?

- Estimate it from data:
- Method 1: Unsupervised
- Given dataset $X \in \mathbb{R}^{N \times d}$, compute distance $d(i, j)$ between features:

$$
d(i, j)=\left\|X_{i}-X_{j}\right\|_{2}^{2}
$$

- Then compute $W_{i, j}=\exp ^{-\frac{d(i, j)}{\sigma^{2}}}$

What if Graph Structure is unknown?

- Estimate it from data:
- Method 2: Supervised
- Given dataset $X \in \mathbb{R}^{N \times d}$ and labels $y \in\{1, \ldots, C\}^{L}$, train a fully connected MLP with K layers, with weights W_{1}, \ldots, W_{K}
- Pass data through network, extract K layer features $W_{K} \in \mathbb{R}^{N \times m_{k}}$, then compute:

$$
d(i, j)=\left\|W_{k i}-W_{k j}\right\|_{2}^{2}
$$

- Use Gaussian kernel as before to get $W_{i, j}$

Scenario 2

Learning Embeddings of Graphs

Example Task: Regression

- Input: Organic Compounds (graphs)
- Output: Boiling point

Graph Embedding: Simple Algorithm

Algorithm 1 Generation of embedding
Require: $G=(V, E)$, radius δ, Hidden Weights: $H_{1}^{1}, \ldots, H_{l}^{\delta}$, Output Weights: $W_{1}, \ldots, W_{\delta}$
Initialize: Embedding $\phi \leftarrow 0$ Initialize: For every vertex $\mathbf{r}_{v} \leftarrow \Psi(v)$ (local vertex features)
1: for all $L=1$ to δ (for every layer) do
2: \quad for each vertex v in graph do
3: $\quad \mathbf{r}_{1}, \ldots, \mathbf{r}_{N}=$ neighbors (v)
4: $\quad v \leftarrow \mathbf{r}_{v}+\sum_{i=1}^{N} \mathbf{r}_{i}$
5: $\quad \mathbf{r}_{v} \leftarrow \sigma\left(v H_{L}^{N}\right)$
$\mathbf{i} \leftarrow \operatorname{softmax}\left(\mathbf{r}_{v} W_{L}\right)$
Update: $\phi \leftarrow \phi+\mathbf{i}$
end for
9: end for
10: Output embedding ϕ

