# Lecture 10 CNNs on Graphs CMSC 35246: Deep Learning

Shubhendu Trivedi & Risi Kondor

University of Chicago

April 26, 2017

< 17 >

CMSC 35246



# **Two Scenarios**

- For CNNs on graphs, we have two distinct scenarios:
  - Scenario 1: Each data point lives in  $\mathbb{R}^d$ , but the dataset has an underlying graph structure

# **Two Scenarios**

- For CNNs on graphs, we have two distinct scenarios:
  - Scenario 1: Each data point lives in  $\mathbb{R}^d$ , but the dataset has an underlying graph structure
    - Each coordinate is a value associated with a vertex of underlying graph

# **Two Scenarios**

- For CNNs on graphs, we have two distinct scenarios:
  - Scenario 1: Each data point lives in  $\mathbb{R}^d$ , but the dataset has an underlying graph structure
    - Each coordinate is a value associated with a vertex of underlying graph
    - For images: The underlying graph is always a grid of fixed dimensions
  - Scenario 2: Each data point is itself a graph (Example regression task: Molecules as input, boiling points as output)
    - Each graph can be of different size
    - Sub-problem: Given a graph  $\mathcal{G}$ , find an embedding  $\phi: \mathcal{G} \to \mathbb{R}^p$

< 🗇 ►

#### Scenario 1

#### CNNs on data in irregular domains



• So far we have defined CNNs on grids

- So far we have defined CNNs on grids
- We model images and feature maps as functions on a rectangular domain

- So far we have defined CNNs on grids
- We model images and feature maps as functions on a rectangular domain

$$f: \mathbb{Z}^2 \to \mathbb{R}^K$$

- In general the grid can be  $\mathbb{Z}^d$
- CNNs are able to exploit various structures that reduce sample complexity

- So far we have defined CNNs on grids
- We model images and feature maps as functions on a rectangular domain

$$f: \mathbb{Z}^2 \to \mathbb{R}^K$$

- In general the grid can be  $\mathbb{Z}^d$
- CNNs are able to exploit various structures that reduce sample complexity
  - Translation structure (allowing use of filters)

- So far we have defined CNNs on grids
- We model images and feature maps as functions on a rectangular domain

$$f: \mathbb{Z}^2 \to \mathbb{R}^K$$

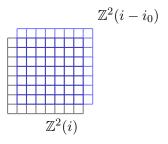
- In general the grid can be  $\mathbb{Z}^d$
- CNNs are able to exploit various structures that reduce sample complexity
  - Translation structure (allowing use of filters)
  - Metric on the grid (allows compactly supported filters)

- So far we have defined CNNs on grids
- We model images and feature maps as functions on a rectangular domain

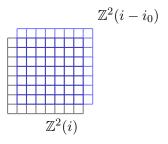
$$f: \mathbb{Z}^2 \to \mathbb{R}^K$$

- In general the grid can be  $\mathbb{Z}^d$
- CNNs are able to exploit various structures that reduce sample complexity
  - Translation structure (allowing use of filters)
  - Metric on the grid (allows compactly supported filters)
  - Multiscale structure of the grid (allows subsampling)

< Al 1

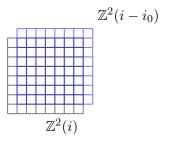


- $\bullet\,$  The translation group acts on  $\mathbb{Z}^2$
- We are able to exploit this symmetry of the grid in CNNs

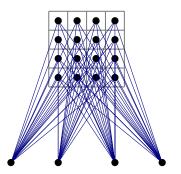


 $\bullet\,$  The translation group acts on  $\mathbb{Z}^2$ 



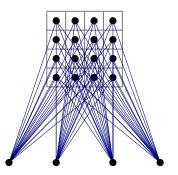


- The translation group acts on  $\mathbb{Z}^2$
- We are able to exploit this symmetry of the grid in CNNs

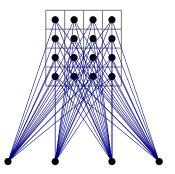


• If we have n input pixels, a fully connected network with m outputs has nm parameters, roughly  ${\cal O}(n^2)$ 





- If we have n input pixels, a fully connected network with m outputs has nm parameters, roughly  ${\cal O}(n^2)$
- With k filters, each with support S we have O(kS) (independent of n)



- If we have n input pixels, a fully connected network with m outputs has nm parameters, roughly  ${\cal O}(n^2)$
- With k filters, each with support S we have O(kS) (independent of n)
- Using multiscale nature, we can pool, and reduce the number of parameters further

# Data on Irregular Domains

• Often we can have *structured* data defined over coordinates that does not enjoy any of these properties



- Example: 3-D mesh data (each coordinate might be surface tension)
- More: Social network data, protein interaction networks etc.



# Data on Irregular Domains

• Often we can have *structured* data defined over coordinates that does not enjoy any of these properties



- Example: 3-D mesh data (each coordinate might be surface tension)
- More: Social network data, protein interaction networks etc.
- In each case we again have n coordinates but which don't live on a regular grid

Figure source: Eurocom Face Modeling

< Al 1



• We can think of a n dimensional image as a function defined on the vertices of a graph  $\mathcal{G}=(\Omega,E)$  with  $|\Omega|=n$ 



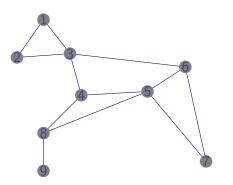


- We can think of a n dimensional image as a function defined on the vertices of a graph  $\mathcal{G} = (\Omega, E)$  with  $|\Omega| = n$
- *G* just happens to be a grid graph with strong local structure which makes CNNs useful



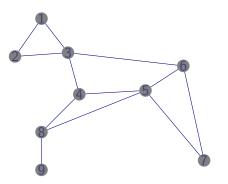


- We can think of a n dimensional image as a function defined on the vertices of a graph  $\mathcal{G} = (\Omega, E)$  with  $|\Omega| = n$
- *G* just happens to be a grid graph with strong local structure which makes CNNs useful
- In general we can have signals defined over a general graph:



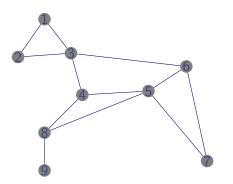
•  $\Omega$  is the vertex set (input coordinates),  $W_{i,j}$  the similarity between any two coordinates i and j





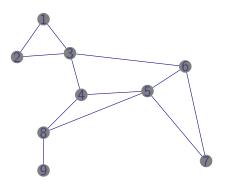
- $\Omega$  is the vertex set (input coordinates),  $W_{i,j}$  the similarity between any two coordinates i and j
- Note:  $W_{i,j}$  is similarity between coordinates, not datapoints

< 行 →



• If the underlying graph structure is known,  $W_{i,j}$  will be available





- If the underlying graph structure is known,  $W_{i,j}$  will be available
- If unknown: Need to estimate it from training data

Locally Connected Networks



Lecture 10 CNNs on Graphs

• So we replace a grid by a general graph  $\mathcal{G} = (\Omega, E)$ 

- So we replace a grid by a general graph  $\mathcal{G}=(\Omega,E)$
- ${\ensuremath{\, \bullet }}$  The notion of locality can be generalized easily via W

- $\bullet$  So we replace a grid by a general graph  $\mathcal{G}=(\Omega,E)$
- $\bullet\,$  The notion of locality can be generalized easily via W
- For given W and threshold  $\delta$ , we have neighborhoods:

- So we replace a grid by a general graph  $\mathcal{G}=(\Omega,E)$
- $\bullet\,$  The notion of locality can be generalized easily via W
- For given W and threshold  $\delta$ , we have neighborhoods:

$$N_{\delta}(j) = \{i \in \Omega : W_{i,j} > \delta\}$$

- $\bullet\,$  So we replace a grid by a general graph  $\mathcal{G}=(\Omega,E)$
- $\bullet\,$  The notion of locality can be generalized easily via W
- For given W and threshold  $\delta$ , we have neighborhoods:

$$N_{\delta}(j) = \{i \in \Omega : W_{i,j} > \delta\}$$

• Can have filters with receptive fields given by these neighborhoods

- $\bullet\,$  So we replace a grid by a general graph  $\mathcal{G}=(\Omega,E)$
- $\bullet\,$  The notion of locality can be generalized easily via W
- For given W and threshold  $\delta$ , we have neighborhoods:

$$N_{\delta}(j) = \{i \in \Omega : W_{i,j} > \delta\}$$

- Can have filters with receptive fields given by these neighborhoods
- Number of parameters: O(Sn) (S is average neighbhorhood size)

• To mimic subsampling and pooling, we can do a multiscale clustering of the graph (K scales)

- To mimic subsampling and pooling, we can do a multiscale clustering of the graph (K scales)
- Set  $\Omega_0 = \Omega$ , at each level  $k = 1, \ldots, K$  define  $\Omega_k$  and  $\Omega_{k-1}$

- To mimic subsampling and pooling, we can do a multiscale clustering of the graph (K scales)
- Set  $\Omega_0 = \Omega$ , at each level  $k = 1, \dots, K$  define  $\Omega_k$  and  $\Omega_{k-1}$
- $\Omega_k$  is a partition of  $\Omega_{k-1}$  in  $d_k$  clusters

## **Spatial Construction**

- To mimic subsampling and pooling, we can do a multiscale clustering of the graph (K scales)
- Set  $\Omega_0 = \Omega$ , at each level  $k = 1, \ldots, K$  define  $\Omega_k$  and  $\Omega_{k-1}$
- $\Omega_k$  is a partition of  $\Omega_{k-1}$  in  $d_k$  clusters
- $\bullet$  Around every element of  $\Omega_{k-1},$  we can define the neighborhood

## **Spatial Construction**

- To mimic subsampling and pooling, we can do a multiscale clustering of the graph (K scales)
- Set  $\Omega_0 = \Omega$ , at each level  $k = 1, \ldots, K$  define  $\Omega_k$  and  $\Omega_{k-1}$
- $\Omega_k$  is a partition of  $\Omega_{k-1}$  in  $d_k$  clusters
- $\bullet$  Around every element of  $\Omega_{k-1},$  we can define the neighborhood

$$N_k = \{N_{k,i} : i = 1 \dots d_{k-1}\}$$

## **Spatial Construction**

- To mimic subsampling and pooling, we can do a multiscale clustering of the graph (K scales)
- Set  $\Omega_0 = \Omega$ , at each level  $k = 1, \ldots, K$  define  $\Omega_k$  and  $\Omega_{k-1}$
- $\Omega_k$  is a partition of  $\Omega_{k-1}$  in  $d_k$  clusters
- $\bullet$  Around every element of  $\Omega_{k-1},$  we can define the neighborhood

$$N_k = \{N_{k,i} : i = 1 \dots d_{k-1}\}$$

• Let number of filters at layer be given by  $f_k$ 

- Let number of filters at layer be given by  $f_k$
- Every layer will transform a  $f_{k-1}$  dimensional signal, indexed by  $\Omega_{k-1}$  into a  $f_k$  indexed by  $\Omega_k$

- Let number of filters at layer be given by  $f_k$
- Every layer will transform a  $f_{k-1}$  dimensional signal, indexed by  $\Omega_{k-1}$  into a  $f_k$  indexed by  $\Omega_k$
- If  $x_k = (x_{k,i}; i = 1 \dots f_{k-1})$  is the  $d_{k-1} \times f_{k-1}$  dim input to layer k, the output is defined as:

- Let number of filters at layer be given by  $f_k$
- Every layer will transform a  $f_{k-1}$  dimensional signal, indexed by  $\Omega_{k-1}$  into a  $f_k$  indexed by  $\Omega_k$
- If  $x_k = (x_{k,i}; i = 1 \dots f_{k-1})$  is the  $d_{k-1} \times f_{k-1}$  dim input to layer k, the output is defined as:

$$x_{k+1,j} = L_k h\left(\sum_{i=1}^{f_{k-1}} F_{k,i,j} x_{k,i}\right)$$
 with  $j = 1 \dots f_k$ 



- Let number of filters at layer be given by  $f_k$
- Every layer will transform a  $f_{k-1}$  dimensional signal, indexed by  $\Omega_{k-1}$  into a  $f_k$  indexed by  $\Omega_k$
- If  $x_k = (x_{k,i}; i = 1 \dots f_{k-1})$  is the  $d_{k-1} \times f_{k-1}$  dim input to layer k, the output is defined as:

$$x_{k+1,j} = L_k h\left(\sum_{i=1}^{f_{k-1}} F_{k,i,j} x_{k,i}\right)$$
 with  $j = 1 \dots f_k$ 

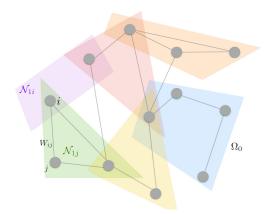
•  $F_{k,i,j}$  is a  $d_{k-1} \times d_{k-1}$  sparse matrix with  $\mathcal{N}_k$  indicated by zeros

< 行 →

- $\bullet\,$  Let number of filters at layer be given by  $f_k$
- Every layer will transform a  $f_{k-1}$  dimensional signal, indexed by  $\Omega_{k-1}$  into a  $f_k$  indexed by  $\Omega_k$
- If  $x_k = (x_{k,i}; i = 1 \dots f_{k-1})$  is the  $d_{k-1} \times f_{k-1}$  dim input to layer k, the output is defined as:

$$x_{k+1,j} = L_k h \left( \sum_{i=1}^{f_{k-1}} F_{k,i,j} x_{k,i} \right)$$
 with  $j = 1 \dots f_k$ 

- $F_{k,i,j}$  is a  $d_{k-1} \times d_{k-1}$  sparse matrix with  $\mathcal{N}_k$  indicated by zeros
- h is the non-linearity and  $L_k$  is the pooling operation

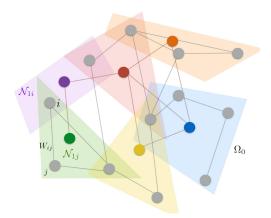


#### • Level 1 clustering

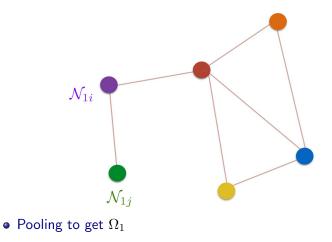
This and next few illustrations are by Joan Bruna



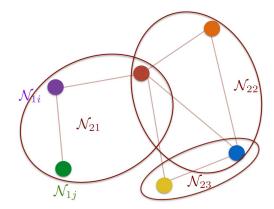
Lecture 10 CNNs on Graphs



• Pooling to get  $\Omega_1$ 



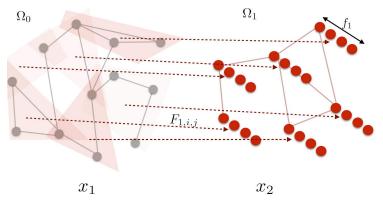
✓ ☐ ►
CMSC 35246



• Level 2 clustering

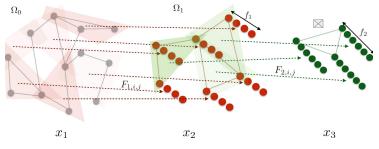


Lecture 10 CNNs on Graphs



• Multiple Feature maps: Level 1

✓ ☐ > CMSC 35246



• Multiple Feature maps: Level 2



Lecture 10 CNNs on Graphs

#### Spectral Construction

Spectral Networks



#### Quick Digression: The Graph Laplacian



• Again consider  $W \in \mathbb{R}^{d \times d},$  the weighted adjacency matrix for  $\mathcal{G} = (\Omega, E)$ 

- Again consider  $W \in \mathbb{R}^{d \times d},$  the weighted adjacency matrix for  $\mathcal{G} = (\Omega, E)$
- We consider the following definition of the Graph Laplacian:

$$L = I - D^{-1/2} W D^{-1/2}$$

- Again consider  $W \in \mathbb{R}^{d \times d},$  the weighted adjacency matrix for  $\mathcal{G} = (\Omega, E)$
- We consider the following definition of the Graph Laplacian:

$$L = I - D^{-1/2} W D^{-1/2}$$

• D is a diagonal matrix; the degree matrix with  $D_{i,i} = \sum_i W_{i,i}$ 

- Again consider  $W \in \mathbb{R}^{d \times d},$  the weighted adjacency matrix for  $\mathcal{G} = (\Omega, E)$
- We consider the following definition of the Graph Laplacian:

$$L = I - D^{-1/2} W D^{-1/2}$$

D is a diagonal matrix; the degree matrix with D<sub>i,i</sub> = ∑<sub>i</sub> W<sub>i,:</sub>
Let U = [u<sub>1</sub>,..., u<sub>d</sub>] be the eigenvectors of L

< A >

## Graph Convolution in Frequency Domain

• Define convolution of input signal x with filter g on  ${\mathcal G}$  as:

$$x *_{\mathcal{G}} g = U^T (Ux \odot Ug)$$

## Graph Convolution in Frequency Domain

• Define convolution of input signal x with filter g on  $\mathcal{G}$  as:

$$x *_{\mathcal{G}} g = U^T (Ux \odot Ug)$$

• Learning filters on a graph  $\implies$  learning spectral weights:

$$x *_{\mathcal{G}} g = U^T(diag(w_g)Ux)$$
 with  $w_g = (w_1, \dots, w_d)$ 



 $\bullet$  Notice that g has support over all vertices

- $\bullet$  Notice that g has support over all vertices
- But we want filters that are local

- $\bullet$  Notice that g has support over all vertices
- But we want filters that are local
- $\bullet$  Observation: Smoothness in frequency domain  $\implies$  spatial decay

- Notice that g has support over all vertices
- But we want filters that are local
- $\bullet$  Observation: Smoothness in frequency domain  $\implies$  spatial decay
- Solution: Consider a smoothing kernel  $\mathcal{K} \in \mathbb{R}^{d \times d_0}$  and search for multipliers:

$$w_g = \mathcal{K}\tilde{w}_g$$



- Forward Pass:
  - For input x, compute interpolated weights  $w_{f'f} = \mathcal{K}\tilde{w}_{f'f}$

#### • Forward Pass:

- For input x, compute interpolated weights  $w_{f'f} = \mathcal{K}\tilde{w}_{f'f}$
- Compute the output:  $y_{sf'} = U^T(\sum_f Ux_{sf} \odot w_{f'f})$
- Backward Pass:
  - Compute gradient w.r.t input  $\Delta x_{sf}$

#### • Forward Pass:

- For input x, compute interpolated weights  $w_{f'f} = \mathcal{K}\tilde{w}_{f'f}$
- Compute the output:  $y_{sf'} = U^T(\sum_f Ux_{sf} \odot w_{f'f})$
- Backward Pass:
  - Compute gradient w.r.t input  $\Delta x_{sf}$
  - Compute gradient w.r.t interpolated weights  $\Delta w_{f'f}$

#### • Forward Pass:

- For input x, compute interpolated weights  $w_{f'f} = \mathcal{K}\tilde{w}_{f'f}$
- Compute the output:  $y_{sf'} = U^T(\sum_f Ux_{sf} \odot w_{f'f})$
- Backward Pass:
  - Compute gradient w.r.t input  $\Delta x_{sf}$
  - Compute gradient w.r.t interpolated weights  $\Delta w_{f'f}$
  - Compute gradient w.r.t weight  $\Delta \tilde{w}_{f'f} = \mathcal{K}^T \Delta w_{f'f}$

- Estimate it from data:
- Method 1: Unsupervised
  - Given dataset  $X \in \mathbb{R}^{N \times d}$ , compute distance d(i, j) between features:

$$d(i,j) = \|X_i - X_j\|_2^2$$

- Estimate it from data:
- Method 1: Unsupervised
  - Given dataset  $X \in \mathbb{R}^{N \times d}$ , compute distance d(i, j) between features:

$$d(i,j) = \|X_i - X_j\|_2^2$$

• Then compute 
$$W_{i,j} = \exp^{-\frac{d(i,j)}{\sigma^2}}$$

- Estimate it from data:
- Method 2: Supervised
  - Given dataset  $X \in \mathbb{R}^{N \times d}$  and labels  $y \in \{1, \dots, C\}^L$ , train a fully connected MLP with K layers, with weights  $W_1, \dots, W_K$

- Estimate it from data:
- Method 2: Supervised
  - Given dataset  $X \in \mathbb{R}^{N \times d}$  and labels  $y \in \{1, \dots, C\}^L$ , train a fully connected MLP with K layers, with weights  $W_1, \dots, W_K$
  - Pass data through network, extract K layer features  $W_K \in \mathbb{R}^{N \times m_k}$ , then compute:

$$d(i,j) = \|W_{ki} - W_{kj}\|_2^2$$



- Estimate it from data:
- Method 2: Supervised
  - Given dataset  $X \in \mathbb{R}^{N \times d}$  and labels  $y \in \{1, \dots, C\}^L$ , train a fully connected MLP with K layers, with weights  $W_1, \dots, W_K$
  - Pass data through network, extract K layer features  $W_K \in \mathbb{R}^{N \times m_k}$ , then compute:

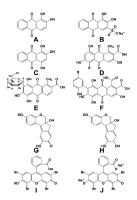
$$d(i,j) = \|W_{ki} - W_{kj}\|_2^2$$

• Use Gaussian kernel as before to get  $W_{i,j}$ 

#### Scenario 2

#### Learning Embeddings of Graphs

### **Example Task: Regression**



< 17 >

CMSC 35246

- Input: Organic Compounds (graphs)
- Output: Boiling point

# Graph Embedding: Simple Algorithm

Algorithm 1 Generation of embedding

**Require:** G = (V, E), radius  $\delta$ , Hidden Weights:  $H_1^1, \ldots, H_l^{\delta}$ , Output Weights:  $W_1, \ldots, W_{\delta}$ **Initialize:** Embedding  $\phi \leftarrow 0$  **Initialize:** For every vertex  $\mathbf{r}_v \leftarrow \Psi(v)$ 

(local vertex features)

- 1: for all L=1 to  $\delta$  (for every layer) do
- 2: for each vertex v in graph do

3: 
$$\mathbf{r}_1, \ldots, \mathbf{r}_N = \mathsf{neighbors}(v)$$

4: 
$$v \leftarrow \mathbf{r}_v + \sum_{i=1}^N \mathbf{r}_i$$

5:  $\mathbf{r}_v \leftarrow \sigma(v H_L^N)$ 

6: 
$$\mathbf{i} \leftarrow \mathsf{softmax}(\mathbf{r}_v W_L)$$

7: Update: 
$$\phi \leftarrow \phi + \mathbf{i}$$

- 8: end for
- 9: end for
- 10: Output embedding  $\phi$