Lecture 10 CNNs on Graphs CMSC 35246: Deep Learning

Shubhendu Trivedi & Risi Kondor

University of Chicago

April 26, 2017

< 17 >

CMSC 35246

Two Scenarios

- For CNNs on graphs, we have two distinct scenarios:
 - Scenario 1: Each data point lives in \mathbb{R}^d , but the dataset has an underlying graph structure

Two Scenarios

- For CNNs on graphs, we have two distinct scenarios:
 - Scenario 1: Each data point lives in \mathbb{R}^d , but the dataset has an underlying graph structure
 - Each coordinate is a value associated with a vertex of underlying graph

Two Scenarios

- For CNNs on graphs, we have two distinct scenarios:
 - Scenario 1: Each data point lives in \mathbb{R}^d , but the dataset has an underlying graph structure
 - Each coordinate is a value associated with a vertex of underlying graph
 - For images: The underlying graph is always a grid of fixed dimensions
 - Scenario 2: Each data point is itself a graph (Example regression task: Molecules as input, boiling points as output)
 - Each graph can be of different size
 - Sub-problem: Given a graph \mathcal{G} , find an embedding $\phi: \mathcal{G} \to \mathbb{R}^p$

< 🗇 ►

Scenario 1

CNNs on data in irregular domains

• So far we have defined CNNs on grids

- So far we have defined CNNs on grids
- We model images and feature maps as functions on a rectangular domain

- So far we have defined CNNs on grids
- We model images and feature maps as functions on a rectangular domain

$$f: \mathbb{Z}^2 \to \mathbb{R}^K$$

- In general the grid can be \mathbb{Z}^d
- CNNs are able to exploit various structures that reduce sample complexity

- So far we have defined CNNs on grids
- We model images and feature maps as functions on a rectangular domain

$$f: \mathbb{Z}^2 \to \mathbb{R}^K$$

- In general the grid can be \mathbb{Z}^d
- CNNs are able to exploit various structures that reduce sample complexity
 - Translation structure (allowing use of filters)

- So far we have defined CNNs on grids
- We model images and feature maps as functions on a rectangular domain

$$f: \mathbb{Z}^2 \to \mathbb{R}^K$$

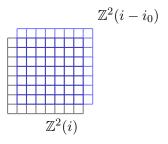
- In general the grid can be \mathbb{Z}^d
- CNNs are able to exploit various structures that reduce sample complexity
 - Translation structure (allowing use of filters)
 - Metric on the grid (allows compactly supported filters)

- So far we have defined CNNs on grids
- We model images and feature maps as functions on a rectangular domain

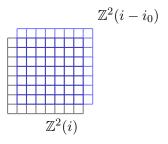
$$f: \mathbb{Z}^2 \to \mathbb{R}^K$$

- In general the grid can be \mathbb{Z}^d
- CNNs are able to exploit various structures that reduce sample complexity
 - Translation structure (allowing use of filters)
 - Metric on the grid (allows compactly supported filters)
 - Multiscale structure of the grid (allows subsampling)

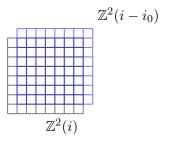
< Al 1



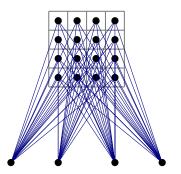
- $\bullet\,$ The translation group acts on \mathbb{Z}^2
- We are able to exploit this symmetry of the grid in CNNs



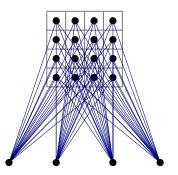
 $\bullet\,$ The translation group acts on \mathbb{Z}^2



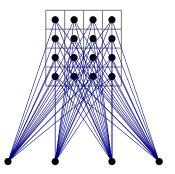
- The translation group acts on \mathbb{Z}^2
- We are able to exploit this symmetry of the grid in CNNs



• If we have n input pixels, a fully connected network with m outputs has nm parameters, roughly ${\cal O}(n^2)$



- If we have n input pixels, a fully connected network with m outputs has nm parameters, roughly ${\cal O}(n^2)$
- With k filters, each with support S we have O(kS) (independent of n)



- If we have n input pixels, a fully connected network with m outputs has nm parameters, roughly ${\cal O}(n^2)$
- With k filters, each with support S we have O(kS) (independent of n)
- Using multiscale nature, we can pool, and reduce the number of parameters further

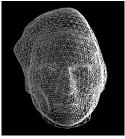
Data on Irregular Domains

• Often we can have *structured* data defined over coordinates that does not enjoy any of these properties

- Example: 3-D mesh data (each coordinate might be surface tension)
- More: Social network data, protein interaction networks etc.

Data on Irregular Domains

• Often we can have *structured* data defined over coordinates that does not enjoy any of these properties



- Example: 3-D mesh data (each coordinate might be surface tension)
- More: Social network data, protein interaction networks etc.
- In each case we again have n coordinates but which don't live on a regular grid

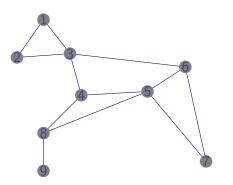
Figure source: Eurocom Face Modeling

< Al 1

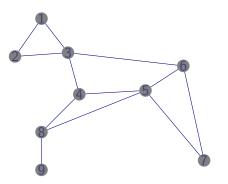
• We can think of a n dimensional image as a function defined on the vertices of a graph $\mathcal{G}=(\Omega,E)$ with $|\Omega|=n$

- We can think of a n dimensional image as a function defined on the vertices of a graph $\mathcal{G} = (\Omega, E)$ with $|\Omega| = n$
- *G* just happens to be a grid graph with strong local structure which makes CNNs useful

- We can think of a n dimensional image as a function defined on the vertices of a graph $\mathcal{G} = (\Omega, E)$ with $|\Omega| = n$
- *G* just happens to be a grid graph with strong local structure which makes CNNs useful
- In general we can have signals defined over a general graph:

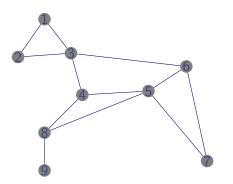


• Ω is the vertex set (input coordinates), $W_{i,j}$ the similarity between any two coordinates i and j

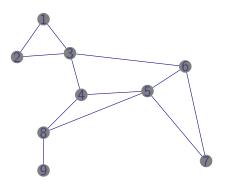


- Ω is the vertex set (input coordinates), $W_{i,j}$ the similarity between any two coordinates i and j
- Note: $W_{i,j}$ is similarity between coordinates, not datapoints

< 行 →



• If the underlying graph structure is known, $W_{i,j}$ will be available



- If the underlying graph structure is known, $W_{i,j}$ will be available
- If unknown: Need to estimate it from training data

Locally Connected Networks

Lecture 10 CNNs on Graphs

• So we replace a grid by a general graph $\mathcal{G} = (\Omega, E)$

- So we replace a grid by a general graph $\mathcal{G}=(\Omega,E)$
- ${\ensuremath{\, \bullet }}$ The notion of locality can be generalized easily via W

- \bullet So we replace a grid by a general graph $\mathcal{G}=(\Omega,E)$
- $\bullet\,$ The notion of locality can be generalized easily via W
- For given W and threshold δ , we have neighborhoods:

- So we replace a grid by a general graph $\mathcal{G}=(\Omega,E)$
- $\bullet\,$ The notion of locality can be generalized easily via W
- For given W and threshold δ , we have neighborhoods:

$$N_{\delta}(j) = \{i \in \Omega : W_{i,j} > \delta\}$$

- $\bullet\,$ So we replace a grid by a general graph $\mathcal{G}=(\Omega,E)$
- $\bullet\,$ The notion of locality can be generalized easily via W
- For given W and threshold δ , we have neighborhoods:

$$N_{\delta}(j) = \{i \in \Omega : W_{i,j} > \delta\}$$

• Can have filters with receptive fields given by these neighborhoods

- $\bullet\,$ So we replace a grid by a general graph $\mathcal{G}=(\Omega,E)$
- $\bullet\,$ The notion of locality can be generalized easily via W
- For given W and threshold δ , we have neighborhoods:

$$N_{\delta}(j) = \{i \in \Omega : W_{i,j} > \delta\}$$

- Can have filters with receptive fields given by these neighborhoods
- Number of parameters: O(Sn) (S is average neighbhorhood size)

• To mimic subsampling and pooling, we can do a multiscale clustering of the graph (K scales)

- To mimic subsampling and pooling, we can do a multiscale clustering of the graph (K scales)
- Set $\Omega_0 = \Omega$, at each level $k = 1, \ldots, K$ define Ω_k and Ω_{k-1}

- To mimic subsampling and pooling, we can do a multiscale clustering of the graph (K scales)
- Set $\Omega_0 = \Omega$, at each level $k = 1, \dots, K$ define Ω_k and Ω_{k-1}
- Ω_k is a partition of Ω_{k-1} in d_k clusters

Spatial Construction

- To mimic subsampling and pooling, we can do a multiscale clustering of the graph (K scales)
- Set $\Omega_0 = \Omega$, at each level $k = 1, \ldots, K$ define Ω_k and Ω_{k-1}
- Ω_k is a partition of Ω_{k-1} in d_k clusters
- \bullet Around every element of $\Omega_{k-1},$ we can define the neighborhood

Spatial Construction

- To mimic subsampling and pooling, we can do a multiscale clustering of the graph (K scales)
- Set $\Omega_0 = \Omega$, at each level $k = 1, \ldots, K$ define Ω_k and Ω_{k-1}
- Ω_k is a partition of Ω_{k-1} in d_k clusters
- \bullet Around every element of $\Omega_{k-1},$ we can define the neighborhood

$$N_k = \{N_{k,i} : i = 1 \dots d_{k-1}\}$$

Spatial Construction

- To mimic subsampling and pooling, we can do a multiscale clustering of the graph (K scales)
- Set $\Omega_0 = \Omega$, at each level $k = 1, \ldots, K$ define Ω_k and Ω_{k-1}
- Ω_k is a partition of Ω_{k-1} in d_k clusters
- \bullet Around every element of $\Omega_{k-1},$ we can define the neighborhood

$$N_k = \{N_{k,i} : i = 1 \dots d_{k-1}\}$$

• Let number of filters at layer be given by f_k

- Let number of filters at layer be given by f_k
- Every layer will transform a f_{k-1} dimensional signal, indexed by Ω_{k-1} into a f_k indexed by Ω_k

- Let number of filters at layer be given by f_k
- Every layer will transform a f_{k-1} dimensional signal, indexed by Ω_{k-1} into a f_k indexed by Ω_k
- If $x_k = (x_{k,i}; i = 1 \dots f_{k-1})$ is the $d_{k-1} \times f_{k-1}$ dim input to layer k, the output is defined as:

- Let number of filters at layer be given by f_k
- Every layer will transform a f_{k-1} dimensional signal, indexed by Ω_{k-1} into a f_k indexed by Ω_k
- If $x_k = (x_{k,i}; i = 1 \dots f_{k-1})$ is the $d_{k-1} \times f_{k-1}$ dim input to layer k, the output is defined as:

$$x_{k+1,j} = L_k h\left(\sum_{i=1}^{f_{k-1}} F_{k,i,j} x_{k,i}\right)$$
 with $j = 1 \dots f_k$

- Let number of filters at layer be given by f_k
- Every layer will transform a f_{k-1} dimensional signal, indexed by Ω_{k-1} into a f_k indexed by Ω_k
- If $x_k = (x_{k,i}; i = 1 \dots f_{k-1})$ is the $d_{k-1} \times f_{k-1}$ dim input to layer k, the output is defined as:

$$x_{k+1,j} = L_k h\left(\sum_{i=1}^{f_{k-1}} F_{k,i,j} x_{k,i}\right)$$
 with $j = 1 \dots f_k$

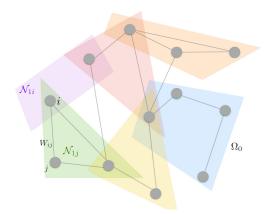
• $F_{k,i,j}$ is a $d_{k-1} \times d_{k-1}$ sparse matrix with \mathcal{N}_k indicated by zeros

< 行 →

- $\bullet\,$ Let number of filters at layer be given by f_k
- Every layer will transform a f_{k-1} dimensional signal, indexed by Ω_{k-1} into a f_k indexed by Ω_k
- If $x_k = (x_{k,i}; i = 1 \dots f_{k-1})$ is the $d_{k-1} \times f_{k-1}$ dim input to layer k, the output is defined as:

$$x_{k+1,j} = L_k h \left(\sum_{i=1}^{f_{k-1}} F_{k,i,j} x_{k,i} \right)$$
 with $j = 1 \dots f_k$

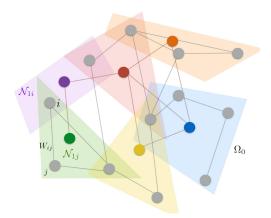
- $F_{k,i,j}$ is a $d_{k-1} \times d_{k-1}$ sparse matrix with \mathcal{N}_k indicated by zeros
- h is the non-linearity and L_k is the pooling operation



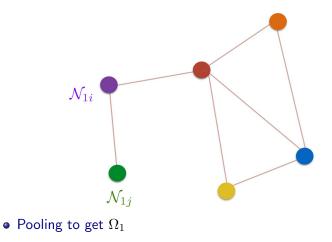
• Level 1 clustering

This and next few illustrations are by Joan Bruna

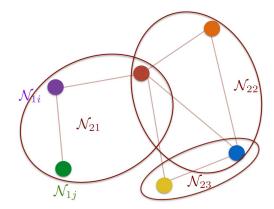
Lecture 10 CNNs on Graphs



• Pooling to get Ω_1

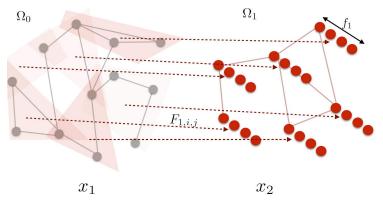


✓ ☐ ►
CMSC 35246



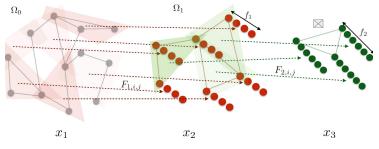
• Level 2 clustering

Lecture 10 CNNs on Graphs



• Multiple Feature maps: Level 1

✓ ☐ > CMSC 35246



• Multiple Feature maps: Level 2

Lecture 10 CNNs on Graphs

Spectral Construction

Spectral Networks

Quick Digression: The Graph Laplacian

• Again consider $W \in \mathbb{R}^{d \times d},$ the weighted adjacency matrix for $\mathcal{G} = (\Omega, E)$

- Again consider $W \in \mathbb{R}^{d \times d},$ the weighted adjacency matrix for $\mathcal{G} = (\Omega, E)$
- We consider the following definition of the Graph Laplacian:

$$L = I - D^{-1/2} W D^{-1/2}$$

- Again consider $W \in \mathbb{R}^{d \times d},$ the weighted adjacency matrix for $\mathcal{G} = (\Omega, E)$
- We consider the following definition of the Graph Laplacian:

$$L = I - D^{-1/2} W D^{-1/2}$$

• D is a diagonal matrix; the degree matrix with $D_{i,i} = \sum_i W_{i,i}$

- Again consider $W \in \mathbb{R}^{d \times d},$ the weighted adjacency matrix for $\mathcal{G} = (\Omega, E)$
- We consider the following definition of the Graph Laplacian:

$$L = I - D^{-1/2} W D^{-1/2}$$

D is a diagonal matrix; the degree matrix with D_{i,i} = ∑_i W_{i,:}
Let U = [u₁,..., u_d] be the eigenvectors of L

< A >

Graph Convolution in Frequency Domain

• Define convolution of input signal x with filter g on ${\mathcal G}$ as:

$$x *_{\mathcal{G}} g = U^T (Ux \odot Ug)$$

Graph Convolution in Frequency Domain

• Define convolution of input signal x with filter g on \mathcal{G} as:

$$x *_{\mathcal{G}} g = U^T (Ux \odot Ug)$$

• Learning filters on a graph \implies learning spectral weights:

$$x *_{\mathcal{G}} g = U^T(diag(w_g)Ux)$$
 with $w_g = (w_1, \dots, w_d)$

 \bullet Notice that g has support over all vertices

- \bullet Notice that g has support over all vertices
- But we want filters that are local

- \bullet Notice that g has support over all vertices
- But we want filters that are local
- \bullet Observation: Smoothness in frequency domain \implies spatial decay

- Notice that g has support over all vertices
- But we want filters that are local
- \bullet Observation: Smoothness in frequency domain \implies spatial decay
- Solution: Consider a smoothing kernel $\mathcal{K} \in \mathbb{R}^{d \times d_0}$ and search for multipliers:

$$w_g = \mathcal{K}\tilde{w}_g$$

- Forward Pass:
 - For input x, compute interpolated weights $w_{f'f} = \mathcal{K}\tilde{w}_{f'f}$

• Forward Pass:

- For input x, compute interpolated weights $w_{f'f} = \mathcal{K}\tilde{w}_{f'f}$
- Compute the output: $y_{sf'} = U^T(\sum_f Ux_{sf} \odot w_{f'f})$
- Backward Pass:
 - Compute gradient w.r.t input Δx_{sf}

• Forward Pass:

- For input x, compute interpolated weights $w_{f'f} = \mathcal{K}\tilde{w}_{f'f}$
- Compute the output: $y_{sf'} = U^T(\sum_f Ux_{sf} \odot w_{f'f})$
- Backward Pass:
 - Compute gradient w.r.t input Δx_{sf}
 - Compute gradient w.r.t interpolated weights $\Delta w_{f'f}$

• Forward Pass:

- For input x, compute interpolated weights $w_{f'f} = \mathcal{K}\tilde{w}_{f'f}$
- Compute the output: $y_{sf'} = U^T(\sum_f Ux_{sf} \odot w_{f'f})$
- Backward Pass:
 - Compute gradient w.r.t input Δx_{sf}
 - Compute gradient w.r.t interpolated weights $\Delta w_{f'f}$
 - Compute gradient w.r.t weight $\Delta \tilde{w}_{f'f} = \mathcal{K}^T \Delta w_{f'f}$

- Estimate it from data:
- Method 1: Unsupervised
 - Given dataset $X \in \mathbb{R}^{N \times d}$, compute distance d(i, j) between features:

$$d(i,j) = \|X_i - X_j\|_2^2$$

- Estimate it from data:
- Method 1: Unsupervised
 - Given dataset $X \in \mathbb{R}^{N \times d}$, compute distance d(i, j) between features:

$$d(i,j) = \|X_i - X_j\|_2^2$$

• Then compute
$$W_{i,j} = \exp^{-\frac{d(i,j)}{\sigma^2}}$$

- Estimate it from data:
- Method 2: Supervised
 - Given dataset $X \in \mathbb{R}^{N \times d}$ and labels $y \in \{1, \dots, C\}^L$, train a fully connected MLP with K layers, with weights W_1, \dots, W_K

- Estimate it from data:
- Method 2: Supervised
 - Given dataset $X \in \mathbb{R}^{N \times d}$ and labels $y \in \{1, \dots, C\}^L$, train a fully connected MLP with K layers, with weights W_1, \dots, W_K
 - Pass data through network, extract K layer features $W_K \in \mathbb{R}^{N \times m_k}$, then compute:

$$d(i,j) = \|W_{ki} - W_{kj}\|_2^2$$

- Estimate it from data:
- Method 2: Supervised
 - Given dataset $X \in \mathbb{R}^{N \times d}$ and labels $y \in \{1, \dots, C\}^L$, train a fully connected MLP with K layers, with weights W_1, \dots, W_K
 - Pass data through network, extract K layer features $W_K \in \mathbb{R}^{N \times m_k}$, then compute:

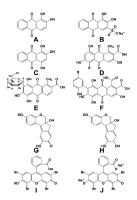
$$d(i,j) = \|W_{ki} - W_{kj}\|_2^2$$

• Use Gaussian kernel as before to get $W_{i,j}$

Scenario 2

Learning Embeddings of Graphs

Example Task: Regression



< 17 >

CMSC 35246

- Input: Organic Compounds (graphs)
- Output: Boiling point

Graph Embedding: Simple Algorithm

Algorithm 1 Generation of embedding

Require: G = (V, E), radius δ , Hidden Weights: $H_1^1, \ldots, H_l^{\delta}$, Output Weights: W_1, \ldots, W_{δ} **Initialize:** Embedding $\phi \leftarrow 0$ **Initialize:** For every vertex $\mathbf{r}_v \leftarrow \Psi(v)$

(local vertex features)

- 1: for all L=1 to δ (for every layer) do
- 2: for each vertex v in graph do

3:
$$\mathbf{r}_1, \ldots, \mathbf{r}_N = \mathsf{neighbors}(v)$$

4:
$$v \leftarrow \mathbf{r}_v + \sum_{i=1}^N \mathbf{r}_i$$

5: $\mathbf{r}_v \leftarrow \sigma(v H_L^N)$

6:
$$\mathbf{i} \leftarrow \mathsf{softmax}(\mathbf{r}_v W_L)$$

7: Update:
$$\phi \leftarrow \phi + \mathbf{i}$$

- 8: end for
- 9: end for
- 10: Output embedding ϕ