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Introduction

Sequence Learning with Neural Networks
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Some Sequence Tasks

Figure credit: Andrej Karpathy
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Problems with MLPs for Sequence Tasks

The ”API” is too limited.

MLPs only accept an input of fixed dimensionality and map it
to an output of fixed dimensionality

Great e.g.: Inputs - Images, Output - Categories

Bad e.g.: Inputs - Text in one language, Output - Text in
another language

MLPs treat every example independently. How is this
problematic?

Need to re-learn the rules of language from scratch each time

Another example: Classify events after a fixed number of
frames in a movie

Need to resuse knowledge about the previous events to help in
classifying the current.

Lecture 11 Recurrent Neural Networks I CMSC 35246



Problems with MLPs for Sequence Tasks

The ”API” is too limited.

MLPs only accept an input of fixed dimensionality and map it
to an output of fixed dimensionality

Great e.g.: Inputs - Images, Output - Categories

Bad e.g.: Inputs - Text in one language, Output - Text in
another language

MLPs treat every example independently. How is this
problematic?

Need to re-learn the rules of language from scratch each time

Another example: Classify events after a fixed number of
frames in a movie

Need to resuse knowledge about the previous events to help in
classifying the current.

Lecture 11 Recurrent Neural Networks I CMSC 35246



Problems with MLPs for Sequence Tasks

The ”API” is too limited.

MLPs only accept an input of fixed dimensionality and map it
to an output of fixed dimensionality

Great e.g.: Inputs - Images, Output - Categories

Bad e.g.: Inputs - Text in one language, Output - Text in
another language

MLPs treat every example independently. How is this
problematic?

Need to re-learn the rules of language from scratch each time

Another example: Classify events after a fixed number of
frames in a movie

Need to resuse knowledge about the previous events to help in
classifying the current.

Lecture 11 Recurrent Neural Networks I CMSC 35246



Problems with MLPs for Sequence Tasks

The ”API” is too limited.

MLPs only accept an input of fixed dimensionality and map it
to an output of fixed dimensionality

Great e.g.: Inputs - Images, Output - Categories

Bad e.g.: Inputs - Text in one language, Output - Text in
another language

MLPs treat every example independently. How is this
problematic?

Need to re-learn the rules of language from scratch each time

Another example: Classify events after a fixed number of
frames in a movie

Need to resuse knowledge about the previous events to help in
classifying the current.

Lecture 11 Recurrent Neural Networks I CMSC 35246



Problems with MLPs for Sequence Tasks

The ”API” is too limited.

MLPs only accept an input of fixed dimensionality and map it
to an output of fixed dimensionality

Great e.g.: Inputs - Images, Output - Categories

Bad e.g.: Inputs - Text in one language, Output - Text in
another language

MLPs treat every example independently. How is this
problematic?

Need to re-learn the rules of language from scratch each time

Another example: Classify events after a fixed number of
frames in a movie

Need to resuse knowledge about the previous events to help in
classifying the current.

Lecture 11 Recurrent Neural Networks I CMSC 35246



Problems with MLPs for Sequence Tasks

The ”API” is too limited.

MLPs only accept an input of fixed dimensionality and map it
to an output of fixed dimensionality

Great e.g.: Inputs - Images, Output - Categories

Bad e.g.: Inputs - Text in one language, Output - Text in
another language

MLPs treat every example independently. How is this
problematic?

Need to re-learn the rules of language from scratch each time

Another example: Classify events after a fixed number of
frames in a movie

Need to resuse knowledge about the previous events to help in
classifying the current.

Lecture 11 Recurrent Neural Networks I CMSC 35246



Problems with MLPs for Sequence Tasks

The ”API” is too limited.

MLPs only accept an input of fixed dimensionality and map it
to an output of fixed dimensionality

Great e.g.: Inputs - Images, Output - Categories

Bad e.g.: Inputs - Text in one language, Output - Text in
another language

MLPs treat every example independently. How is this
problematic?

Need to re-learn the rules of language from scratch each time

Another example: Classify events after a fixed number of
frames in a movie

Need to resuse knowledge about the previous events to help in
classifying the current.

Lecture 11 Recurrent Neural Networks I CMSC 35246



Problems with MLPs for Sequence Tasks

The ”API” is too limited.

MLPs only accept an input of fixed dimensionality and map it
to an output of fixed dimensionality

Great e.g.: Inputs - Images, Output - Categories

Bad e.g.: Inputs - Text in one language, Output - Text in
another language

MLPs treat every example independently. How is this
problematic?

Need to re-learn the rules of language from scratch each time

Another example: Classify events after a fixed number of
frames in a movie

Need to resuse knowledge about the previous events to help in
classifying the current.

Lecture 11 Recurrent Neural Networks I CMSC 35246



Recurrent Networks

Recurrent Neural Networks (Rumelhart, 1986) are a family of
neural networks for handling sequential data

Sequential data: Each example consists of a pair of sequences.
Each example can have different lengths

Need to take advantage of an old idea in Machine Learning:
Share parameters across different parts of a model

Makes it possible to extend the model to apply it to sequences
of different lengths not seen during training

Without parameter sharing it would not be possible to share
statistical strength and generalize to lengths of sequences not
seen during training

Recurrent networks share parameters: Each output is a
function of the previous outputs, with the same update rule
applied
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Recurrence

Consider the classical form of a dynamical system:

s(t) = f(s(t−1); θ)

This is recurrent because the definition of s at time t refers
back to the same definition at time t− 1

For some finite number of time steps τ , the graph represented
by this recurrence can be unfolded by using the definition
τ − 1 times. For example when τ = 3

s(3) = f(s(2); θ) = f(f(s(1); θ); θ)

This expression does not involve any recurrence and can be
represented by a traditional directed acyclic computational
graph
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Recurrent Networks

Consider another dynamical system, that is driven by an
external signal x(t)

s(t) = f(s(t−1), x(t); θ)

The state now contains information about the whole past
sequence

RNNs can be built in various ways: Just as any function can
be considered a feedforward network, any function involving a
recurrence can be considered a recurrent neural network
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We can consider the states to be the hidden units of the
network, so we replace s(t) by h(t)

h(t) = f(h(t−1), x(t); θ)

This system can be drawn in two ways:

We can have additional architectural features: Such as output
layers that read information from h to make predictions
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When the task is to predict the future from the past, the
network learns to use h(t) as a summary of task relevant
aspects of the past sequence upto time t

This summary is lossy because it maps an arbitrary length
sequence (x(1), x(t−1), . . . , x(2), x(1)) to a fixed vector h(t)

Depending on the training criterion, the summary might
selectively keep some aspects of the past sequence with more
precision (e.g. statistical language modeling)

Most demanding situation for h(t): Approximately recover the
input sequence
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Design Patterns of Recurrent Networks

Plain Vanilla RNN: Produce an output at each time stamp
and have recurrent connections between hidden units

Is infact Turing Complete (Siegelmann, 1991, 1995, 1995)
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Plain Vanilla Recurrent Network

ht

xt

yt
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Recurrent Connections

ht

xt

yt

U

W
ht = ψ(Uxt +Wht−1)
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Recurrent Connections

ht

xt

ŷt

U

V

W
ht = ψ(Uxt +Wht−1)

ŷt = φ(V ht)

ψ can be tanh and φ can be softmax
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Unrolling the Recurrence

x1 x2 x3 . . . xτ
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ŷ2

h2

U

W

V

x3

ŷ3
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Feedforward Propagation

This is a RNN where the input and output sequences are of
the same length

Feedforward operation proceeds from left to right

Update Equations:

at = b+Wht−1 + Uxt

ht = tanhat

ot = c+ V ht

ŷt = softmax(ot)
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ŷt = softmax(ot)

Lecture 11 Recurrent Neural Networks I CMSC 35246



Feedforward Propagation

Loss would just be the sum of losses over time steps

If Lt is the negative log-likelihood of yt given x1, . . . ,xt, then:

L
(
{x1, . . . ,xt}, {y1, . . . ,yt}

)
=
∑
t

Lt

With: ∑
t

Lt = −
∑
t

log pmodel

(
yt|{x1, . . . ,xt}

)

Observation: Forward propagation takes time O(t); can’t be
parallelized
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Backward Propagation

Need to find: ∇V L, ∇WL, ∇UL

And the gradients w.r.t biases: ∇cL and ∇bL
Treat the recurrent network as a usual multilayer network and
apply backpropagation on the unrolled network

We move from the right to left: This is called
Backpropagation through time

Also takes time O(t)
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BPTT

x1

ŷ1
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ŷ2

h2

U

W

V

∂L
∂U

∂L
∂W

x3

ŷ3
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Gradient Computation

∇V L =
∑
t

(∇otL)hTt

Where:

(∇otL)i =
∂L

∂o
(i)
t

=
∂L

∂Lt

∂Lt

∂o
(i)
t

= ŷ
(i)
t − 1i,yt
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ŷ1

h1

U

V

∂L
∂U

x2

ŷ2
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Gradient Computation

∇WL =
∑
t

diag
(
1− (ht)

2
)
(∇htL)hTt−1

Where, for t = τ (one descendant):

(∇hτL) = V T (∇oτL)

For some t < τ (two descendants)

(∇htL) =
(∂ht+1

∂ht

)T
(∇ht+1L) +

(∂ot
∂ht

)T
(∇otL)

= W T (∇ht+1L)diag(1− ht+1
2) + V (∇otL)

Lecture 11 Recurrent Neural Networks I CMSC 35246



BPTT

x1

ŷ1
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Gradient Computation

∇UL =
∑
t

diag
(
1− (ht)

2
)
(∇htL)xTt
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Recurrent Neural Networks

But weights are shared across different time stamps? How is
this constraint enforced?

Train the network as if there were no constraints, obtain
weights at different time stamps, average them
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Design Patterns of Recurrent Networks

Summarization: Produce a single output and have recurrent
connections from output between hidden units

Useful for summarizing a sequence (e.g. sentiment analysis)
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Design Patterns: Fixed vector as input

We have considered RNNs in the context of a sequence of
vectors x(t) with t = 1, . . . , τ as input

Sometimes we are interested in only taking a single, fixed
sized vector x as input, that generates the y sequence

Some common ways to provide an extra input to an RNN are:

– As an extra input at each time step
– As the initial state h(0)

– both
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Design Patterns: Fixed vector as input

The first option (extra input at each time step) is the most
common:

Maps a fixed vector x into a distribution over sequences Y
(xTR effectively is a new bias parameter for each hidden unit)
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Application: Caption Generation

Caption Generation
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Design Patterns: Bidirectional RNNs

RNNs considered till now, all have a causal structure: state at
time t only captures information from the past x(1), . . . , x(t−1)

Sometimes we are interested in an output y(t) which may
depend on the whole input sequence

Example: Interpretation of a current sound as a phoneme may
depend on the next few due to co-articulation

Basically, in many cases we are interested in looking into the
future as well as the past to disambiguate interpretations

Bidirectional RNNs were introduced to address this need
(Schuster and Paliwal, 1997), and have been used in
handwriting recognition (Graves 2012, Graves and
Schmidhuber 2009), speech recognition (Graves and
Schmidhuber 2005) and bioinformatics (Baldi 1999)
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Design Patterns: Bidirectional RNNs
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Design Patterns: Encoder-Decoder

How do we map input sequences to output sequences that are
not necessarily of the same length?

Example: Input - Kérem jöjjenek máskor és különösen
máshoz. Output - ’Please come rather at another time and to
another person.’

Other example applications: Speech recognition, question
answering etc.

The input to this RNN is called the context, we want to find a
representation of the context C

C could be a vector or a sequence that summarizes
X = {x(1), . . . , x(nx)}
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Design Patterns: Encoder-Decoder

Far more complicated mappings
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Design Patterns: Encoder-Decoder

In the context of Machine Trans. C is called a thought vector
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Deep Recurrent Networks

The computations in RNNs can be decomposed into three
blocks of parameters/associated transformations:

– Input to hidden state
– Previous hidden state to the next
– Hidden state to the output

Each of these transforms till now were learned affine
transformations followed by a fixed nonlinearity

Introducing depth in each of these operations is advantageous
(Graves et al. 2013, Pascanu et al. 2014)

The intuition on why depth should be more useful is quite
similar to that in deep feed-forward networks

Optimization can be made much harder, but can be mitigated
by tricks such as introducing skip connections
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Deep Recurrent Networks

(b) lengthens shortest paths linking different time steps, (c) mitigates this by introducing skip layers
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Recursive Neural Networks

The computational graph is structured as a deep tree rather
than as a chain in a RNN

Lecture 11 Recurrent Neural Networks I CMSC 35246



Recursive Neural Networks

First introduced by Pollack (1990), used in Machine
Reasoning by Bottou (2011)

Successfully used to process data structures as input to neural
networks (Frasconi et al 1997), Natural Language Processing
(Socher et al 2011) and Computer vision (Socher et al 2011)

Advantage: For sequences of length τ , the number of
compositions of nonlinear operations can be reduced from τ
to O(log τ)

Choice of tree structure is not very clear
• A balanced binary tree, that does not depend on the

structure of the data has been used in many applications
• Sometimes domain knowledge can be used: Parse trees

given by a parser in NLP (Socher et al 2011)

The computation performed by each node need not be the
usual neuron computation - it could instead be tensor
operations etc (Socher et al 2013)
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Long-Term Dependencies
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Challenge of Long-Term Dependencies

Basic problem: Gradients propagated over many stages tend
to vanish (most of the time) or explode (relatively rarely)

Difficulty with long term interactions (involving multiplication
of many jacobians) arises due to exponentially smaller
weights, compared to short term interactions

The problem was first analyzed by Hochreiter and
Schmidhuber 1991 and Bengio et al 1993
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Challenge of Long-Term Dependencies

Recurrent Networks involve the composition of the same
function multiple times, once per time step

The function composition in RNNs somewhat resembles
matrix multiplication

Consider the recurrence relationship:

h(t) = W Th(t−1)

This could be thought of as a very simple recurrent neural
network without a nonlinear activation and lacking x

This recurrence essentially describes the power method and
can be written as:

h(t) = (W t)Th(0)
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Challenge of Long-Term Dependencies

If W admits a decomposition W = QΛQT with orthogonal Q

The recurrence becomes:

h(t) = (W t)Th(0) = QTΛtQh(0)

Eigenvalues are raised to t: Quickly decay to zero or explode

Problem particular to RNNs
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Solution 1: Echo State Networks

Idea: Set the recurrent weights such that they do a good job
of capturing past history and learn only the output weights

Methods: Echo State Machines, Liquid State Machines

The general methodology is called reservoir computing

How to choose the recurrent weights?
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Echo State Networks

Original idea: Choose recurrent weights such that the
hidden-to-hidden transition Jacobian has eigenvalues close to
1

In particular we pay attention to the spectral radius of Jt

Consider gradient g, after one step of backpropagation it
would be Jg and after n steps it would be Jng

Now consider a perturbed version of g i.e. g + δv, after n
steps we will have Jn(g + δv)

Infact, the separation is exactly δ|λ|n

When |λ > 1|, δ|λ|n grows exponentially large and vice-versa
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Echo State Networks

For a vector h, when a linear map W always shrinks h, the
mapping is said to be contractive

The strategy of echo state networks is to make use of this
intuition

The Jacobian is chosen such that the spectral radius
corresponds to stable dynamics
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Other Ideas

Skip Connections

Leaky Units
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Long Short Term Memory

xt

ht−1 tanh

ht = tanh(Wht−1 + Uxt)
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Long Short Term Memory

xt

ht−1 tanh

ct−1

ct

c̃t = tanh(Wht−1 + Uxt)

ct = ct−1 + c̃t

Lecture 11 Recurrent Neural Networks I CMSC 35246



Long Short Term Memory

xt

ht−1 tanh

ct−1

ct

σ
Forget Gate

c̃t = tanh(Wht−1 + Uxt)

ct = ft � ct−1 + c̃t

ft = σ(Wfht−1 + Ufxt)
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Long Short Term Memory

xt

ht−1 tanh

ct−1

ct

σ

σ

Input c̃t = tanh(Wht−1 + Uxt)

ct = ft � ct−1 + it � c̃t

ft = σ(Wfht−1 + Ufxt)
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Long Short Term Memory

xt

ht−1 tanh

ct−1

ct

σ

σ

σ

tanh

c̃t = tanh(Wht−1 + Uxt)

ct = ft � ct−1 + it � c̃t

ht = ot � tanh(ct)

ft = σ(Wfht−1 + Ufxt)

it = σ(Wiht−1 + Uixt)

ot = σ(Woht−1 + Uoxt)
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Gated Recurrent Unit

Let h̃t = tanh(Wht−1 + Uxt) and ht = h̃t

Reset gate: rt = σ(Wrht−1 + Urxt)

New h̃t = tanh(W (rt � ht−1) + Uxt)

Find: zt = σ(Wzht−1 + Uzxt)

Update ht = zt � h̃t

Finally: ht = (1− zt)� ht−1 + zt � h̃t

Comes from attempting to factor LSTM and reduce gates
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