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Recap: Plain Vanilla RNNs
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Recap: BPTT
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Challenge of Long Term Dependencies
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Challenge of Long-Term Dependencies

Basic problem: Gradients propagated over many stages tend
to vanish (most of the time) or explode (relatively rarely)

- Blow up � network parameters oscillate
- Vanishing � no learning

Problem first analyzed by Hochreiter and Schmidhuber, 1991
and Bengio et al., 1993

Reference: Sepp Hochreiter. Untersuchungen zu dynamischen
neuronalen Netzen. Diploma thesis, TU Munich, 1991
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Why do gradients explode or vanish?

Recall the expression for ht in RNNs:

ht = tanh(Wht−1 + V xt)

L was our loss, so we have by the chain rule:

∂L

∂ht
=

∂L

∂hT

∂hT
∂ht

=
∂L

∂hT

T−1∏
k=t

∂hk+1

∂hk

=
∂L

∂hT

T−1∏
k=t

Dk+1W
T
k
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Why do gradients explode or vanish?

∂L

∂ht
=

∂L

∂hT

T−1∏
k=t

Dk+1W
T
k

Reminder: Dk+1 = diag(1− tanh2(Wht−1 + V xt)) is the
Jacobian matrix of the pointwise nonlinearity

The quantity of interest is the norm of the gradient
∥∥∥ ∂L∂ht

∥∥∥:

Which is simply:∥∥∥∥ ∂L∂ht
∥∥∥∥ =

∥∥∥∥∥ ∂L∂hT
T−1∏
k=t

Dk+1W
T
k

∥∥∥∥∥
Note: ‖ � ‖ represents the L2 norm for a vector and the
spectral norm for a matrix
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Why do gradients explode or vanish?

Given that for any matrices A,B and vector v:
‖Av‖ ≤ ‖A‖‖v‖ and ‖AB‖ ≤ ‖A‖‖B‖, we have the trivial
bound:

∥∥∥∥ ∂L∂ht
∥∥∥∥ =

∥∥∥∥∥ ∂L∂hT
T−1∏
k=t

Dk+1W
T
k

∥∥∥∥∥ ≤
∥∥∥∥ ∂L∂hT

∥∥∥∥ T−1∏
k=t

∥∥Dk+1W
T
k

∥∥

Given that ‖A‖ is the spectral norm (largest singular value
σA):

∥∥∥∥ ∂L∂ht
∥∥∥∥ ≤ ∥∥∥∥ ∂L∂hT

∥∥∥∥ T−1∏
k=t

∥∥Dk+1W
T
k

∥∥ =

∥∥∥∥ ∂L∂hT
∥∥∥∥ T−1∏
k=t

σDk
σWk

The above tells us that the gradient norm can shrink to zero
or blow up exponentially fast depending on the gain σ
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Simplified Model

Consider the recurrence relationship:

h(t) = W Th(t−1)

This could be thought of as a very simple recurrent neural
network without a nonlinear activation and lacking x

Essentially describes the power method:

h(t) = (W t)Th(0)

If W admits a decomposition W = QΛQT with orthogonal Q

The recurrence becomes:

h(t) = (W t)Th(0) = QTΛtQh(0)
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Simplified Model

h(t) = (W t)Th(0) = QTΛtQh(0)

Eigenvalues are raised to t: Quickly decay to zero or explode

Problem particular to RNNs

Can be avoided in feedforward networks (atleast in principle)
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Some Solutions
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Idea 1: Skip Connections

Add connections from the distant past to the present

Plain Vanilla RNNs: Recurrence goes from a unit at time t to
a unit at time t+ 1

Gradients vanish/explode w.r.t number of time steps

With recurrent connections with a time-delay of d, gradients
explode/vanish exponentially as a function of τ

d rather than τ
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Idea 2: Leaky Units

Keep a running average for a hidden unit by adding a linear
self connection:

ht ← αht−1 + (1− α)ht

Such hidden units are called leaky units

Ensures hidden units can easily access values from the past
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Idea 3: Echo State Networks

Idea: Set the recurrent weights such that they do a good job
of capturing past history and learn only the output weights

Methods: Echo State Machines, Liquid State Machines

The general methodology is called Reservoir Computing

How to choose the recurrent weights?
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Echo State Networks: Motivation

Choose recurrent weights such that the hidden-to-hidden
transition Jacobian has eigenvalues close to 1

In particular we pay attention to the spectral radius of Jt

Consider gradient g, after one step of backpropagation it
would be Jg and after n steps it would be Jng

Now consider a perturbed version of g i.e. g + δv, after n
steps we will have Jn(g + δv)

Infact, the separation is exactly δ|λ|n

When |λ > 1|, δ|λ|n grows exponentially large and vice-versa
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Echo State Networks

For a vector h, when a linear map W always shrinks h, the
mapping is said to be contractive

The strategy of echo state networks is to make use of this
intuition

The Jacobian is chosen such that the spectral radius
corresponds to stable dynamics

Then we only learn the output weights!

Can be used to initialize a fully trainable RNN
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Echo State Networks

Figure: Scholarpedia

Solid arrows represent fixed, random connections. Dashed
arrows represent learnable weights
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A Popular Solution: Gated Architectures
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Back to Plain Vanilla RNN

Figure: Chris Olah
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Long Short Term Memory

Figure: Chris Olah

Proposed by Hochreiter and Schmidhuber (1997)

Now let’s try to understand each memory cell!
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Long Short Term Memory

xt

ht−1 tanh

ht = tanh(Wht−1 + Uxt)
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Long Short Term Memory

xt

ht−1 tanh

ct−1

ct

c̃t = tanh(Wht−1 + Uxt)

ct = ct−1 + c̃t
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Long Short Term Memory

xt

ht−1 tanh

ct−1

ct

σ
Forget Gate

c̃t = tanh(Wht−1 + Uxt)

ct = ft � ct−1 + c̃t

ft = σ(Wfht−1 + Ufxt)
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Long Short Term Memory

xt

ht−1 tanh

ct−1

ct

σ

σ

Input c̃t = tanh(Wht−1 + Uxt)

ct = ft � ct−1 + it � c̃t

ft = σ(Wfht−1 + Ufxt)

it = σ(Wiht−1 + Uixt)
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Long Short Term Memory

xt

ht−1 tanh

ct−1

ct

σ

σ

σ

tanh

c̃t = tanh(Wht−1 + Uxt)

ct = ft � ct−1 + it � c̃t

ht = ot � tanh(ct)

ft = σ(Wfht−1 + Ufxt)

it = σ(Wiht−1 + Uixt)

ot = σ(Woht−1 + Uoxt)

Lecture 12 Recurrent Neural Networks II CMSC 35246



LSTM: Further Intuition

The Cell State

ct = ft � ct−1 + it � c̃t with c̃t = tanh(Wht−1 + Uxt)

Useful to think of the cell as a conveyor belt (Olah), which
runs across time; only interrupted with linear interactions

The memory cell can add or delete information from the cell
state by gates

Gates are constructed by using a sigmoid and a pointwise
multiplication
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LSTM: Further Intuition

The Forget Gate

ft = σ(Wfht−1 + Ufxt)

Helps to decide what information to throw away from the cell
state

Once we have thrown away what we want from the cell state,
we want to update it
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LSTM: Further Intuition

First we decide how much of the input we want to store in the
updated cell state via the Input Gate

it = σ(Wiht−1 + Uixt)

We then update the cell state:

ct = ft � ct−1 + it � c̃t

We then need to output, and use the output gate
ot = σ(Woht−1 + Uoxt) to pass on the filtered version

ht = ot � tanh(ct)
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Gated Recurrent Unit

Let h̃t = tanh(Wht−1 + Uxt) and ht = h̃t

Reset gate: rt = σ(Wrht−1 + Urxt)

New h̃t = tanh(W (rt � ht−1) + Uxt)

Find: zt = σ(Wzht−1 + Uzxt)

Update ht = zt � h̃t

Finally: ht = (1− zt)� ht−1 + zt � h̃t

Comes from attempting to factor LSTM and reduce gates

Example: One gate controls forgetting as well as decides if the
state needs to be updated
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Gated Recurrent Unit

xt

ht−1 httanh

h̃t = tanh(Wht−1 + Uxt)

ht = h̃t
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Gated Recurrent Unit

xt

ht−1 httanh

σ

Reset

h̃t = tanh(W (rt�ht−1) + Uxt)

ht = h̃t

rt = σ(Wrht−1 + Urxt)
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Gated Recurrent Unit

xt

ht−1 httanh

σ σ

Update

h̃t = tanh(W (rt�ht−1) + Uxt)

ht = zt � h̃t

rt = σ(Wrht−1 + Urxt)

zt = σ(Wzht−1 + Uzxt)
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Gated Recurrent Unit
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Attention Models
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Attention Models

To illustrate the fundamental idea of attention, we will look at
two classic papers on the topic

Machine Translation: Neural Machine Translation by Jointly
Learning to Align and Translate by Bahdanau et al.

Image Caption Generation: Show, Attend and Tell: Neural
Image Caption Generation with Visual Attention, ICML 2015
by Xu et al.

Let us consider Machine Translation first
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Attention Models: Motivation

Recall our encoder-decoder model for machine translation

Figure: Goodfellow et al.
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Attention Models: Motivation

Let’s look at the steps for translation again:

The input sentence x1, . . . ,xn via hidden unit activations
h1, . . . ,hn is encoded into the thought vector C

Using C, the decoder then generates the output sentence
y1, . . . ,yp

We stop when we sample a terminating token i.e. 〈END〉
A Problem? For long sentences, it might not be useful to only
give the decoder access to the vector C
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Attention Models: Motivation

When we ourselves are translating a sentence from one
language to another, we don’t consider the whole sentence at
all times

Intuition: Every word in the output only depends on a word
or a group of words in the input sentence

We can help the decoding process by allowing the decoder to
refer to the input sentence

We would like the decoder, while it is about to generate the
next word, to attend to a group of words in the input sentence
most relevant to predicting the right next word

Maybe it would be more efficient to also be able to attend to
these words while decoding
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Machine Translation Using Attention

First Observation: For each word we had a hidden unit. This
encoded a representation for each word.

Let use first try to incorporate both forwards and backward
context for each word using a bidirectional RNN and
concatenate the resulting representations

We have already seen why using a bidirectional RNN is useful

Figure: Roger Grosse
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Machine Translation Using Attention

The decoder generates the sentence one word at a time
conditioned on C

We can instead have a context vector for every time step
These vectors C(t) learn to attend to specific words of the
input sentence

Figure: Roger Grosse
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Machine Translation Using Attention

How do we learn C(t)’s so that they attend to relevant words?

First: Let the representations of the bidirectional RNN for
each word be hi

Define C(t) to be the weighted average of encoder’s
representations:

C(t) =
∑
i

αtihi

αt defines a probability distribution over the input words
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Machine Translation Using Attention

αti is a function of the representations of the words, as well
the previous state of the decoder

αti =
exp(eti)∑
k exp(etk)

With eti = a(s(t−1),h(i))

This is a form of content-based addressing

Example: The language model says the next word should be
an adjective, give me an adjective in the input
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Machine Translation Using Attention

For each word in the translation, the matrix gives the degree
of focus on all the input words

A linear order is not forced, but it figures out that the
translation is approximately linear
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Attention in Computer Vision

We will look at only one illustrative example: Show, Attend
and Tell: Neural Image Caption Generation with Visual
Attention, ICML 2015

Attention can also be used to understand images

Humans don’t process a visual scene all at once. The Fovea
gives high resolution vision in only a tiny region of our field of
view

A series of glimpses are then integrated
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Caption Generation using Attention

Here we have an encoder and decoder as well:

Encoder: A trained network like ResNet that extracts
features for an input image

Decoder: Attention based RNN, which is like the decoder in
the translation model of Bahdanau

While generating the caption, at every time step, the decoder
must decide which region of the image to attend to

The decoder here too receives a context vector, which is the
weighted average of the convolutional network features

The α’s here would define a distribution over the pixels
indicating what pixels we would like to focus on to predict the
next word
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Caption Generation without Attention

Figure: Andrej Karpathy

Lecture 12 Recurrent Neural Networks II CMSC 35246



Caption Generation with Attention

Figure: Andrej Karpathy
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Caption Generation using Attention

Not only generates good captions, but we also get to see
where the decoder is looking at in the image
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Caption Generation using Attention

Can also see the networks mistakes
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Next Time:
Neural Networks with Explicit Memory
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