
Lecture 16
Deep Neural Generative Models

CMSC 35246: Deep Learning

Shubhendu Trivedi
&

Risi Kondor

University of Chicago

May 22, 2017

Lecture 16 Deep Neural Generative Models CMSC 35246

Approach so far:

We have considered simple models and then constructed their
deep, non-linear variants

Example: PCA (and Linear Autoencoder) to Nonlinear-PCA
(Non-linear (deep?) autoencoders)

Example: Sparse Coding (Sparse Autoencoder with linear
decoding) to Deep Sparse Autoencoders

All the models we have considered so far are completely
deterministic

The encoder and decoders have no stochasticity

We don’t construct a probabilistic model of the data

Can’t sample from the model

Lecture 16 Deep Neural Generative Models CMSC 35246

Representations

Figure: Ruslan Salakhutdinov

Lecture 16 Deep Neural Generative Models CMSC 35246

To motivate Deep Neural Generative models, like before, let’s
seek inspiration from simple linear models first

Lecture 16 Deep Neural Generative Models CMSC 35246

Linear Factor Model

We want to build a probabilistic model of the input P̃ (x)

Like before, we are interested in latent factors h that explain x

We then care about the marginal:

P̃ (x) = EhP̃ (x|h)

h is a representation of the data

Lecture 16 Deep Neural Generative Models CMSC 35246

Linear Factor Model

The latent factors h are an encoding of the data

Simplest decoding model: Get x after a linear transformation
of x with some noise

Formally: Suppose we sample the latent factors from a
distribution h ∼ P (h)

Then: x = Wh + b + ε

Lecture 16 Deep Neural Generative Models CMSC 35246

Linear Factor Model

P (h) is a factorial distribution

x1 x2 x3 x4 x5

h1 h2 h3

x = Wh + b + ε

How do learn in such a model?

Let’s look at a simple example

Lecture 16 Deep Neural Generative Models CMSC 35246

Probabilistic PCA

Suppose underlying latent factor has a Gaussian distribution

h ∼ N (h; 0, I)

For the noise model: Assume ε ∼ N (0, σ2I)

Then:
P (x|h) = N (x|Wh + b, σ2I)

We care about the marginal P (x) (predictive distribution):

P (x) = N (x|b,WW T + σ2I)

Lecture 16 Deep Neural Generative Models CMSC 35246

Probabilistic PCA

P (x) = N (x|b,WW T + σ2I)

How do we learn the parameters? (EM, ML Estimation)

Let’s look at the ML Estimation:

Let C = WW T + σ2I

We want to maximize `(θ;X) =
∑

i logP (xi|θ)

Lecture 16 Deep Neural Generative Models CMSC 35246

Probabilistic PCA: ML Estimation

`(θ;X) =
∑
i

logP (xi|θ)

= −N
2

log |C| − 1

2

∑
i

(xi − b)C−1(xi − b)T

= −N
2

log |C| − 1

2
Tr[(C−1

∑
i

xi − b)(xi − b)T]

=
N

2
log |C| − 1

2
Tr[(C−1S]

Now fit the parameters θ = W,b, σ to maximize log-likelihood

Can also use EM

Lecture 16 Deep Neural Generative Models CMSC 35246

Factor Analysis

Fix the latent factor prior to be the unit Gaussian as before:

h ∼ N (h; 0, I)

Noise is sampled from a Gaussian with a diagonal covariance:

Ψ = diag([σ21, σ
2
2, . . . , σ

2
d])

Still consider linear relationship between inputs and observed
variables: Marginal P (x) ∼ N (x; b,WW T + Ψ)

Lecture 16 Deep Neural Generative Models CMSC 35246

Factor Analysis

On deriving the posterior P (h|x) = N (h|µ,Λ), we get:

µ = W T (WW T + Ψ)−1(x− b)

Λ = I −W T (WW T + Ψ)−1W

Parameters are coupled, makes ML estimation difficult

Need to employ EM (or non-linear optimization)

Lecture 16 Deep Neural Generative Models CMSC 35246

More General Models

Suppose P (h) can not be assumed to have a nice Gaussian
form

The decoding of the input from the latent states can be a
complicated non-linear function

Estimation and inference can get complicated!

Lecture 16 Deep Neural Generative Models CMSC 35246

Earlier we had:

x1 x2 x3 x4 x5

h1 h2 h3

Lecture 16 Deep Neural Generative Models CMSC 35246

Quick Review

Generative models can be modeled as directed graphical
models

The nodes represent random variables and arcs indicate
dependency

Some of the random variables are observed, others are hidden

Lecture 16 Deep Neural Generative Models CMSC 35246

Sigmoid Belief Networks

. . .
x

. . .
h1

. . .
h2

. . .
h3

Just like a feedfoward network, but with arrows reversed.

Lecture 16 Deep Neural Generative Models CMSC 35246

Sigmoid Belief Networks

Let x = h0. Consider binary activations, then:

P (hki = 1|hk+1) = sigm(bki +
∑
j

W k+1
i,j hk+1

j)

The joint probability factorizes as:

P (x,h1, . . . ,hl) = P (hl)
(l−1∏
k=1

P (hk|hk+1)
)
P (x|h1)

Marginalization yields P (x), intractable in practice except for
very small models

Lecture 16 Deep Neural Generative Models CMSC 35246

Sigmoid Belief Networks

P (x,h1, . . . ,hl) = P (hl)
(l−1∏
k=1

P (hk|hk+1)
)
P (x|h1)

The top level prior is chosen as factorizable:
P (hl) =

∏
i P (hli)

A single (Bernoulli) parameter is needed for each hi in case of
binary units

Deep Belief Networks are like Sigmoid Belief Networks except
for the top two layers

Lecture 16 Deep Neural Generative Models CMSC 35246

Sigmoid Belief Networks

General case models are called Helmholtz Machines

Two key references:

• G. E. Hinton, P. Dayan, B. J. Frey, R. M. Neal: The
Wake-Sleep Algorithm for Unsupervised Neural Networks,
In Science, 1995

• R. M. Neal: Connectionist Learning of Belief Networks,
In Artificial Intelligence, 1992

Lecture 16 Deep Neural Generative Models CMSC 35246

Deep Belief Networks

. . .
x

. . .
h1

. . .
h2

. . .
h3

The top two layers now have undirected edges

Lecture 16 Deep Neural Generative Models CMSC 35246

Deep Belief Networks

The joint probability changes as:

P (x,h1, . . . ,hl) = P (hl,hl−1)
(l−2∏
k=1

P (hk|hk+1)
)
P (x|h1)

Lecture 16 Deep Neural Generative Models CMSC 35246

Deep Belief Networks

. . .
hl

. . .
hl+1

The top two layers are a Restricted Boltzmann Machine

A RBM has the joint distribution:

P (hl+1,hl) ∝ exp(b′hl−1 + c′hl + hlWhl−1)

We will return to RBMs and training procedures in a while,
but first we look at the mathematical machinery that will
make our task easier

Lecture 16 Deep Neural Generative Models CMSC 35246

Energy Based Models

Energy-Based Models assign a scalar energy with every
configuration of variables under consideration

Learning: Change the energy function so that its final shape
has some desirable properties

We can define a probability distribution through an energy:

P (x) =
exp−(Energy(x))

Z

Energies are in the log-probability domain:

Energy(x) = log
1

(ZP (x))

Lecture 16 Deep Neural Generative Models CMSC 35246

Energy Based Models

P (x) =
exp−(Energy(x))

Z

Z is a normalizing factor called the Partition Function

Z =
∑
x

exp(−Energy(x))

How do we specify the energy function?

Lecture 16 Deep Neural Generative Models CMSC 35246

Product of Experts Formulation

In this formulation, the energy function is:

Energy(x) =
∑
i

fi(x)

Therefore:

P (x) =
exp−(

∑
i fi(x))

Z

We have the product of experts:

P (x) ∝
∏
i

Pi(x) ∝
∏
i

exp(−fi(x))

Lecture 16 Deep Neural Generative Models CMSC 35246

Product of Experts Formulation

P (x) ∝
∏
i

Pi(x) ∝
∏
i

exp(−fi(x))

Every expert fi can be seen as enforcing a constraint on x

If fi is large =⇒ Pi(x) is small i.e. the expert thinks x is
implausible (constraint violated)

If fi is small =⇒ Pi(x) is large i.e. the expert thinks x is
plausible (constraint satisfied)

Contrast this with mixture models

Lecture 16 Deep Neural Generative Models CMSC 35246

Latent Variables

x is observed, let’s say h are hidden factors that explain x

The probability then becomes:

P (x,h) =
exp−(Energy(x,h))

Z

We only care about the marginal:

P (x) =
∑
h

exp−(Energy(x,h))

Z

Lecture 16 Deep Neural Generative Models CMSC 35246

Latent Variables

P (x) =
∑
h

exp−(Energy(x,h))

Z

We introduce another term in analogy from statistical physics:
free energy:

P (x) =
exp−(FreeEnergy(x))

Z

Free Energy is just a marginalization of energies in the
log-domain:

FreeEnergy(x) = − log
∑
h

exp−(Energy(x,h))

Lecture 16 Deep Neural Generative Models CMSC 35246

Latent Variables

P (x) =
exp−(FreeEnergy(x))

Z

Likewise, the partition function:

Z =
∑
x

exp−FreeEnergy(x)

We have an expression for P (x) (and hence for the data
log-likelihood). Let us see how the gradient looks like

Lecture 16 Deep Neural Generative Models CMSC 35246

Data Log-Likelihood Gradient

P (x) =
exp−(FreeEnergy(x))

Z

The gradient is simply working from the above:

∂ logP (x)

∂θ
= −∂FreeEnergy(x)

∂θ

+
1

Z

∑
x̃

exp−(FreeEnergy(x̃))
∂FreeEnergy(x̃)

∂θ

Note that P (x̃) = exp−(FreeEnergy(x̃))

Lecture 16 Deep Neural Generative Models CMSC 35246

Data Log-Likelihood Gradient

The expected log-likelihood gradient over the training set has
the following form:

EP̃

[
∂ logP (x)

∂θ

]
= EP̃

[
∂FreeEnergy(x)

∂θ

]
+EP

[
∂FreeEnergy(x)

∂θ

]

Lecture 16 Deep Neural Generative Models CMSC 35246

Data Log-Likelihood Gradient

EP̃

[
∂ logP (x)

∂θ

]
= EP̃

[
∂FreeEnergy(x)

∂θ

]
+EP

[
∂FreeEnergy(x)

∂θ

]

P̃ is the empirical training distribution

Easy to compute!

Lecture 16 Deep Neural Generative Models CMSC 35246

Data Log-Likelihood Gradient

EP̃

[
∂ logP (x)

∂θ

]
= EP̃

[
∂FreeEnergy(x)

∂θ

]
+EP

[
∂FreeEnergy(x)

∂θ

]

P is the model distribution (exponentially many
configurations!)

Usually very hard to compute!

Resort to Markov Chain Monte Carlo to get a stochastic
estimator of the gradient

Lecture 16 Deep Neural Generative Models CMSC 35246

A Special Case

Suppose the energy has the following form:

Energy(x,h) = −β(x) +
∑
i

γi(x,hi)

The free energy, and numerator of log likelihood can be
computed tractably!

What is P (x)?

What is the FreeEnergy(x)?

Lecture 16 Deep Neural Generative Models CMSC 35246

A Special Case

The likelihood term:

P (x) =
expβ(x)

Z

∏
i

∑
hi

exp−γi(x,hi)

The Free Energy term:

FreeEnergy(x) = − logP (x)− logZ

= −β −
∑
i

log
∑
hi

exp−γi(x,hi)

Lecture 16 Deep Neural Generative Models CMSC 35246

Restricted Boltzmann Machines

. . .
hl

. . .
hl+1

Recall the form of energy:

Energy(x,h) = −bTx− cTh− hTWx

Takes the earlier nice form with β(x) = bTx and
γi(x,hi) = hi(ci +Wix)

Originally proposed by Smolensky (1987) who called them
Harmoniums as a special case of Boltzmann Machines

Lecture 16 Deep Neural Generative Models CMSC 35246

Restricted Boltzmann Machines

. . .
hl

. . .
hl+1

As seen before, the Free Energy can be computed efficiently:

FreeEnergy(x) = −bTx−
∑
i

log
∑
hi

exphi(ci+Wix)

The conditional probability:

P (h|x) =
exp (bTx + cTh + hTWx)∑
h̃ exp (bTx + cT h̃ + h̃TWx)

=
∏
i

P (hi|x)

Lecture 16 Deep Neural Generative Models CMSC 35246

Restricted Boltzmann Machines

. . .
hl

. . .
hl+1

x and h play symmetric roles:

P (x|h) =
∏
i

P (xi|h)

The common transfer (for the binary case):

P (hi = 1|x) = σ(ci +Wix)

P (xj = 1|h) = σ(bj +W T
:,jh)

Lecture 16 Deep Neural Generative Models CMSC 35246

Approximate Learning and Gibbs Sampling

EP̃

[
∂ logP (x)

∂θ

]
= EP̃

[
∂FreeEnergy(x)

∂θ

]
+EP

[
∂FreeEnergy(x)

∂θ

]

We saw the expression for Free Energy for a RBM. But the
second term was intractable. How do learn in this case?

Replace the average over all possible input configurations by
samples

Run Markov Chain Monte Carlo (Gibbs Sampling):

First sample x1 ∼ P̃ (x), then h1 ∼ P (h|x1), then
x2 ∼ P (x|h1), then h2 ∼ P (h|x2) till xk+1

Lecture 16 Deep Neural Generative Models CMSC 35246

Approximate Learning, Alternating Gibbs
Sampling

We have already seen: P (x|h) =
∏
i

P (xi|h) and

P (h|x) =
∏
i

P (hi|x)

With: P (hi = 1|x) = σ(ci +Wix) and
P (xj = 1|h) = σ(bj +W T

:,jh)

Lecture 16 Deep Neural Generative Models CMSC 35246

Training a RBM: The Contrastive Divergence
Algorithm

Start with a training example on the visible units

Update all the hidden units in parallel

Update all the visible units in parallel to obtain a
reconstruction

Update all the hidden units again

Update model parameters

Aside: Easy to extend RBM (and contrastive divergence) to
the continuous case

Lecture 16 Deep Neural Generative Models CMSC 35246

Boltzmann Machines

A model in which the energy has the form:

Energy(x,h) = −bTx− cTh− hTWx− xTUx− hTV h

Originally proposed by Hinton and Sejnowski (1983)

Important historically. But very difficult to train (why?)

Lecture 16 Deep Neural Generative Models CMSC 35246

Back to Deep Belief Networks

. . .
x

. . .
h1

. . .
h2

. . .
h3

P (x,h1, . . . ,hl) = P (hl,hl−1)
(l−2∏
k=1

P (hk|hk+1)
)
P (x|h1)

Lecture 16 Deep Neural Generative Models CMSC 35246

Greedy Layer-wise Training of DBNs

Reference: G. E. Hinton, S. Osindero and Y-W Teh: A Fast
Learning Algorithm for Deep Belief Networks, In Neural
Computation, 2006.

First Step: Construct a RBM with input x and a hidden layer
h, train the RBM

Stack another layer on top of the RBM to form a new RBM.
Fix W 1, sample from P (h1|x), train W 2 as RBM

Continue till k layers

Implicitly defines P (x) and P (h) (variational bound justifies
layerwise training)

Can then be discriminatively fine-tuned using backpropagation

Lecture 16 Deep Neural Generative Models CMSC 35246

Deep Autoencoders (2006)

G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, 2006

From last time: Was hard to train deep networks from scratch in
2006!

Lecture 16 Deep Neural Generative Models CMSC 35246

Semantic Hashing

G. Hinton and R. Salakhutdinov, ”Semantic Hashing”, 2006

Lecture 16 Deep Neural Generative Models CMSC 35246

Why does Unsupervised Pre-training work?

Regularization. Feature representations that are good for
P (x) are good for P (y|x)

Optimization: Unsupervised pre-training leads to better
regions of the space i.e. better than random initialization

Lecture 16 Deep Neural Generative Models CMSC 35246

Effect of Unsupervised Pre-training

Lecture 16 Deep Neural Generative Models CMSC 35246

Effect of Unsupervised Pre-training

Lecture 16 Deep Neural Generative Models CMSC 35246

Important topics we didn’t talk about in detail/at all:

• Joint unsupervised training of all layers (Wake-Sleep
algorithm)

• Deep Boltzmann Machines
• Variational bounds justifying greedy layerwise training
• Conditional RBMs, Multimodal RBMs, Temporal RBMs

etc

Lecture 16 Deep Neural Generative Models CMSC 35246

Next Time

Some Applications of methods we just considered

Generative Adversarial Networks

Lecture 16 Deep Neural Generative Models CMSC 35246

