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Things we will look at today

• Recap of Logistic Regression
• Going from one neuron to Feedforward Networks
• Example: Learning XOR
• Cost Functions, Hidden unit types, output types
• Universality Results and Architectural Considerations
• Backpropagation
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Recap: The Logistic Function (Single Neuron)

x1

1

x2 x3 . . . xd

ŷ

θ1 θ2 θ3
θdθ0

p(y = 1|x) = 1

1 + exp(−θ0 − θTx)
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Likelihood under the Logistic Model

p(yi|x; θ) =

{
σ(θ0 + θTxi) if yi = 1

1− σ(θ0 + θTxi) if yi = 0

We can rewrite this as:

p(yi|xi; θ) = σ(θ0 + θTxi)
yi(1− σ(θ0 + θTxi))

1−yi

The log-likelihood of θ (cross-entropy!):

log p(Y |X; θ) =

N∑
i=1

log p(yi|xi; θ)

=

N∑
i=1

yi log σ(θ0 + θTxi) + (1− yi) log(1− σ(θ0 + θTxi))
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The Maximum Likelihood Solution

log p(Y |X; θ) =

N∑
i=1

yi log σ(θ0+θ
Txi)+(1−yi) log(1−σ(θ0+θTxi))

Setting derivatives to zero:

∂ log p(Y |X; θ)

∂θ0
=

N∑
i=1

(yi − σ(θ0 + θTxi)) = 0

∂ log p(Y |X; θ)

∂θj
=

N∑
i=1

(yi − σ(θ0 + θTxi))xi,j = 0

Can treat yi − p(yi|xi) = yi − σ(θ0 + θTxi) as the prediction
error
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Finding Maxima

No closed form solution for the Maximum Likelihood for this
model!

But log p(Y |X;x) is jointly concave in all components of θ

Or, equivalently, the error is convex

Gradient Descent/ascent (descent on − log p(y|x; θ), log loss)
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Gradient Descent Solution

Objective is the average log-loss

− 1

N

N∑
i=1

log p(yi|xi; θ)

Gradient update:

θ(t+1) := θt +
ηt
N

∂

∂θ

∑
i

log p(yi|xi; θ(t))

Gradient on one example:

∂

∂θ
log p(yi|xi; θ) = (yi − σ(θTxi))xi

Above is batch gradient descent
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Feedforward Networks
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Introduction

Goal: Approximate some unknown ideal function f∗ : X → Y
Ideal classifier: y = f∗(x) with x and category y

Feedforward Network: Define parametric mapping
y = f(x, θ)

Learn parameters θ to get a good approximation to f∗ from
available sample

Naming: Information flow in function evaluation begins at
input, flows through intermediate computations (that define
the function), to produce the category

No feedback connections (Recurrent Networks!)
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Introduction

Function f is a composition of many different functions

e.g. f(x) = f (3)(f (2)(f (1)(x)))
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Introduction

Function composition can be described by a directed acyclic
graph (hence feedforward networks)

f (1) is the first layer, f2 the second layer and so on.

Depth is the maximum i in the function composition chain

Final layer is called the output layer
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Introduction

Training: Optimize θ to drive f(x; θ) closer to f∗(x)

Training Data: f∗ evaluated at different x instances (i.e.
expected outputs)

Only specifies the output of the output layers

Output of intermediate layers is not specified by D, hence the
nomenclature hidden layers

Neural: Choices of f (i)’s and layered organization, loosely
inspired by neuroscience (first lecture)
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Back to Linear Models

+ve: Optimization is convex or closed form!

-ve: Model can’t understand interaction between input
variables!

Extension: Do nonlinear transformation x→ φ(x); apply
linear model to φ(x)

φ gives features or a representation for x

How do we choose φ?
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Choosing φ

Option 1: Use a generic φ

Example: Infinite dimensional φ implicitly used by kernel
machines with RBF kernel

Positive: Enough capacity to fit training data

Negative: Poor generalization for highly varying f∗

Prior used: Function is locally smooth.
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Choosing φ

Option 2: Engineer φ for problem

Still convex!

Illustration: Yann LeCun

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246



Choosing φ

Option 3: Learn φ from data

Gives up on convexity

Combines good points of first two approaches: φ can be highly
generic and the engineering effort can go into architecture

Figure: Honglak Lee
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Design Decisions

Need to choose optimizer, cost function and form of output

Choosing activation functions

Architecture design (number of layers etc)
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Back to XOR
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XOR

Let XOR be the target function f∗(x) that we want to learn

We will adapt parameters θ for f(x; θ) to try and represent f∗

Our Data:
(X,Y ) = {([0, 0]T , 0), ([0, 1]T , 1), ([1, 0]T , 1), ([1, 1]T , 0)}
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XOR

Our Data:
(X,Y ) = {([0, 0]T , 0), ([0, 1]T , 1), ([1, 0]T , 1), ([1, 1]T , 0)}
Not concerned with generalization, only want to fit this data

For simplicity consider the squared loss function

J(θ) =
1

4

∑
x∈X

(f∗(x)− f(x; θ))2

Need to choose a form for f(x; θ): Consider a linear model
with θ being w and b

Our model f(x;w, b) = xTw + b
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Linear Model

Recall previous lecture: Normal equations give w = 0 and
b = 1

2

A linear model is not able to represent XOR, outputs 0.5
everywhere

Figure: Goodfellow et al.
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Solving XOR

How can we solve the XOR problem?

Idea: Learn a different feature space in which a linear model
will work
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Solving XOR

x1 x2

h1 h2

y

Define a feedforward network with a vector of hidden units h
computed by f (1)(x;W, c)

Use hidden unit values as input for a second layer i.e. to
compute output y = f (2)(h;w, b)

Complete model: f(x;W, c,w, b) = f (2)(f (1)(x))

What should be f (1)? Can it be linear?
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Solving XOR

Let us consider a non-linear activation g(z) = max{0, z}
Our complete network model:

f(x;W, c,w, b) = wT max{0,W Tx+ c}+ b

Note: The activation above is applied element-wise
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A Solution

Let

W =

[
1 1
1 1

]
, c =

[
0
−1

]
,w =

[
1
−2

]
, b = 0

Our design matrix is:

X =


0 0
0 1
1 0
1 1



Lecture 3 Feedforward Networks and Backpropagation CMSC 35246



A Solution

Compute the first layer output, by first calculating XW

XW =


0 0
1 1
1 1
2 2


Find XW + c

XW + c =


0 −1
1 0
1 0
2 1


Note: Ignore the type mismatch
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A Solution

Next step: Rectify output

max{0, XW + c} =


0 0
1 0
1 0
2 1


Finally compute wT max{0, XW + c}+ b

0
1
1
0
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Able to correctly classify every example in the set

This is a hand coded; demonstrative example, hence clean

For more complicated functions, we will proceed by using
gradient based learning
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An Aside:
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An Aside:
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An Aside:
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Designing and Training a Neural Network is not much
different from training any other Machine Learning model
with gradient descent

Largest difference: Most interesting loss functions become
non-convex

Unlike in convex optimization, no convergence guarantees

To apply gradient descent: Need to specify cost function, and
output representation
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Cost Functions
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Cost Functions

Choice similar to parameteric models from earlier: Define a
distribution p(y|x; θ) and use principle of maximum likelihood

We can just use cross entropy between training data and the
model’s predictions as the cost function:

J(θ) = Ex,y∼p̂data log pmodel(y|x)

Specific form changes depending on form of log pmodel

Example: If pmodel(y|x) = N (y; f(x; θ), I), then we recover:

J(θ) =
1

2
Ex,y∼p̂data‖y − f(x; θ)‖

2 + Constant

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246



Cost Functions

Advantage: Need to specify p(y|x), and automatically get a
cost function log p(y|x)
Choice of output units is very important for choice of cost
function
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Output Units
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Linear Units

Given features h, a layer of linear output units gives:

ŷ =W Th+ b

Often used to produce the mean of a conditional Gaussian
distribution:

p(y|x) = N (y; ŷ, I)

Maximizing log-likelihood =⇒ minimizing squared error
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Sigmoid Units

Task: Predict a binary variable y

Use a sigmoid unit:

ŷ = σ(wTh+ b)

Cost:

J(θ) = − log p(y|x) = − log σ((2y − 1)(wTh+ b))

Positive: Only saturates when model already has right answer
i.e. when y = 1 and (wTh+ b) is very positive and vice versa

When (wTh+ b) has wrong sign, a good gradient is returned
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Softmax Units

Need to produce a vector ŷ with ŷi = p(y = i|x)
Linear layer first produces unnormalized log probabilities:
z =W Th+ b

Softmax:

softmax(z)i =
exp(zi)∑
j exp(zj)

Log of the softmax (since we wish to maximize p(y = i; z)):

log softmax(z)i = zi − log
∑
j

exp(zj)
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Benefits

log softmax(z)i = zi − log
∑
j

exp(zj)

zi term never saturates, making learning easier

Maximizing log-likelihood encourages zi to be pushed up,
while encouraging all z to be pushed down (Softmax
encourages competition)

More intuition: Think of log
∑

j exp(zj) ≈ maxj zj (why?)

log-likelihood cost function (∼ zi −maxj zj) strongly
penalizes the most active incorrect prediction

If model already has correct answer then
log
∑

j exp(zj) ≈ maxj zj and zi will roughly cancel out

Progress of learning is dominated by incorrectly classified
examples
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Hidden Units
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Hidden Units

Accept input x → compute affine transformation
z =W Tx+ b → apply elementwise non-linear function g(z)
→ obtain output g(z)

Choices for g?

Design of Hidden units is an active area of research
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Rectified Linear Units

Activation function: g(z) = max{0, z} with z ∈ R
On top of a affine transformation max{0,Wx+ b}
Two layer network: First layer max{0,W T

1 x+ b1}
Second layer: W T

2 max{0,W T
1 x+ b1}+ b2
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Rectified Linear Units

Similar to linear units. Easy to optimize!

Give large and consistent gradients when active

Good practice: Initialize b to a small positive value (e.g. 0.1)

Ensures units are initially active for most inputs and
derivatives can pass through
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Rectified Linear Units

Not everywhere differentiable. Is this a problem?

• In practice not a problem. Return one sided derivatives at
z = 0

• Gradient based optimization is subject to numerical error
anyway
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Rectified Linear Units

Positives:

• Gives large and consistent gradients (does not saturate)
when active

• Efficient to optimize, converges much faster than sigmoid
or tanh

Negatives:

• Non zero centered output
• Units ”die” i.e. when inactive they will never update
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Generalized Rectified Linear Units

Get a non-zero slope when zi < 0

g(z, a)i = max{0, zi}+ aimin{0, zi}
• Absolute value rectification: (Jarret et al, 2009)
ai = 1 gives g(z) = |z|

• Leaky ReLU: (Maas et al., 2013) Fix ai to a small value
e.g. 0.01

• Parametric ReLU: (He et al., 2015) Learn ai
• Randomized ReLU: (Xu et al., 2015) Sample ai from a

fixed range during training, fix during testing
• ....
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Generalized Rectified Linear Units

Figure: Xu et al. ”Empirical Evaluation of Rectified Activations in Convolutional Network”
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Exponential Linear Units (ELUs)

g(z) =

{
z if z > 0

α(exp z − 1) if z ≤ 0

All the benefits of ReLU + does not get killed

Problem: Need to exponentiate

Figure: Clevert et al. ”Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)”, 2016
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Maxout Units

Generalizes ReLUs further but does not fit into the (dot
product → nonlinearity) mold

Instead of applying an element-wise function g(z), divide
vector z into k groups (more parameters!)

Output maximum element of one of k groups
g(z)i = maxj∈G(i) zj

g(z)i = max{wT1 x+ b1, . . . , w
T
k x+ bk}

A maxout unit makes a piecewise linear approximation (with k
pieces) to an arbitrary convex function

Can be thought of as learning the activation function itself

With k = 2 we CAN recover absolute value rectification, or
ReLU or PReLU

Each unit parameterized by k weight vectors instead of 1,
needs stronger regularization
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Sigmoid Units

σ(z) =
1

1 + e−z

Squashing type non-linearity: pushes outputs to range [0, 1]
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Sigmoid Units

Problem: Saturate across most of their domain, strongly
sensitive only when z is closer to zero

Saturation makes gradient based learning difficult
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Tanh Units

Related to sigmoid: g(z) = tanh(z) = 2σ(2z)− 1

Positives: Squashes output to range [−1, 1], outputs are
zero-centered

Negative: Also saturates

Still better than sigmoid as ŷ = wT tanh(UT tanh(V Tx))
resembles ŷ = wTUTV Tx when activations are small
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Other Units

Radial Basis Functions: g(z)i = exp
(

1
σ2
i
‖W:,ix‖2

)
Function is more active as x approaches a template W:,i. Also
saturates and is hard to train

Softplus: g(z) = log(1 + ez). Smooth version of rectifier
(Dugas et al., 2001), although differentiable everywhere,
empirically performs worse than rectifiers

Hard Tanh: g(z) = max(−1,min(1, z)), like the rectifier, but
bounded (Collobert, 2004)
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Summary

In Feedforward Networks don’t use Sigmoid

When a sigmoidal function must be used, use tanh

Use ReLU by default, but be careful with learning rates

Try other generalized ReLUs and Maxout for possible
improvement
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Universality and Depth
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Architecture Design

First layer: h(1) = g(1)
(
W (1)Tx+ b(1)

)
Second layer: h(2) = g(2)

(
W (2)Th(1) + b(2)

)
How do we decide depth, width?

In theory how many layers suffice?
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Universality

Theoretical result [Cybenko, 1989]: 2-layer net with linear
output with some squashing non-linearity in hidden units can
approximate any continuous function over compact domain to
arbitrary accuracy (given enough hidden units!)

Implication: Regardless of function we are trying to learn, we
know a large MLP can represent this function

But not guaranteed that our training algorithm will be able to
learn that function

Gives no guidance on how large the network will be
(exponential size in worst case)

Talked of some suggestive results earlier:
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One more result:

(Montufar et al., 2014) Number of linear regions carved out
by a deep rectifier network with d inputs, depth l and n units
per hidden layer is:

O

((
n
d

)d(l−1)
nd

)

Exponential in depth!

They showed functions representable with a deep rectifier
network can require an exponential number of hidden units
with a shallow network
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Figure: Montufar et al., 2014
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Advantages of Depth

Figure: Goodfellow et al., 2014
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Advantages of Depth

Control experiments show that other increases to model size
don’t yield the same effect

Figure: Goodfellow et al., 2014
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Backpropagation: Introduction
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How do we learn weights?

First Idea: Randomly perturb one weight, see if it improves
performance, save the change

Very inefficient: Need to do many passes over a sample set
for just one weight change

What does this remind you of?
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How do we learn weights?

Another Idea: Perturb all the weights in parallel, and correlate
the performance gain with weight changes

Very hard to implement

Yet another idea: Only perturb activations (since they are
fewer). Still very inefficient.
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Backpropagation

Feedforward Propagation: Accept input x, pass through
intermediate stages and obtain output ŷ

During Training: Use ŷ to compute a scalar cost J(θ)

Backpropagation allows information to flow backwards from
cost to compute the gradient

Figure: G. E. Hinton
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Backpropagation

From the training data we don’t know what the hidden units
should do

But, we can compute how fast the error changes as we change
a hidden activity

Use error derivatives w.r.t hidden activities

Each hidden unit can affect many output units and have
separate effects on error – combine these effects

Can compute error derivatives for hidden units efficiently (and
once we have error derivatives for hidden activities, easy to
get error derivatives for weights going in)

Slide: G. E. Hinton
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Review: neural networks

x1 x2

. . .
xd

h h . . . h

f

w
(1)
11 w

(1)
21 w

(1)
d1

w
(2)
1 w

(2)
2

w
(2)
m

h0 ≡ 1
w

(2)
0

x0 ≡ 1 w
(1)
01

Feedforward operation, from input x to output ŷ:

ŷ(x;w) = f

 m∑
j=1

w
(2)
j h

(
d∑
i=1

w
(1)
ij xi + w

(1)
0j

)
+ w

(2)
0


Slide adapted from TTIC 31020, Gregory Shakhnarovich
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Training the network

Error of the network on a training set:

L(X;w) =

N∑
i=1

1

2
(yi − ŷ(xi;w))2

Generally, no closed-form solution;
resort to gradient descent

Need to evaluate derivative of L on a single example

Let’s start with a simple linear model ŷ =
∑

j wjxij :

∂L(xi)

∂wj
= (ŷi − yi)︸ ︷︷ ︸

error

xij .

Slide adapted from TTIC 31020, Gregory Shakhnarovich
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Backpropagation

General unit activation in a multilayer network:

zt = h

∑
j

wjtzj

 h

z1

w1t

z2
w2t
. . . zs

wst

zt

Forward propagation: calculate for each unit at =
∑

j wjtzj

The loss L depends on wjt only through at:

∂L

∂wjt
=

∂L

∂at

∂at
∂wjt

=
∂L

∂at
zj

Slide adapted from TTIC 31020, Gregory Shakhnarovich
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Backpropagation

∂L

∂wjt
=

∂L

∂at
zj

∂L

∂wjt
=

∂L

∂at︸︷︷︸
δt

zj

Output unit with linear activation: δt = ŷ − y
Hidden unit zt = h(at) which sends inputs to units S:

δt =
∑
s∈S

∂L

∂as

∂as
∂at

= h′(at)
∑
s∈S

wtsδs
zt . . .

zs
wts

as =
∑
j:j→s

wjsh(aj)

Slide adapted from TTIC 31020, Gregory Shakhnarovich
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Backpropagation: example
Output: f(a) = a

Hidden:

h(a) = tanh(a) =
ea − e−a

ea + e−a
,

h′(a) = 1− h(a)2.
x0 x1

. . .
xd

1h 2h . . . m h

f

w
(1)
11 w

(1)
21

w
(1)
d1

w
(2)
1 w

(2)
2

w
(2)
m

Given example x, feed-forward inputs:

input to hidden: aj =
d∑
i=0

w
(1)
ij xi,

hidden output: zj = tanh(aj),

net output: ŷ = a =

m∑
j=0

w
(2)
j zj .
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Backpropagation: example

aj =

d∑
i=0

w
(1)
ij xi, zj = tanh(aj), ŷ = a =

m∑
j=0

w
(2)
j zj .

Error on example x: L = 1
2(y − ŷ)

2.

Output unit: δ = ∂L
∂a = y − ŷ.

Next, compute δs for the hidden units:

δj = (1− zj)2w(2)
j δ

Derivatives w.r.t. weights:

∂L

∂w
(1)
ij

= δjxi,
∂L

∂w
(2)
j

= δzj .

Update weights: wj ← wj − ηδzj and w
(1)
ij ← w

(1)
ij − ηδjxi. η

is called the weight decay
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Multidimensional output

Loss on example (x,y):

1

2

K∑
k=1

(yk − ŷk)2

x0 x1
. . .

xd

1h 2h . . . m h

f
k

f
. . . K

f

w
(1)
11 w

(1)
21

w
(1)
d1

w
(2)
1k

w
(2)
2k

w
(2)
mk

Now, for each output unit δk = yk − ŷk;

For hidden unit j,

δj = (1− zj)2
K∑
k=1

w
(2)
jk δk.
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Next time

More Backpropagation

Start with Regularization in Neural Networks

Quiz
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