
Lecture 3
Feedforward Networks and Backpropagation

CMSC 35246: Deep Learning

Shubhendu Trivedi
&

Risi Kondor

University of Chicago

April 3, 2017

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Things we will look at today

• Recap of Logistic Regression
• Going from one neuron to Feedforward Networks
• Example: Learning XOR
• Cost Functions, Hidden unit types, output types
• Universality Results and Architectural Considerations
• Backpropagation

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Recap: The Logistic Function (Single Neuron)

x1

1

x2 x3 . . . xd

ŷ

θ1 θ2 θ3
θdθ0

p(y = 1|x) = 1

1 + exp(−θ0 − θTx)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Likelihood under the Logistic Model

p(yi|x; θ) =

{
σ(θ0 + θTxi) if yi = 1

1− σ(θ0 + θTxi) if yi = 0

We can rewrite this as:

p(yi|xi; θ) = σ(θ0 + θTxi)
yi(1− σ(θ0 + θTxi))

1−yi

The log-likelihood of θ (cross-entropy!):

log p(Y |X; θ) =

N∑
i=1

log p(yi|xi; θ)

=

N∑
i=1

yi log σ(θ0 + θTxi) + (1− yi) log(1− σ(θ0 + θTxi))

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

The Maximum Likelihood Solution

log p(Y |X; θ) =

N∑
i=1

yi log σ(θ0+θ
Txi)+(1−yi) log(1−σ(θ0+θTxi))

Setting derivatives to zero:

∂ log p(Y |X; θ)

∂θ0
=

N∑
i=1

(yi − σ(θ0 + θTxi)) = 0

∂ log p(Y |X; θ)

∂θj
=

N∑
i=1

(yi − σ(θ0 + θTxi))xi,j = 0

Can treat yi − p(yi|xi) = yi − σ(θ0 + θTxi) as the prediction
error

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Finding Maxima

No closed form solution for the Maximum Likelihood for this
model!

But log p(Y |X;x) is jointly concave in all components of θ

Or, equivalently, the error is convex

Gradient Descent/ascent (descent on − log p(y|x; θ), log loss)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Gradient Descent Solution

Objective is the average log-loss

− 1

N

N∑
i=1

log p(yi|xi; θ)

Gradient update:

θ(t+1) := θt +
ηt
N

∂

∂θ

∑
i

log p(yi|xi; θ(t))

Gradient on one example:

∂

∂θ
log p(yi|xi; θ) = (yi − σ(θTxi))xi

Above is batch gradient descent

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Feedforward Networks

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Introduction

Goal: Approximate some unknown ideal function f∗ : X → Y
Ideal classifier: y = f∗(x) with x and category y

Feedforward Network: Define parametric mapping
y = f(x, θ)

Learn parameters θ to get a good approximation to f∗ from
available sample

Naming: Information flow in function evaluation begins at
input, flows through intermediate computations (that define
the function), to produce the category

No feedback connections (Recurrent Networks!)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Introduction

Function f is a composition of many different functions

e.g. f(x) = f (3)(f (2)(f (1)(x)))

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Introduction

Function composition can be described by a directed acyclic
graph (hence feedforward networks)

f (1) is the first layer, f2 the second layer and so on.

Depth is the maximum i in the function composition chain

Final layer is called the output layer

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Introduction

Training: Optimize θ to drive f(x; θ) closer to f∗(x)

Training Data: f∗ evaluated at different x instances (i.e.
expected outputs)

Only specifies the output of the output layers

Output of intermediate layers is not specified by D, hence the
nomenclature hidden layers

Neural: Choices of f (i)’s and layered organization, loosely
inspired by neuroscience (first lecture)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Back to Linear Models

+ve: Optimization is convex or closed form!

-ve: Model can’t understand interaction between input
variables!

Extension: Do nonlinear transformation x→ φ(x); apply
linear model to φ(x)

φ gives features or a representation for x

How do we choose φ?

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Choosing φ

Option 1: Use a generic φ

Example: Infinite dimensional φ implicitly used by kernel
machines with RBF kernel

Positive: Enough capacity to fit training data

Negative: Poor generalization for highly varying f∗

Prior used: Function is locally smooth.

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Choosing φ

Option 2: Engineer φ for problem

Still convex!

Illustration: Yann LeCun

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Choosing φ

Option 3: Learn φ from data

Gives up on convexity

Combines good points of first two approaches: φ can be highly
generic and the engineering effort can go into architecture

Figure: Honglak Lee

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Design Decisions

Need to choose optimizer, cost function and form of output

Choosing activation functions

Architecture design (number of layers etc)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Back to XOR

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

XOR

Let XOR be the target function f∗(x) that we want to learn

We will adapt parameters θ for f(x; θ) to try and represent f∗

Our Data:
(X,Y) = {([0, 0]T , 0), ([0, 1]T , 1), ([1, 0]T , 1), ([1, 1]T , 0)}

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

XOR

Our Data:
(X,Y) = {([0, 0]T , 0), ([0, 1]T , 1), ([1, 0]T , 1), ([1, 1]T , 0)}
Not concerned with generalization, only want to fit this data

For simplicity consider the squared loss function

J(θ) =
1

4

∑
x∈X

(f∗(x)− f(x; θ))2

Need to choose a form for f(x; θ): Consider a linear model
with θ being w and b

Our model f(x;w, b) = xTw + b

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Linear Model

Recall previous lecture: Normal equations give w = 0 and
b = 1

2

A linear model is not able to represent XOR, outputs 0.5
everywhere

Figure: Goodfellow et al.

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Solving XOR

How can we solve the XOR problem?

Idea: Learn a different feature space in which a linear model
will work

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Solving XOR

x1 x2

h1 h2

y

Define a feedforward network with a vector of hidden units h
computed by f (1)(x;W, c)

Use hidden unit values as input for a second layer i.e. to
compute output y = f (2)(h;w, b)

Complete model: f(x;W, c,w, b) = f (2)(f (1)(x))

What should be f (1)? Can it be linear?

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Solving XOR

Let us consider a non-linear activation g(z) = max{0, z}
Our complete network model:

f(x;W, c,w, b) = wT max{0,W Tx+ c}+ b

Note: The activation above is applied element-wise

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

A Solution

Let

W =

[
1 1
1 1

]
, c =

[
0
−1

]
,w =

[
1
−2

]
, b = 0

Our design matrix is:

X =

0 0
0 1
1 0
1 1

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

A Solution

Compute the first layer output, by first calculating XW

XW =

0 0
1 1
1 1
2 2

Find XW + c

XW + c =

0 −1
1 0
1 0
2 1

Note: Ignore the type mismatch

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

A Solution

Next step: Rectify output

max{0, XW + c} =

0 0
1 0
1 0
2 1

Finally compute wT max{0, XW + c}+ b

0
1
1
0

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Able to correctly classify every example in the set

This is a hand coded; demonstrative example, hence clean

For more complicated functions, we will proceed by using
gradient based learning

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

An Aside:

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

An Aside:

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

An Aside:

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Designing and Training a Neural Network is not much
different from training any other Machine Learning model
with gradient descent

Largest difference: Most interesting loss functions become
non-convex

Unlike in convex optimization, no convergence guarantees

To apply gradient descent: Need to specify cost function, and
output representation

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Cost Functions

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Cost Functions

Choice similar to parameteric models from earlier: Define a
distribution p(y|x; θ) and use principle of maximum likelihood

We can just use cross entropy between training data and the
model’s predictions as the cost function:

J(θ) = Ex,y∼p̂data log pmodel(y|x)

Specific form changes depending on form of log pmodel

Example: If pmodel(y|x) = N (y; f(x; θ), I), then we recover:

J(θ) =
1

2
Ex,y∼p̂data‖y − f(x; θ)‖

2 + Constant

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Cost Functions

Advantage: Need to specify p(y|x), and automatically get a
cost function log p(y|x)
Choice of output units is very important for choice of cost
function

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Output Units

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Linear Units

Given features h, a layer of linear output units gives:

ŷ =W Th+ b

Often used to produce the mean of a conditional Gaussian
distribution:

p(y|x) = N (y; ŷ, I)

Maximizing log-likelihood =⇒ minimizing squared error

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Sigmoid Units

Task: Predict a binary variable y

Use a sigmoid unit:

ŷ = σ(wTh+ b)

Cost:

J(θ) = − log p(y|x) = − log σ((2y − 1)(wTh+ b))

Positive: Only saturates when model already has right answer
i.e. when y = 1 and (wTh+ b) is very positive and vice versa

When (wTh+ b) has wrong sign, a good gradient is returned

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Softmax Units

Need to produce a vector ŷ with ŷi = p(y = i|x)
Linear layer first produces unnormalized log probabilities:
z =W Th+ b

Softmax:

softmax(z)i =
exp(zi)∑
j exp(zj)

Log of the softmax (since we wish to maximize p(y = i; z)):

log softmax(z)i = zi − log
∑
j

exp(zj)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Benefits

log softmax(z)i = zi − log
∑
j

exp(zj)

zi term never saturates, making learning easier

Maximizing log-likelihood encourages zi to be pushed up,
while encouraging all z to be pushed down (Softmax
encourages competition)

More intuition: Think of log
∑

j exp(zj) ≈ maxj zj (why?)

log-likelihood cost function (∼ zi −maxj zj) strongly
penalizes the most active incorrect prediction

If model already has correct answer then
log
∑

j exp(zj) ≈ maxj zj and zi will roughly cancel out

Progress of learning is dominated by incorrectly classified
examples

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Hidden Units

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Hidden Units

Accept input x → compute affine transformation
z =W Tx+ b → apply elementwise non-linear function g(z)
→ obtain output g(z)

Choices for g?

Design of Hidden units is an active area of research

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Rectified Linear Units

Activation function: g(z) = max{0, z} with z ∈ R
On top of a affine transformation max{0,Wx+ b}
Two layer network: First layer max{0,W T

1 x+ b1}
Second layer: W T

2 max{0,W T
1 x+ b1}+ b2

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Rectified Linear Units

Similar to linear units. Easy to optimize!

Give large and consistent gradients when active

Good practice: Initialize b to a small positive value (e.g. 0.1)

Ensures units are initially active for most inputs and
derivatives can pass through

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Rectified Linear Units

Not everywhere differentiable. Is this a problem?

• In practice not a problem. Return one sided derivatives at
z = 0

• Gradient based optimization is subject to numerical error
anyway

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Rectified Linear Units

Positives:

• Gives large and consistent gradients (does not saturate)
when active

• Efficient to optimize, converges much faster than sigmoid
or tanh

Negatives:

• Non zero centered output
• Units ”die” i.e. when inactive they will never update

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Generalized Rectified Linear Units

Get a non-zero slope when zi < 0

g(z, a)i = max{0, zi}+ aimin{0, zi}
• Absolute value rectification: (Jarret et al, 2009)
ai = 1 gives g(z) = |z|

• Leaky ReLU: (Maas et al., 2013) Fix ai to a small value
e.g. 0.01

• Parametric ReLU: (He et al., 2015) Learn ai
• Randomized ReLU: (Xu et al., 2015) Sample ai from a

fixed range during training, fix during testing
•

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Generalized Rectified Linear Units

Figure: Xu et al. ”Empirical Evaluation of Rectified Activations in Convolutional Network”

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Exponential Linear Units (ELUs)

g(z) =

{
z if z > 0

α(exp z − 1) if z ≤ 0

All the benefits of ReLU + does not get killed

Problem: Need to exponentiate

Figure: Clevert et al. ”Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)”, 2016

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Maxout Units

Generalizes ReLUs further but does not fit into the (dot
product → nonlinearity) mold

Instead of applying an element-wise function g(z), divide
vector z into k groups (more parameters!)

Output maximum element of one of k groups
g(z)i = maxj∈G(i) zj

g(z)i = max{wT1 x+ b1, . . . , w
T
k x+ bk}

A maxout unit makes a piecewise linear approximation (with k
pieces) to an arbitrary convex function

Can be thought of as learning the activation function itself

With k = 2 we CAN recover absolute value rectification, or
ReLU or PReLU

Each unit parameterized by k weight vectors instead of 1,
needs stronger regularization

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Sigmoid Units

σ(z) =
1

1 + e−z

Squashing type non-linearity: pushes outputs to range [0, 1]

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Sigmoid Units

Problem: Saturate across most of their domain, strongly
sensitive only when z is closer to zero

Saturation makes gradient based learning difficult

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Tanh Units

Related to sigmoid: g(z) = tanh(z) = 2σ(2z)− 1

Positives: Squashes output to range [−1, 1], outputs are
zero-centered

Negative: Also saturates

Still better than sigmoid as ŷ = wT tanh(UT tanh(V Tx))
resembles ŷ = wTUTV Tx when activations are small

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Other Units

Radial Basis Functions: g(z)i = exp
(

1
σ2
i
‖W:,ix‖2

)
Function is more active as x approaches a template W:,i. Also
saturates and is hard to train

Softplus: g(z) = log(1 + ez). Smooth version of rectifier
(Dugas et al., 2001), although differentiable everywhere,
empirically performs worse than rectifiers

Hard Tanh: g(z) = max(−1,min(1, z)), like the rectifier, but
bounded (Collobert, 2004)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Summary

In Feedforward Networks don’t use Sigmoid

When a sigmoidal function must be used, use tanh

Use ReLU by default, but be careful with learning rates

Try other generalized ReLUs and Maxout for possible
improvement

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Universality and Depth

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Architecture Design

First layer: h(1) = g(1)
(
W (1)Tx+ b(1)

)
Second layer: h(2) = g(2)

(
W (2)Th(1) + b(2)

)
How do we decide depth, width?

In theory how many layers suffice?

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Universality

Theoretical result [Cybenko, 1989]: 2-layer net with linear
output with some squashing non-linearity in hidden units can
approximate any continuous function over compact domain to
arbitrary accuracy (given enough hidden units!)

Implication: Regardless of function we are trying to learn, we
know a large MLP can represent this function

But not guaranteed that our training algorithm will be able to
learn that function

Gives no guidance on how large the network will be
(exponential size in worst case)

Talked of some suggestive results earlier:

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

One more result:

(Montufar et al., 2014) Number of linear regions carved out
by a deep rectifier network with d inputs, depth l and n units
per hidden layer is:

O

((
n
d

)d(l−1)
nd

)

Exponential in depth!

They showed functions representable with a deep rectifier
network can require an exponential number of hidden units
with a shallow network

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Figure: Montufar et al., 2014

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Advantages of Depth

Figure: Goodfellow et al., 2014

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Advantages of Depth

Control experiments show that other increases to model size
don’t yield the same effect

Figure: Goodfellow et al., 2014

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Backpropagation: Introduction

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

How do we learn weights?

First Idea: Randomly perturb one weight, see if it improves
performance, save the change

Very inefficient: Need to do many passes over a sample set
for just one weight change

What does this remind you of?

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

How do we learn weights?

Another Idea: Perturb all the weights in parallel, and correlate
the performance gain with weight changes

Very hard to implement

Yet another idea: Only perturb activations (since they are
fewer). Still very inefficient.

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Backpropagation

Feedforward Propagation: Accept input x, pass through
intermediate stages and obtain output ŷ

During Training: Use ŷ to compute a scalar cost J(θ)

Backpropagation allows information to flow backwards from
cost to compute the gradient

Figure: G. E. Hinton

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Backpropagation

From the training data we don’t know what the hidden units
should do

But, we can compute how fast the error changes as we change
a hidden activity

Use error derivatives w.r.t hidden activities

Each hidden unit can affect many output units and have
separate effects on error – combine these effects

Can compute error derivatives for hidden units efficiently (and
once we have error derivatives for hidden activities, easy to
get error derivatives for weights going in)

Slide: G. E. Hinton

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Review: neural networks

x1 x2

. . .
xd

h h . . . h

f

w
(1)
11 w

(1)
21 w

(1)
d1

w
(2)
1 w

(2)
2

w
(2)
m

h0 ≡ 1
w

(2)
0

x0 ≡ 1 w
(1)
01

Feedforward operation, from input x to output ŷ:

ŷ(x;w) = f

 m∑
j=1

w
(2)
j h

(
d∑
i=1

w
(1)
ij xi + w

(1)
0j

)
+ w

(2)
0

Slide adapted from TTIC 31020, Gregory Shakhnarovich

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Training the network

Error of the network on a training set:

L(X;w) =

N∑
i=1

1

2
(yi − ŷ(xi;w))2

Generally, no closed-form solution;
resort to gradient descent

Need to evaluate derivative of L on a single example

Let’s start with a simple linear model ŷ =
∑

j wjxij :

∂L(xi)

∂wj
= (ŷi − yi)︸ ︷︷ ︸

error

xij .

Slide adapted from TTIC 31020, Gregory Shakhnarovich

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Backpropagation

General unit activation in a multilayer network:

zt = h

∑
j

wjtzj

 h

z1

w1t

z2
w2t
. . . zs

wst

zt

Forward propagation: calculate for each unit at =
∑

j wjtzj

The loss L depends on wjt only through at:

∂L

∂wjt
=

∂L

∂at

∂at
∂wjt

=
∂L

∂at
zj

Slide adapted from TTIC 31020, Gregory Shakhnarovich

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Backpropagation

∂L

∂wjt
=

∂L

∂at
zj

∂L

∂wjt
=

∂L

∂at︸︷︷︸
δt

zj

Output unit with linear activation: δt = ŷ − y
Hidden unit zt = h(at) which sends inputs to units S:

δt =
∑
s∈S

∂L

∂as

∂as
∂at

= h′(at)
∑
s∈S

wtsδs
zt . . .

zs
wts

as =
∑
j:j→s

wjsh(aj)

Slide adapted from TTIC 31020, Gregory Shakhnarovich

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Backpropagation: example
Output: f(a) = a

Hidden:

h(a) = tanh(a) =
ea − e−a

ea + e−a
,

h′(a) = 1− h(a)2.
x0 x1

. . .
xd

1h 2h . . . m h

f

w
(1)
11 w

(1)
21

w
(1)
d1

w
(2)
1 w

(2)
2

w
(2)
m

Given example x, feed-forward inputs:

input to hidden: aj =
d∑
i=0

w
(1)
ij xi,

hidden output: zj = tanh(aj),

net output: ŷ = a =

m∑
j=0

w
(2)
j zj .

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Backpropagation: example

aj =

d∑
i=0

w
(1)
ij xi, zj = tanh(aj), ŷ = a =

m∑
j=0

w
(2)
j zj .

Error on example x: L = 1
2(y − ŷ)

2.

Output unit: δ = ∂L
∂a = y − ŷ.

Next, compute δs for the hidden units:

δj = (1− zj)2w(2)
j δ

Derivatives w.r.t. weights:

∂L

∂w
(1)
ij

= δjxi,
∂L

∂w
(2)
j

= δzj .

Update weights: wj ← wj − ηδzj and w
(1)
ij ← w

(1)
ij − ηδjxi. η

is called the weight decay
Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Multidimensional output

Loss on example (x,y):

1

2

K∑
k=1

(yk − ŷk)2

x0 x1
. . .

xd

1h 2h . . . m h

f
k

f
. . . K

f

w
(1)
11 w

(1)
21

w
(1)
d1

w
(2)
1k

w
(2)
2k

w
(2)
mk

Now, for each output unit δk = yk − ŷk;

For hidden unit j,

δj = (1− zj)2
K∑
k=1

w
(2)
jk δk.

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Next time

More Backpropagation

Start with Regularization in Neural Networks

Quiz

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

