Lecture 4 Backpropagation CMSC 35246: Deep Learning

> Shubhendu Trivedi & Risi Kondor

University of Chicago

April 5, 2017



Lecture 4 Backpropagation

#### • Things we will look at today

- More Backpropagation
- Still more backpropagation
- Quiz at 4:05 PM



#### To understand, let us just calculate!



# **One Neuron Again**



• Consider example x; Output for x is  $\hat{y}$ ; Correct Answer is y

✓ ☐ → CMSC 35246

• Loss 
$$L = (y - \hat{y})^2$$

• 
$$\hat{y} = \mathbf{x}^T \mathbf{w} = x_1 w_1 + x_2 w_2 + \dots x_d w_d$$

# **One Neuron Again**



- Want to update  $w_i$  (forget closed form solution for a bit!)
- Update rule:  $w_i := w_i \eta \frac{\partial L}{\partial w_i}$
- Now

$$\frac{\partial L}{\partial w_i} = \frac{\partial (\hat{y} - y)^2}{\partial w_i} = 2(\hat{y} - y)\frac{\partial (x_1w_1 + x_2w_2 + \dots + x_dw_d)}{\partial w_i}$$

# **One Neuron Again**



• We have: 
$$\frac{\partial L}{\partial w_i} = 2(\hat{y} - y)x_i$$

• Update Rule:

$$w_i := w_i - \eta(\hat{y} - y)x_i = w_i - \eta\delta x_i$$
 where  $\delta = (\hat{y} - y)$ 

- In vector form:  $\mathbf{w} := \mathbf{w} \eta \delta \mathbf{x}$
- Simple enough! Now let's graduate ...



#### Simple Feedforward Network



•  $\hat{y} = w_1^{(2)} z_1 + w_2^{(2)} z_2$ •  $z_1 = \tanh(a_1)$  where  $a_1 = w_{11}^{(1)} x_1 + w_{21}^{(1)} x_2 + w_{31}^{(1)} x_3$  likewise for  $z_2$ 

#### Simple Feedforward Network



•  $z_1 = \tanh(a_1)$  where  $a_1 = w_{11}^{(1)}x_1 + w_{21}^{(1)}x_2 + w_{31}^{(1)}x_3$ 

• 
$$z_2 = \tanh(a_2)$$
 where  $a_2 = w_{12}^{(1)}x_1 + w_{22}^{(1)}x_2 + w_{32}^{(1)}x_3$ 

- Output  $\hat{y} = w_1^{(2)} z_1 + w_2^{(2)} z_2$ ; Loss  $L = (\hat{y} y)^2$
- Want to assign credit for the loss L to each weight



• 
$$\frac{\partial L}{\partial w_1^{(2)}} = \frac{\partial (\hat{y} - y)^2}{\partial w_1^{(2)}} = 2(\hat{y} - y) \frac{\partial (w_1^{(2)} z_1 + w_2^{(2)} z_2)}{\partial w_1^{(2)}} = 2(\hat{y} - y) z_1$$

 $\langle \alpha \rangle$ 

• Familiar from earlier! Update for 
$$w_1^{(2)}$$
 would be  
 $w_1^{(2)} := w_1^{(2)} - \eta \frac{\partial L}{\partial w_1^{(2)}} = w_1^{(2)} - \eta \delta z_1$  with  $\delta = (\hat{y} - y)$ 

• Likewise, for  $w_2^{(2)}$  update would be  $w_2^{(2)} := w_2^{(2)} - \eta \delta z_2$ 

< 行 →

### Next Layer

 $x_1$ 



- There are six weights to assign credit for the loss incurred
- Consider  $w_{11}^{(1)}$  for an illustration
- Rest are similar

• 
$$\frac{\partial L}{\partial w_{11}^{(1)}} = \frac{\partial (\hat{y}-y)^2}{\partial w_{11}^{(1)}} = 2(\hat{y}-y) \frac{\partial (w_1^{(2)}z_1+w_2^{(2)}z_2)}{\partial w_{11}^{(21)}}$$
  
• Now:  $\frac{\partial (w_1^{(2)}z_1+w_2^{(2)}z_2)}{\partial w_{11}^{(1)}} = w_1^{(2)} \frac{\partial (\tanh(w_{11}^{(1)}x_1+w_{21}^{(1)}x_2+w_{31}^{(1)}x_3))}{\partial w_{11}^{(1)}} + 0$   
• Which is:  $w_1^{(2)}(1-\tanh^2(a_1))x_1$  recall  $a_1 =$ ?  
• So we have:  $\frac{\partial L}{\partial w_{11}^{(1)}} = 2(\hat{y}-y)w_1^{(2)}(1-\tanh^2(a_1))x_1$ 

< A >



• Weight update:

$$w_{11}^{(1)} := w_{11}^{(1)} - \eta \frac{\partial L}{\partial w_{11}^{(1)}}$$

• Likewise, if we were considering  $w_{22}^{\left(1
ight)}$ , we'd have:

• 
$$\frac{\partial L}{\partial w_{22}^{(1)}} = 2(\hat{y} - y)w_2^{(2)}(1 - \tanh^2(a_2))x_2$$

• Weight update: 
$$w_{22}^{(1)}:=w_{22}^{(1)}-\eta \frac{\partial L}{\partial w_{22}^{(1)}}$$

< 行 →

#### Let's clean this up...

• Recall, for top layer:  $\frac{\partial L}{\partial w_i^{(2)}} = (\hat{y} - y)z_i = \delta z_i$  (ignoring 2) • One can think of this as:  $\frac{\partial L}{\partial w_i^{(2)}} = \underbrace{\delta}_{z_i}$ local error local input • For next layer we had:  $\frac{\partial L}{\partial w_{i,i}^{(1)}} = (\hat{y} - y)w_j^{(2)}(1 - \tanh^2(a_j))x_i$ • Let  $\delta_i = (\hat{y} - y)w_i^{(2)}(1 - \tanh^2(a_i)) = \delta w_i^{(2)}(1 - \tanh^2(a_i))$ (Notice that  $\delta_i$  contains the  $\delta$  term (which is the error!)) • Then:  $\frac{\partial L}{\partial w_{ii}^{(1)}} = \underbrace{\delta_j}_{ij} \underbrace{x_i}_{ij}$ local error local input

• Neat!

# Let's clean this up...

- Let's get a cleaner notation to summarize this
- $\bullet \mbox{ Let } w_{i \leadsto j}$  be the weight for the connection FROM node i to node j
- Then

$$\frac{\partial L}{\partial w_{i \leadsto j}} = \delta_j z_i$$

•  $\delta_j$  is the local error (going from j backwards) and  $z_i$  is the local input coming from i

# Credit Assignment: A Graphical Revision



• Let's redraw our toy network with new notation and label nodes



#### Credit Assignment: Top Layer



• Local error from 0:  $\delta = (\hat{y} - y)$ , local input from 1:  $z_1$ 

$$\therefore \frac{\partial L}{\partial w_{1 \rightsquigarrow 0}} = \delta z_1; \text{ and update } w_{1 \leadsto 0} := w_{1 \leadsto 0} - \eta \delta z_1$$

< 17 >

#### Credit Assignment: Top Layer



#### Credit Assignment: Top Layer



• Local error from 0:  $\delta = (\hat{y} - y)$ , local input from 2:  $z_2$ 

$$\therefore \frac{\partial L}{\partial w_{2 \rightsquigarrow 0}} = \delta z_2 \text{ and update } w_{2 \rightsquigarrow 0} := w_{2 \rightsquigarrow 0} - \eta \delta z_2$$

< 17 >





Lecture 4 Backpropagation



• Local error from 1:  $\delta_1 = (\delta)(w_{1 \leadsto 0})(1 - \tanh^2(a_1))$ , local input from 3:  $x_3$ 

$$\therefore \frac{\partial L}{\partial w_{3 \rightsquigarrow 1}} = \delta_1 x_3 \text{ and update } w_{3 \rightsquigarrow 1} := w_{3 \rightsquigarrow 1} - \eta \delta_1 x_3$$

٠







Lecture 4 Backpropagation



• Local error from 2:  $\delta_2 = (\delta)(w_{2 \rightsquigarrow 0})(1 - \tanh^2(a_2))$ , local input from 4:  $x_2$ 

$$\therefore \frac{\partial L}{\partial w_{4 \rightsquigarrow 2}} = \delta_2 x_2 \text{ and update } w_{4 \rightsquigarrow 2} := w_{4 \rightsquigarrow 2} - \eta \delta_2 x_2$$

.

< 17 >

#### Let's Vectorize

• Let  $W^{(2)} = \begin{bmatrix} w_{1 \leftrightarrow 0} \\ w_{2 \leftrightarrow 0} \end{bmatrix}$  (ignore that  $W^{(2)}$  is a vector and hence more appropriate to use  $\mathbf{w}^{(2)}$ )

Let

$$W^{(1)} = \begin{bmatrix} w_{5 \rightsquigarrow 1} & w_{5 \rightsquigarrow 2} \\ w_{4 \rightsquigarrow 1} & w_{4 \rightsquigarrow 2} \\ w_{3 \rightsquigarrow 1} & w_{3 \rightsquigarrow 2} \end{bmatrix}$$

Let

$$Z^{(1)} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 and  $Z^{(2)} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$ 

✓ ☐ > CMSC 35246

### **Feedforward Computation**

- **1** Compute  $A^{(1)} = Z^{(1)^T} W^{(1)}$
- **2** Applying element-wise non-linearity  $Z^{(2)} = \tanh A^{(1)}$
- 3 Compute Output  $\hat{y} = Z^{(2)^T} W^{(2)}$
- **4** Compute Loss on example  $(\hat{y} y)^2$

# **Flowing Backward**

 Top: Compute δ
 Gradient w.r.t W<sup>(2)</sup> = δZ<sup>(2)</sup>
 Compute δ<sub>1</sub> = (W<sup>(2)<sup>T</sup></sup>δ) ⊙ (1 - tanh(A<sup>(1)</sup>)<sup>2</sup>) Notes: (a): ⊙ is Hadamard product. (b) have written W<sup>(2)<sup>T</sup></sup>δ as δ can be a vector when there are multiple outputs
 Gradient w.r.t W<sup>(1)</sup> = δ<sub>1</sub>Z<sup>(1)</sup>
 Update W<sup>(2)</sup> := W<sup>(2)</sup> - ηδZ<sup>(2)</sup>
 Update W<sup>(1)</sup> = W<sup>(1)</sup> = δ<sub>1</sub>Z<sup>(1)</sup>

( 同)

CMSC 35246

- 6 Update  $W^{(1)} := W^{(1)} \eta \delta_1 Z^{(1)}$
- 7 All the dimensionalities nicely check out!

- Backpropagation in the context of neural networks is all about assigning credit (or blame!) for error incurred to the weights
  - We follow the path from the output (where we have an error signal) to the edge we want to consider
  - We find the  $\delta s$  from the top to the edge concerned by using the chain rule
  - Once we have the partial derivative, we can write the update rule for that weight

# What did we miss?

- Exercise: What if there are multiple outputs? (look at slide from last class)
- Another exercise: Add bias neurons. What changes?
- As we go down the network, notice that we need previous  $\delta s$
- If we recompute them each time, it can blow up!
- Need to book-keep derivatives as we go down the network and reuse them

# A General View of Backpropagation Some redundancy in upcoming slides, but redundancy can be good!



Lecture 4 Backpropagation

# An Aside

- Backpropagation only refers to the method for computing the gradient
- This is used with another algorithm such as SGD for learning using the gradient
- Next: Computing gradient  $\nabla_x f(x,y)$  for arbitrary f
- ullet x is the set of variables whose derivatives are desired
- Often we require the gradient of the cost  $J(\theta)$  with respect to parameters  $\theta$  i.e  $\nabla_{\theta}J(\theta)$
- Note: We restrict to case where f has a single output
- First: Move to more precise computational graph language!

< 行 →

# **Computational Graphs**

- Formalize computation as graphs
- **Nodes** indicate variables (scalar, vector, tensor or another variable)
- Operations are simple functions of one or more variables
- Our graph language comes with a set of allowable operations
- Examples:

$$z = xy$$



#### $\bullet~\mbox{Graph}$ uses $\times~\mbox{operation}$ for the computation



Lecture 4 Backpropagation

# **Logistic Regression**



• Computes 
$$\hat{y} = \sigma(\mathbf{x}^T \mathbf{w} + b)$$



$$H = \max\{0, XW + b\}$$



#### MM is matrix multiplication and Rc is ReLU activation



Lecture 4 Backpropagation

### Back to backprop: Chain Rule

- Backpropagation computes the chain rule, in a manner that is highly efficient
- Let  $f, g : \mathbb{R} \to \mathbb{R}$
- Suppose y = g(x) and z = f(y) = f(g(x))
- Chain rule:

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$$



Chain rule: 
$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$$

CMSC 35246

< @ >



Multiple Paths: 
$$\frac{dz}{dx} = \frac{dz}{dy_1}\frac{dy_1}{dx} + \frac{dz}{dy_2}\frac{dy_2}{dx}$$



Multiple Paths: 
$$\frac{dz}{dx} = \sum_{j} \frac{dz}{dy_j} \frac{dy_j}{dx}$$



#### **Chain Rule**

- Consider  $\mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n$
- Let  $g: \mathbb{R}^m \to \mathbb{R}^n$  and  $f: \mathbb{R}^n \to \mathbb{R}$
- Suppose  $\mathbf{y} = g(\mathbf{x})$  and  $z = f(\mathbf{y})$ , then

$$\frac{\partial z}{\partial x_i} = \sum_j \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i}$$

• In vector notation:

$$\begin{pmatrix} \frac{\partial z}{\partial x_1} \\ \vdots \\ \frac{\partial z}{\partial x_m} \end{pmatrix} = \begin{pmatrix} \sum_j \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_1} \\ \vdots \\ \sum_j \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_m} \end{pmatrix} = \nabla_{\mathbf{x}} z = \begin{pmatrix} \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \end{pmatrix}^T \nabla_{\mathbf{y}} z$$

< 一型 →

#### **Chain Rule**

$$\nabla_{\mathbf{x}} z = \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^T \nabla_{\mathbf{y}} z$$

- $\left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)$  is the  $n \times m$  Jacobian matrix of g
- Gradient of x is a multiplication of a Jacobian matrix  $\left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)$  with a vector i.e. the gradient  $\nabla_{\mathbf{y}} z$
- Backpropagation consists of applying such Jacobian-gradient products to each operation in the computational graph
- In general this need not only apply to vectors, but can apply to tensors w.l.o.g

< Al 1

#### **Chain Rule**

- We can ofcourse also write this in terms of tensors
- Let the gradient of z with respect to a tensor  ${\bf X}$  be  $\nabla_{{\bf X}} z$
- If  $\mathbf{Y} = g(\mathbf{X})$  and  $z = f(\mathbf{Y})$ , then:

$$\nabla_{\mathbf{X}} z = \sum_{j} (\nabla_{\mathbf{X}} Y_j) \frac{\partial z}{\partial Y_j}$$

# Recursive Application in a Computational Graph

- Writing an algebraic expression for the gradient of a scalar with respect to *any* node in the computational graph that *produced* that scalar is straightforward using the chain-rule
- Let for some node x the successors be:  $\{y_1, y_2, \ldots y_n\}$
- Node: Computation result
- Edge: Computation dependency

$$\frac{dz}{dx} = \sum_{i=1}^{n} \frac{dz}{dy_i} \frac{dy_i}{dx}$$



## Flow Graph (for previous slide)



. . .

Lecture 4 Backpropagation



# Recursive Application in a Computational Graph

- Fpropagation: Visit nodes in the order after a topological sort
- Compute the value of each node given its ancestors
- Bpropagation: Output gradient = 1
- Now visit nods in reverse order
- Compute gradient with respect to each node using gradient with respect to successors
- Successors of x in previous slide  $\{y_1, y_2, \dots, y_n\}$ :

$$\frac{dz}{dx} = \sum_{i=1}^{n} \frac{dz}{dy_i} \frac{dy_i}{dx}$$



< A >

### **Automatic Differentiation**

- Computation of the gradient can be automatically inferred from the symbolic expression of fprop
- Every node type needs to know:
  - How to compute its output
  - How to compute its gradients with respect to its inputs *given* the gradient w.r.t its outputs
- Makes for rapid prototyping

#### Computational Graph for a MLP



Figure: Goodfellow et al.

- ullet To train we want to compute  $\nabla_{W^{(1)}}J$  and  $\nabla_{W^{(2)}}J$
- Two paths lead backwards from J to weights: Through cross entropy and through regularization cost

< (P) >

### Computational Graph for a MLP



Figure: Goodfellow et al.

- $\bullet$  Weight decay cost is relatively simple: Will always contribute  $2\lambda W^{(i)}$  to gradient on  $W^{(i)}$
- Two paths lead backwards from J to weights: Through cross entropy and through regularization cost

< 17 >

## Symbol to Symbol



Figure: Goodfellow et al.

- In this approach backpropagation never accesses any numerical values
- Instead it just adds nodes to the graph that describe how to compute derivatives
- A graph evaluation engine will then do the actual computation
- Approach taken by Theano and TensorFlow



< 一型 →

### Next time

#### • Regularization Methods for Deep Neural Networks

