Lecture 4
 Backpropagation
 CMSC 35246: Deep Learning

Shubhendu Trivedi
\&

Risi Kondor

University of Chicago
April 5, 2017

- Things we will look at today
- More Backpropagation
- Still more backpropagation
- Quiz at 4:05 PM

To understand, let us just calculate!

One Neuron Again

- Consider example \mathbf{x}; Output for \mathbf{x} is \hat{y}; Correct Answer is y
- Loss $L=(y-\hat{y})^{2}$
- $\hat{y}=\mathbf{x}^{T} \mathbf{w}=x_{1} w_{1}+x_{2} w_{2}+\ldots x_{d} w_{d}$

One Neuron Again

- Want to update w_{i} (forget closed form solution for a bit!)
- Update rule: $w_{i}:=w_{i}-\eta \frac{\partial L}{\partial w_{i}}$
- Now

$$
\frac{\partial L}{\partial w_{i}}=\frac{\partial(\hat{y}-y)^{2}}{\partial w_{i}}=2(\hat{y}-y) \frac{\partial\left(x_{1} w_{1}+x_{2} w_{2}+\ldots x_{d} w_{d}\right)}{\partial w_{i}}
$$

One Neuron Again

- We have: $\frac{\partial L}{\partial w_{i}}=2(\hat{y}-y) x_{i}$
- Update Rule:

$$
w_{i}:=w_{i}-\eta(\hat{y}-y) x_{i}=w_{i}-\eta \delta x_{i} \text { where } \delta=(\hat{y}-y)
$$

- In vector form: $\mathbf{w}:=\mathbf{w}-\eta \delta \mathbf{x}$
- Simple enough! Now let's graduate ...

Simple Feedforward Network

- $\hat{y}=w_{1}^{(2)} z_{1}+w_{2}^{(2)} z_{2}$
- $z_{1}=\tanh \left(a_{1}\right)$ where $a_{1}=w_{11}^{(1)} x_{1}+w_{21}^{(1)} x_{2}+w_{31}^{(1)} x_{3}$ likewise for z_{2}

Simple Feedforward Network

- $z_{1}=\tanh \left(a_{1}\right)$ where $a_{1}=$ $w_{11}^{(1)} x_{1}+w_{21}^{(1)} x_{2}+w_{31}^{(1)} x_{3}$

- $z_{2}=\tanh \left(a_{2}\right)$ where $a_{2}=$ $w_{12}^{(1)} x_{1}+w_{22}^{(1)} x_{2}+w_{32}^{(1)} x_{3}$
- Output $\hat{y}=w_{1}^{(2)} z_{1}+w_{2}^{(2)} z_{2}$; Loss $L=(\hat{y}-y)^{2}$
- Want to assign credit for the loss L to each weight

Top Layer

- Want to find: $\frac{\partial L}{\partial w_{1}^{(2)}}$ and $\frac{\partial L}{\partial w_{2}^{(2)}}$

- Consider $w_{1}^{(2)}$ first
- $\frac{\partial L}{\partial w_{1}^{(2)}}=\frac{\partial(\hat{y}-y)^{2}}{\partial w_{1}^{(2)}}=2(\hat{y}-y) \frac{\partial\left(w_{1}^{(2)} z_{1}+w_{2}^{(2)} z_{2}\right)}{\partial w_{1}^{(2)}}=2(\hat{y}-y) z_{1}$
- Familiar from earlier! Update for $w_{1}^{(2)}$ would be $w_{1}^{(2)}:=w_{1}^{(2)}-\eta \frac{\partial L}{\partial w_{1}^{(2)}}=w_{1}^{(2)}-\eta \delta z_{1}$ with $\delta=(\hat{y}-y)$
- Likewise, for $w_{2}^{(2)}$ update would be $w_{2}^{(2)}:=w_{2}^{(2)}-\eta \delta z_{2}$

Next Layer

- There are six weights to assign credit for the loss incurred

- Consider $w_{11}^{(1)}$ for an illustration
- Rest are similar
- $\frac{\partial L}{\partial w_{11}^{(1)}}=\frac{\partial(\hat{y}-y)^{2}}{\partial w_{11}^{(1)}}=2(\hat{y}-y) \frac{\partial\left(w_{1}^{(2)} z_{1}+w_{2}^{(2)} z_{2}\right)}{\partial w_{11}^{(21)}}$
- Now: $\frac{\partial\left(w_{1}^{(2)} z_{1}+w_{2}^{(2)} z_{2}\right)}{\partial w_{11}^{(1)}}=w_{1}^{(2)} \frac{\partial\left(\tanh \left(w_{11}^{(1)} x_{1}+w_{21}^{(1)} x_{2}+w_{31}^{(1)} x_{3}\right)\right)}{\partial w_{11}^{(1)}}+0$
- Which is: $w_{1}^{(2)}\left(1-\tanh ^{2}\left(a_{1}\right)\right) x_{1}$ recall $a_{1}=$?
- So we have: $\frac{\partial L}{\partial w_{11}^{(1)}}=2(\hat{y}-y) w_{1}^{(2)}\left(1-\tanh ^{2}\left(a_{1}\right)\right) x_{1}$

Next Layer

- $\frac{\partial L}{\partial w_{11}^{(1)}}=$

$$
2(\hat{y}-y) w_{1}^{(2)}\left(1-\tanh ^{2}\left(a_{1}\right)\right) x_{1}
$$

- Weight update:
$w_{11}^{(1)}:=w_{11}^{(1)}-\eta \frac{\partial L}{\partial w_{11}^{(1)}}$
- Likewise, if we were considering $w_{22}^{(1)}$, we'd have:
- $\frac{\partial L}{\partial w_{22}^{(1)}}=2(\hat{y}-y) w_{2}^{(2)}\left(1-\tanh ^{2}\left(a_{2}\right)\right) x_{2}$
- Weight update: $w_{22}^{(1)}:=w_{22}^{(1)}-\eta \frac{\partial L}{\partial w_{22}^{(1)}}$

Let's clean this up...

- Recall, for top layer: $\frac{\partial L}{\partial w_{i}^{(2)}}=(\hat{y}-y) z_{i}=\delta z_{i}$ (ignoring 2)
- One can think of this as: $\frac{\partial L}{\partial w_{i}^{(2)}}=\underbrace{\delta}_{\text {local error local input }} \underbrace{z_{i}}$
- For next layer we had: $\frac{\partial L}{\partial w_{i j}^{(1)}}=(\hat{y}-y) w_{j}^{(2)}\left(1-\tanh ^{2}\left(a_{j}\right)\right) x_{i}$
- Let $\delta_{j}=(\hat{y}-y) w_{j}^{(2)}\left(1-\tanh ^{2}\left(a_{j}\right)\right)=\delta w_{j}^{(2)}\left(1-\tanh ^{2}\left(a_{j}\right)\right)$ (Notice that δ_{j} contains the δ term (which is the error!))
- Then: $\frac{\partial L}{\partial w_{i j}^{(1)}}=\underbrace{\delta_{j}}_{\text {local error local input }} \underbrace{x_{i}}$
- Neat!

Let's clean this up...

- Let's get a cleaner notation to summarize this
- Let $w_{i \rightsquigarrow j}$ be the weight for the connection FROM node i to node j
- Then

$$
\frac{\partial L}{\partial w_{i \rightsquigarrow j}}=\delta_{j} z_{i}
$$

- δ_{j} is the local error (going from j backwards) and z_{i} is the local input coming from i

Credit Assignment: A Graphical Revision

- Let's redraw our toy network with new notation and label nodes

Credit Assignment: Top Layer

- Local error from 0: $\delta=(\hat{y}-y)$, local input from 1: z_{1}

$$
\therefore \frac{\partial L}{\partial w_{1 \rightsquigarrow 0}}=\delta z_{1} ; \text { and update } w_{1 \rightsquigarrow 0}:=w_{1 \rightsquigarrow 0}-\eta \delta z_{1}
$$

Credit Assignment: Top Layer

Credit Assignment: Top Layer

- Local error from 0: $\delta=(\hat{y}-y)$, local input from 2: z_{2}

$$
\therefore \frac{\partial L}{\partial w_{2 \rightsquigarrow 0}}=\delta z_{2} \text { and update } w_{2 \rightsquigarrow 0}:=w_{2 \rightsquigarrow 0}-\eta \delta z_{2}
$$

Credit Assignment: Next Layer

Credit Assignment: Next Layer

Credit Assignment: Next Layer

- Local error from 1: $\delta_{1}=(\delta)\left(w_{1 \rightsquigarrow 0}\right)\left(1-\tanh ^{2}\left(a_{1}\right)\right)$, local input from 3: x_{3}

$$
\therefore \frac{\partial L}{\partial w_{3 \rightsquigarrow 1}}=\delta_{1} x_{3} \text { and update } w_{3 \rightsquigarrow 1}:=w_{3 \rightsquigarrow 1}-\eta \delta_{1} x_{3}
$$

Credit Assignment: Next Layer

Credit Assignment: Next Layer

Credit Assignment: Next Layer

- Local error from 2: $\delta_{2}=(\delta)\left(w_{2 \rightsquigarrow 0}\right)\left(1-\tanh ^{2}\left(a_{2}\right)\right)$, local input from 4: x_{2}

$$
\therefore \frac{\partial L}{\partial w_{4 \rightsquigarrow 2}}=\delta_{2} x_{2} \text { and update } w_{4 \rightsquigarrow 2}:=w_{4 \rightsquigarrow 2}-\eta \delta_{2} x_{2}
$$

Let's Vectorize

- Let $W^{(2)}=\left[\begin{array}{l}w_{1 \rightsquigarrow 0} \\ w_{2 \rightsquigarrow 0}\end{array}\right]$ (ignore that $W^{(2)}$ is a vector and hence more appropriate to use $\mathbf{w}^{(2)}$)
- Let

$$
W^{(1)}=\left[\begin{array}{ll}
w_{5 \rightsquigarrow 1} & w_{5 \rightsquigarrow 2} \\
w_{4 \rightsquigarrow 1} & w_{4 \rightsquigarrow 2} \\
w_{3 \rightsquigarrow 1} & w_{3 \rightsquigarrow 2}
\end{array}\right]
$$

- Let

$$
Z^{(1)}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \text { and } Z^{(2)}=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]
$$

Feedforward Computation

1 Compute $A^{(1)}=Z^{(1)^{T}} W^{(1)}$
2 Applying element-wise non-linearity $Z^{(2)}=\tanh A^{(1)}$
3 Compute Output $\hat{y}=Z^{(2)^{T}} W^{(2)}$
4 Compute Loss on example $(\hat{y}-y)^{2}$

Flowing Backward

1 Top: Compute δ
2 Gradient w.r.t $W^{(2)}=\delta Z^{(2)}$
3 Compute $\delta_{1}=\left(W^{(2)^{T}} \delta\right) \odot\left(1-\tanh \left(A^{(1)}\right)^{2}\right)$
Notes: (a): \odot is Hadamard product. (b) have written $W^{(2)^{T}} \delta$ as δ can be a vector when there are multiple outputs
4 Gradient w.r.t $W^{(1)}=\delta_{1} Z^{(1)}$
5 Update $W^{(2)}:=W^{(2)}-\eta \delta Z^{(2)}$
б Update $W^{(1)}:=W^{(1)}-\eta \delta_{1} Z^{(1)}$
7 All the dimensionalities nicely check out!

So Far

- Backpropagation in the context of neural networks is all about assigning credit (or blame!) for error incurred to the weights
- We follow the path from the output (where we have an error signal) to the edge we want to consider
- We find the δ s from the top to the edge concerned by using the chain rule
- Once we have the partial derivative, we can write the update rule for that weight

What did we miss?

- Exercise: What if there are multiple outputs? (look at slide from last class)
- Another exercise: Add bias neurons. What changes?
- As we go down the network, notice that we need previous δ s
- If we recompute them each time, it can blow up!
- Need to book-keep derivatives as we go down the network and reuse them

A General View of Backpropagation

Some redundancy in upcoming slides, but redundancy can be good!

An Aside

- Backpropagation only refers to the method for computing the gradient
- This is used with another algorithm such as SGD for learning using the gradient
- Next: Computing gradient $\nabla_{x} f(x, y)$ for arbitrary f
- x is the set of variables whose derivatives are desired
- Often we require the gradient of the cost $J(\theta)$ with respect to parameters θ i.e $\nabla_{\theta} J(\theta)$
- Note: We restrict to case where f has a single output
- First: Move to more precise computational graph language!

Computational Graphs

- Formalize computation as graphs
- Nodes indicate variables (scalar, vector, tensor or another variable)
- Operations are simple functions of one or more variables
- Our graph language comes with a set of allowable operations
- Examples:

$$
z=x y
$$

- Graph uses \times operation for the computation

Logistic Regression

- Computes $\hat{y}=\sigma\left(\mathbf{x}^{T} \mathbf{w}+b\right)$

$H=\max \{0, X W+b\}$

MM is matrix multiplication and Rc is ReLU activation

Back to backprop: Chain Rule

- Backpropagation computes the chain rule, in a manner that is highly efficient
- Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$
- Suppose $y=g(x)$ and $z=f(y)=f(g(x))$
- Chain rule:

$$
\frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x}
$$

Chain rule: $\frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x}$

Multiple Paths: $\frac{d z}{d x}=\frac{d z}{d y_{1}} \frac{d y_{1}}{d x}+\frac{d z}{d y_{2}} \frac{d y_{2}}{d x}$

Multiple Paths: $\frac{d z}{d x}=\sum_{j} \frac{d z}{d y_{j}} \frac{d y_{j}}{d x}$

Chain Rule

- Consider $\mathbf{x} \in \mathbb{R}^{m}, \mathbf{y} \in \mathbb{R}^{n}$
- Let $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- Suppose $\mathbf{y}=g(\mathbf{x})$ and $z=f(\mathbf{y})$, then

$$
\frac{\partial z}{\partial x_{i}}=\sum_{j} \frac{\partial z}{\partial y_{j}} \frac{\partial y_{j}}{\partial x_{i}}
$$

- In vector notation:

$$
\left(\begin{array}{c}
\frac{\partial z}{\partial x_{1}} \\
\vdots \\
\frac{\partial z}{\partial x_{m}}
\end{array}\right)=\left(\begin{array}{c}
\sum_{j} \frac{\partial z}{\partial y_{j}} \frac{\partial y_{j}}{\partial x_{1}} \\
\vdots \\
\sum_{j} \frac{\partial z}{\partial y_{j}} \frac{\partial y_{j}}{\partial x_{m}}
\end{array}\right)=\nabla_{\mathbf{x}} z=\left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^{T} \nabla_{\mathbf{y}} z
$$

Chain Rule

$$
\nabla_{\mathbf{x}} z=\left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^{T} \nabla_{\mathbf{y}} z
$$

- $\left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)$ is the $n \times m$ Jacobian matrix of g
- Gradient of \mathbf{x} is a multiplication of a Jacobian matrix $\left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)$ with a vector i.e. the gradient $\nabla_{\mathbf{y}} z$
- Backpropagation consists of applying such Jacobian-gradient products to each operation in the computational graph
- In general this need not only apply to vectors, but can apply to tensors w.l.o.g

Chain Rule

- We can ofcourse also write this in terms of tensors
- Let the gradient of z with respect to a tensor \mathbf{X} be $\nabla_{\mathbf{X}} z$
- If $\mathbf{Y}=g(\mathbf{X})$ and $z=f(\mathbf{Y})$, then:

$$
\nabla_{\mathbf{X}} z=\sum_{j}\left(\nabla_{\mathbf{X}} Y_{j}\right) \frac{\partial z}{\partial Y_{j}}
$$

Recursive Application in a Computational Graph

- Writing an algebraic expression for the gradient of a scalar with respect to any node in the computational graph that produced that scalar is straightforward using the chain-rule
- Let for some node x the successors be: $\left\{y_{1}, y_{2}, \ldots y_{n}\right\}$
- Node: Computation result
- Edge: Computation dependency

$$
\frac{d z}{d x}=\sum_{i=1}^{n} \frac{d z}{d y_{i}} \frac{d y_{i}}{d x}
$$

Flow Graph (for previous slide)

Recursive Application in a Computational Graph

- Fpropagation: Visit nodes in the order after a topological sort
- Compute the value of each node given its ancestors
- Bpropagation: Output gradient $=1$
- Now visit nods in reverse order
- Compute gradient with respect to each node using gradient with respect to successors
- Successors of x in previous slide $\left\{y_{1}, y_{2}, \ldots y_{n}\right\}$:

$$
\frac{d z}{d x}=\sum_{i=1}^{n} \frac{d z}{d y_{i}} \frac{d y_{i}}{d x}
$$

Automatic Differentiation

- Computation of the gradient can be automatically inferred from the symbolic expression of fprop
- Every node type needs to know:
- How to compute its output
- How to compute its gradients with respect to its inputs given the gradient w.r.t its outputs
- Makes for rapid prototyping

Computational Graph for a MLP

Figure: Goodfellow et al.

- To train we want to compute $\nabla_{W^{(1)}} J$ and $\nabla_{W^{(2)}} J$
- Two paths lead backwards from J to weights: Through cross entropy and through regularization cost

Computational Graph for a MLP

Figure: Goodfellow et al.

- Weight decay cost is relatively simple: Will always contribute $2 \lambda W^{(i)}$ to gradient on $W^{(i)}$
- Two paths lead backwards from J to weights: Through cross entropy and through regularization cost

Symbol to Symbol

Figure: Goodfellow et al.

- In this approach backpropagation never accesses any numerical values
- Instead it just adds nodes to the graph that describe how to compute derivatives
- A graph evaluation engine will then do the actual computation
- Approach taken by Theano and TensorFlow

Next time

- Regularization Methods for Deep Neural Networks

