
Lecture 4
Backpropagation

CMSC 35246: Deep Learning

Shubhendu Trivedi
&

Risi Kondor

University of Chicago

April 5, 2017

Lecture 4 Backpropagation CMSC 35246



Things we will look at today

• More Backpropagation
• Still more backpropagation
• Quiz at 4:05 PM

Lecture 4 Backpropagation CMSC 35246



To understand, let us just calculate!

Lecture 4 Backpropagation CMSC 35246



One Neuron Again

x1 x2 . . . xd

ŷ

w1 w2

wd

Consider example x; Output for x is ŷ; Correct Answer is y

Loss L = (y − ŷ)2

ŷ = xTw = x1w1 + x2w2 + . . . xdwd

Lecture 4 Backpropagation CMSC 35246



One Neuron Again

x1 x2 . . . xd

ŷ

w1 w2

wd

Want to update wi (forget closed form solution for a bit!)

Update rule: wi := wi − η ∂L
∂wi

Now

∂L

∂wi
=
∂(ŷ − y)2

∂wi
= 2(ŷ − y)∂(x1w1 + x2w2 + . . . xdwd)

∂wi

Lecture 4 Backpropagation CMSC 35246



One Neuron Again

x1 x2 . . . xd

ŷ

w1 w2

wd

We have:
∂L

∂wi
= 2(ŷ − y)xi

Update Rule:

wi := wi − η(ŷ − y)xi = wi − ηδxi where δ = (ŷ − y)

In vector form: w := w − ηδx
Simple enough! Now let’s graduate ...

Lecture 4 Backpropagation CMSC 35246



Simple Feedforward Network

x1 x2 x3

z1 z2

ŷ

w
(1)
11 w

(1)
21 w

(1)
31

w
(1)
12 w

(1)
22 w

(1)
32

w
(2)
1 w

(2)
2

ŷ = w
(2)
1 z1 + w

(2)
2 z2

z1 = tanh(a1) where a1 = w
(1)
11 x1 + w

(1)
21 x2 + w

(1)
31 x3 likewise

for z2

Lecture 4 Backpropagation CMSC 35246



Simple Feedforward Network

z1 = tanh(a1) where a1 =

w
(1)
11 x1 + w

(1)
21 x2 + w

(1)
31 x3

z2 = tanh(a2) where a2 =

w
(1)
12 x1 + w

(1)
22 x2 + w

(1)
32 x3

x1 x2 x3

z1 z2

ŷ

w
(1)
11 w

(1)
21 w

(1)
31

w
(1)
12 w

(1)
22 w

(1)
32

w
(2)
1 w

(2)
2

Output ŷ = w
(2)
1 z1 + w

(2)
2 z2; Loss L = (ŷ − y)2

Want to assign credit for the loss L to each weight

Lecture 4 Backpropagation CMSC 35246



Top Layer

Want to find: ∂L

∂w
(2)
1

and ∂L

∂w
(2)
2

Consider w
(2)
1 first

x1 x2 x3

z1 z2

ŷ

w
(1)
11 w

(1)
21 w

(1)
31

w
(1)
12 w

(1)
22 w

(1)
32

w
(2)
1 w

(2)
2

∂L

∂w
(2)
1

= ∂(ŷ−y)2

∂w
(2)
1

= 2(ŷ − y)∂(w
(2)
1 z1+w

(2)
2 z2)

∂w
(2)
1

= 2(ŷ − y)z1

Familiar from earlier! Update for w
(2)
1 would be

w
(2)
1 := w

(2)
1 − η ∂L

∂w
(2)
1

= w
(2)
1 − ηδz1 with δ = (ŷ − y)

Likewise, for w
(2)
2 update would be w

(2)
2 := w

(2)
2 − ηδz2

Lecture 4 Backpropagation CMSC 35246



Next Layer

There are six weights to assign
credit for the loss incurred

Consider w
(1)
11 for an illustration

Rest are similar

x1 x2 x3

z1 z2

ŷ

w
(1)
11 w

(1)
21 w

(1)
31

w
(1)
12 w

(1)
22 w

(1)
32

w
(2)
1 w

(2)
2

∂L

∂w
(1)
11

= ∂(ŷ−y)2

∂w
(1)
11

= 2(ŷ − y)∂(w
(2)
1 z1+w

(2)
2 z2)

∂w
(21)
11

Now:
∂(w

(2)
1 z1+w

(2)
2 z2)

∂w
(1)
11

= w
(2)
1

∂(tanh(w
(1)
11 x1+w

(1)
21 x2+w

(1)
31 x3))

∂w
(1)
11

+ 0

Which is: w
(2)
1 (1− tanh2(a1))x1 recall a1 =?

So we have: ∂L

∂w
(1)
11

= 2(ŷ − y)w(2)
1 (1− tanh2(a1))x1

Lecture 4 Backpropagation CMSC 35246



Next Layer

∂L

∂w
(1)
11

=

2(ŷ − y)w(2)
1 (1− tanh2(a1))x1

Weight update:

w
(1)
11 := w

(1)
11 − η ∂L

∂w
(1)
11

x1 x2 x3

z1 z2

ŷ

w
(1)
11 w

(1)
21 w

(1)
31

w
(1)
12 w

(1)
22 w

(1)
32

w
(2)
1 w

(2)
2

Likewise, if we were considering w
(1)
22 , we’d have:

∂L

∂w
(1)
22

= 2(ŷ − y)w(2)
2 (1− tanh2(a2))x2

Weight update: w
(1)
22 := w

(1)
22 − η ∂L

∂w
(1)
22

Lecture 4 Backpropagation CMSC 35246



Let’s clean this up...

Recall, for top layer: ∂L

∂w
(2)
i

= (ŷ − y)zi = δzi (ignoring 2)

One can think of this as: ∂L

∂w
(2)
i

= δ︸︷︷︸
local error

zi︸︷︷︸
local input

For next layer we had: ∂L

∂w
(1)
ij

= (ŷ − y)w(2)
j (1− tanh2(aj))xi

Let δj = (ŷ − y)w(2)
j (1− tanh2(aj)) = δw

(2)
j (1− tanh2(aj))

(Notice that δj contains the δ term (which is the error!))

Then: ∂L

∂w
(1)
ij

= δj︸︷︷︸
local error

xi︸︷︷︸
local input

Neat!

Lecture 4 Backpropagation CMSC 35246



Let’s clean this up...

Let’s get a cleaner notation to summarize this

Let wi j be the weight for the connection FROM node i to
node j

Then
∂L

∂wi j
= δjzi

δj is the local error (going from j backwards) and zi is the
local input coming from i

Lecture 4 Backpropagation CMSC 35246



Credit Assignment: A Graphical Revision

5x1 4x2 3 x3

1z1 2z2

0

ŷ

w5 1 w4 1 w3 1

w5 2w4 2w3 1

w1 0 w2 0

Let’s redraw our toy network with new notation and label
nodes

Lecture 4 Backpropagation CMSC 35246



Credit Assignment: Top Layer

5x1 4x2 3 x3

1z1 2z2

0

ŷ

w5 1 w4 1 w3 1

w5 2w4 2w3 1

w1 0 w2 0

δ

Local error from 0: δ = (ŷ − y), local input from 1: z1

∴
∂L

∂w1 0
= δz1; and update w1 0 := w1 0 − ηδz1

Lecture 4 Backpropagation CMSC 35246



Credit Assignment: Top Layer

5x1 4x2 3 x3

1z1 2z2

0

ŷ

w5 1 w4 1 w3 1

w5 2w4 2w3 1

w1 0 w2 0

Lecture 4 Backpropagation CMSC 35246



Credit Assignment: Top Layer

5x1 4x2 3 x3

1z1 2z2

0

ŷ

w5 1 w4 1 w3 1

w5 2w4 2w3 1

w1 0w2 0

δ

Local error from 0: δ = (ŷ − y), local input from 2: z2

∴
∂L

∂w2 0
= δz2 and update w2 0 := w2 0 − ηδz2

Lecture 4 Backpropagation CMSC 35246



Credit Assignment: Next Layer

5x1 4x2 3 x3

1z1 2z2

0

ŷ

w5 1 w4 1 w3 1

w5 2w4 2w3 1

w1 0 w2 0

Lecture 4 Backpropagation CMSC 35246



Credit Assignment: Next Layer

5x1 4x2 3 x3

1z1 2z2

0

ŷ

w5 1 w4 1 w3 1

w5 2w4 2w3 1

w1 0
w2 0

δ

Lecture 4 Backpropagation CMSC 35246



Credit Assignment: Next Layer

5x1 4x2 3 x3

1z1 2z2

0

ŷ

w5 1 w4 1 w3 1

w5 2w4 2w3 1

w1 0
w2 0

δ

δ1

Local error from 1: δ1 = (δ)(w1 0)(1− tanh2(a1)), local
input from 3: x3

∴
∂L

∂w3 1
= δ1x3 and update w3 1 := w3 1 − ηδ1x3

Lecture 4 Backpropagation CMSC 35246



Credit Assignment: Next Layer

5x1 4x2 3 x3

1z1 2z2

0

ŷ

w5 1 w4 1 w3 1

w5 2w4 2w3 1

w1 0 w2 0

Lecture 4 Backpropagation CMSC 35246



Credit Assignment: Next Layer

5x1 4x2 3 x3

1z1 2z2

0

ŷ

w5 1 w4 1 w3 1

w5 2w4 2w3 1

w1 0w2 0

δ

Lecture 4 Backpropagation CMSC 35246



Credit Assignment: Next Layer

5x1 4x2 3 x3

1z1 2z2

0

ŷ

w5 1 w4 1 w3 1

w5 2

w4 2

w3 1

w1 0w2 0

δ

δ1

Local error from 2: δ2 = (δ)(w2 0)(1− tanh2(a2)), local
input from 4: x2

∴
∂L

∂w4 2
= δ2x2 and update w4 2 := w4 2 − ηδ2x2

Lecture 4 Backpropagation CMSC 35246



Let’s Vectorize

Let W (2) =

[
w1 0

w2 0

]
(ignore that W (2) is a vector and hence

more appropriate to use w(2))

Let

W (1) =

w5 1 w5 2

w4 1 w4 2

w3 1 w3 2


Let

Z(1) =

x1x2
x3

 and Z(2) =

[
z1
z2

]

Lecture 4 Backpropagation CMSC 35246



Feedforward Computation

1 Compute A(1) = Z(1)TW (1)

2 Applying element-wise non-linearity Z(2) = tanhA(1)

3 Compute Output ŷ = Z(2)TW (2)

4 Compute Loss on example (ŷ − y)2

Lecture 4 Backpropagation CMSC 35246



Flowing Backward

1 Top: Compute δ

2 Gradient w.r.t W (2) = δZ(2)

3 Compute δ1 = (W (2)T δ)� (1− tanh(A(1))2)

Notes: (a): � is Hadamard product. (b) have written W (2)T δ
as δ can be a vector when there are multiple outputs

4 Gradient w.r.t W (1) = δ1Z
(1)

5 Update W (2) :=W (2) − ηδZ(2)

6 Update W (1) :=W (1) − ηδ1Z(1)

7 All the dimensionalities nicely check out!

Lecture 4 Backpropagation CMSC 35246



So Far

Backpropagation in the context of neural networks is all about
assigning credit (or blame!) for error incurred to the weights

• We follow the path from the output (where we have an
error signal) to the edge we want to consider

• We find the δs from the top to the edge concerned by
using the chain rule

• Once we have the partial derivative, we can write the
update rule for that weight

Lecture 4 Backpropagation CMSC 35246



What did we miss?

Exercise: What if there are multiple outputs? (look at slide
from last class)

Another exercise: Add bias neurons. What changes?

As we go down the network, notice that we need previous δs

If we recompute them each time, it can blow up!

Need to book-keep derivatives as we go down the network and
reuse them

Lecture 4 Backpropagation CMSC 35246



A General View of Backpropagation
Some redundancy in upcoming slides, but redundancy can be good!

Lecture 4 Backpropagation CMSC 35246



An Aside

Backpropagation only refers to the method for computing the
gradient

This is used with another algorithm such as SGD for learning
using the gradient

Next: Computing gradient ∇xf(x, y) for arbitrary f

x is the set of variables whose derivatives are desired

Often we require the gradient of the cost J(θ) with respect to
parameters θ i.e ∇θJ(θ)
Note: We restrict to case where f has a single output

First: Move to more precise computational graph language!

Lecture 4 Backpropagation CMSC 35246



Computational Graphs

Formalize computation as graphs

Nodes indicate variables (scalar, vector, tensor or another
variable)

Operations are simple functions of one or more variables

Our graph language comes with a set of allowable operations

Examples:

Lecture 4 Backpropagation CMSC 35246



z = xy

x y

z

×

Graph uses × operation for the computation

Lecture 4 Backpropagation CMSC 35246



Logistic Regression

x w

u1 u2

b

ŷ

dot

+

σ

Computes ŷ = σ(xTw + b)

Lecture 4 Backpropagation CMSC 35246



H = max{0, XW + b}

X W

U1 U2

b

H

MM
+

Rc

MM is matrix multiplication and Rc is ReLU activation

Lecture 4 Backpropagation CMSC 35246



Back to backprop: Chain Rule

Backpropagation computes the chain rule, in a manner that is
highly efficient

Let f, g : R→ R
Suppose y = g(x) and z = f(y) = f(g(x))

Chain rule:
dz

dx
=
dz

dy

dy

dx

Lecture 4 Backpropagation CMSC 35246



x

y

z

dz
dy

dy
dx

Chain rule:
dz

dx
=
dz

dy

dy

dx

Lecture 4 Backpropagation CMSC 35246



x

y1 y2

z

dy1
dx

dy2
dx

dz
dy1

dz
dy2

Multiple Paths:
dz

dx
=

dz

dy1

dy1
dx

+
dz

dy2

dy2
dx

Lecture 4 Backpropagation CMSC 35246



x

y1 y2

. . .
yn

z

dy1
dx

dy2
dx

dyn
dx

dz
dy1

dz
dy2

dz
dyn

Multiple Paths:
dz

dx
=
∑
j

dz

dyj

dyj
dx

Lecture 4 Backpropagation CMSC 35246



Chain Rule

Consider x ∈ Rm,y ∈ Rn

Let g : Rm → Rn and f : Rn → R
Suppose y = g(x) and z = f(y), then

∂z

∂xi
=
∑
j

∂z

∂yj

∂yj
∂xi

In vector notation:
∂z
∂x1

...
∂z
∂xm

 =


∑

j
∂z
∂yj

∂yj
∂x1

...∑
j
∂z
∂yj

∂yj
∂xm

 = ∇xz =

(
∂y

∂x

)T
∇yz

Lecture 4 Backpropagation CMSC 35246



Chain Rule

∇xz =

(
∂y

∂x

)T
∇yz

(
∂y
∂x

)
is the n×m Jacobian matrix of g

Gradient of x is a multiplication of a Jacobian matrix
(
∂y
∂x

)
with a vector i.e. the gradient ∇yz

Backpropagation consists of applying such Jacobian-gradient
products to each operation in the computational graph

In general this need not only apply to vectors, but can apply
to tensors w.l.o.g

Lecture 4 Backpropagation CMSC 35246



Chain Rule

We can ofcourse also write this in terms of tensors

Let the gradient of z with respect to a tensor X be ∇Xz

If Y = g(X) and z = f(Y), then:

∇Xz =
∑
j

(∇XYj)
∂z

∂Yj

Lecture 4 Backpropagation CMSC 35246



Recursive Application in a Computational
Graph

Writing an algebraic expression for the gradient of a scalar
with respect to any node in the computational graph that
produced that scalar is straightforward using the chain-rule

Let for some node x the successors be: {y1, y2, . . . yn}
Node: Computation result

Edge: Computation dependency

dz

dx
=

n∑
i=1

dz

dyi

dyi
dx

Lecture 4 Backpropagation CMSC 35246



Flow Graph (for previous slide)

. . .

x

y1 y2 . . . yn

. . .

z

Lecture 4 Backpropagation CMSC 35246



Recursive Application in a Computational
Graph

Fpropagation: Visit nodes in the order after a topological sort

Compute the value of each node given its ancestors

Bpropagation: Output gradient = 1

Now visit nods in reverse order

Compute gradient with respect to each node using gradient
with respect to successors

Successors of x in previous slide {y1, y2, . . . yn}:

dz

dx
=

n∑
i=1

dz

dyi

dyi
dx

Lecture 4 Backpropagation CMSC 35246



Automatic Differentiation

Computation of the gradient can be automatically inferred
from the symbolic expression of fprop

Every node type needs to know:

• How to compute its output
• How to compute its gradients with respect to its inputs
given the gradient w.r.t its outputs

Makes for rapid prototyping

Lecture 4 Backpropagation CMSC 35246



Computational Graph for a MLP

Figure: Goodfellow et al.

To train we want to compute ∇W (1)J and ∇W (2)J

Two paths lead backwards from J to weights: Through cross
entropy and through regularization cost

Lecture 4 Backpropagation CMSC 35246



Computational Graph for a MLP

Figure: Goodfellow et al.

Weight decay cost is relatively simple: Will always contribute
2λW (i) to gradient on W (i)

Two paths lead backwards from J to weights: Through cross
entropy and through regularization cost

Lecture 4 Backpropagation CMSC 35246



Symbol to Symbol

Figure: Goodfellow et al.

In this approach backpropagation never accesses any
numerical values

Instead it just adds nodes to the graph that describe how to
compute derivatives

A graph evaluation engine will then do the actual computation

Approach taken by Theano and TensorFlow

Lecture 4 Backpropagation CMSC 35246



Next time

Regularization Methods for Deep Neural Networks

Lecture 4 Backpropagation CMSC 35246


