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Things we will look at today

• More Backpropagation
• Still more backpropagation
• Quiz at 4:05 PM
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To understand, let us just calculate!
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One Neuron Again

x1 x2 . . . xd

ŷ

w1 w2

wd

Consider example x; Output for x is ŷ; Correct Answer is y

Loss L = (y − ŷ)2

ŷ = xTw = x1w1 + x2w2 + . . . xdwd
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One Neuron Again

x1 x2 . . . xd

ŷ

w1 w2

wd

Want to update wi (forget closed form solution for a bit!)

Update rule: wi := wi − η ∂L
∂wi

Now

∂L

∂wi
=
∂(ŷ − y)2

∂wi
= 2(ŷ − y)∂(x1w1 + x2w2 + . . . xdwd)

∂wi
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One Neuron Again

x1 x2 . . . xd

ŷ

w1 w2

wd

We have:
∂L

∂wi
= 2(ŷ − y)xi

Update Rule:

wi := wi − η(ŷ − y)xi = wi − ηδxi where δ = (ŷ − y)

In vector form: w := w − ηδx
Simple enough! Now let’s graduate ...
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Simple Feedforward Network

x1 x2 x3

z1 z2

ŷ

w
(1)
11 w

(1)
21 w

(1)
31

w
(1)
12 w

(1)
22 w

(1)
32

w
(2)
1 w

(2)
2

ŷ = w
(2)
1 z1 + w

(2)
2 z2

z1 = tanh(a1) where a1 = w
(1)
11 x1 + w

(1)
21 x2 + w

(1)
31 x3 likewise

for z2
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Simple Feedforward Network

z1 = tanh(a1) where a1 =

w
(1)
11 x1 + w

(1)
21 x2 + w

(1)
31 x3

z2 = tanh(a2) where a2 =

w
(1)
12 x1 + w

(1)
22 x2 + w

(1)
32 x3

x1 x2 x3

z1 z2

ŷ

w
(1)
11 w

(1)
21 w

(1)
31

w
(1)
12 w

(1)
22 w

(1)
32

w
(2)
1 w

(2)
2

Output ŷ = w
(2)
1 z1 + w

(2)
2 z2; Loss L = (ŷ − y)2

Want to assign credit for the loss L to each weight
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Top Layer

Want to find: ∂L

∂w
(2)
1

and ∂L

∂w
(2)
2

Consider w
(2)
1 first

x1 x2 x3

z1 z2

ŷ

w
(1)
11 w

(1)
21 w

(1)
31

w
(1)
12 w

(1)
22 w

(1)
32

w
(2)
1 w

(2)
2

∂L

∂w
(2)
1

= ∂(ŷ−y)2

∂w
(2)
1

= 2(ŷ − y)∂(w
(2)
1 z1+w

(2)
2 z2)

∂w
(2)
1

= 2(ŷ − y)z1

Familiar from earlier! Update for w
(2)
1 would be

w
(2)
1 := w

(2)
1 − η ∂L

∂w
(2)
1

= w
(2)
1 − ηδz1 with δ = (ŷ − y)

Likewise, for w
(2)
2 update would be w

(2)
2 := w

(2)
2 − ηδz2
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Next Layer

There are six weights to assign
credit for the loss incurred

Consider w
(1)
11 for an illustration

Rest are similar

x1 x2 x3

z1 z2

ŷ

w
(1)
11 w

(1)
21 w

(1)
31

w
(1)
12 w

(1)
22 w

(1)
32

w
(2)
1 w

(2)
2

∂L

∂w
(1)
11

= ∂(ŷ−y)2

∂w
(1)
11

= 2(ŷ − y)∂(w
(2)
1 z1+w

(2)
2 z2)

∂w
(21)
11

Now:
∂(w

(2)
1 z1+w

(2)
2 z2)

∂w
(1)
11

= w
(2)
1

∂(tanh(w
(1)
11 x1+w

(1)
21 x2+w

(1)
31 x3))

∂w
(1)
11

+ 0

Which is: w
(2)
1 (1− tanh2(a1))x1 recall a1 =?

So we have: ∂L

∂w
(1)
11

= 2(ŷ − y)w(2)
1 (1− tanh2(a1))x1
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Next Layer

∂L

∂w
(1)
11

=

2(ŷ − y)w(2)
1 (1− tanh2(a1))x1

Weight update:

w
(1)
11 := w

(1)
11 − η ∂L

∂w
(1)
11

x1 x2 x3

z1 z2

ŷ

w
(1)
11 w

(1)
21 w

(1)
31

w
(1)
12 w

(1)
22 w

(1)
32

w
(2)
1 w

(2)
2

Likewise, if we were considering w
(1)
22 , we’d have:

∂L

∂w
(1)
22

= 2(ŷ − y)w(2)
2 (1− tanh2(a2))x2

Weight update: w
(1)
22 := w

(1)
22 − η ∂L

∂w
(1)
22
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Let’s clean this up...

Recall, for top layer: ∂L

∂w
(2)
i

= (ŷ − y)zi = δzi (ignoring 2)

One can think of this as: ∂L

∂w
(2)
i

= δ︸︷︷︸
local error

zi︸︷︷︸
local input

For next layer we had: ∂L

∂w
(1)
ij

= (ŷ − y)w(2)
j (1− tanh2(aj))xi

Let δj = (ŷ − y)w(2)
j (1− tanh2(aj)) = δw

(2)
j (1− tanh2(aj))

(Notice that δj contains the δ term (which is the error!))

Then: ∂L

∂w
(1)
ij

= δj︸︷︷︸
local error

xi︸︷︷︸
local input

Neat!
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Let’s clean this up...

Let’s get a cleaner notation to summarize this

Let wi j be the weight for the connection FROM node i to
node j

Then
∂L

∂wi j
= δjzi

δj is the local error (going from j backwards) and zi is the
local input coming from i
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Credit Assignment: A Graphical Revision

5x1 4x2 3 x3

1z1 2z2

0

ŷ

w5 1 w4 1 w3 1

w5 2w4 2w3 1

w1 0 w2 0

Let’s redraw our toy network with new notation and label
nodes
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Credit Assignment: Top Layer

5x1 4x2 3 x3

1z1 2z2

0

ŷ

w5 1 w4 1 w3 1

w5 2w4 2w3 1

w1 0 w2 0

δ

Local error from 0: δ = (ŷ − y), local input from 1: z1

∴
∂L

∂w1 0
= δz1; and update w1 0 := w1 0 − ηδz1
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Credit Assignment: Top Layer

5x1 4x2 3 x3

1z1 2z2

0

ŷ

w5 1 w4 1 w3 1

w5 2w4 2w3 1

w1 0 w2 0
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Credit Assignment: Top Layer

5x1 4x2 3 x3

1z1 2z2

0

ŷ

w5 1 w4 1 w3 1

w5 2w4 2w3 1

w1 0w2 0

δ

Local error from 0: δ = (ŷ − y), local input from 2: z2

∴
∂L

∂w2 0
= δz2 and update w2 0 := w2 0 − ηδz2
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Credit Assignment: Next Layer

5x1 4x2 3 x3

1z1 2z2

0

ŷ

w5 1 w4 1 w3 1

w5 2w4 2w3 1

w1 0 w2 0
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Credit Assignment: Next Layer

5x1 4x2 3 x3

1z1 2z2

0

ŷ

w5 1 w4 1 w3 1

w5 2w4 2w3 1

w1 0
w2 0

δ
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Credit Assignment: Next Layer

5x1 4x2 3 x3

1z1 2z2

0

ŷ

w5 1 w4 1 w3 1

w5 2w4 2w3 1

w1 0
w2 0

δ

δ1

Local error from 1: δ1 = (δ)(w1 0)(1− tanh2(a1)), local
input from 3: x3

∴
∂L

∂w3 1
= δ1x3 and update w3 1 := w3 1 − ηδ1x3
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Credit Assignment: Next Layer

5x1 4x2 3 x3

1z1 2z2

0

ŷ

w5 1 w4 1 w3 1

w5 2w4 2w3 1

w1 0 w2 0
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Credit Assignment: Next Layer

5x1 4x2 3 x3

1z1 2z2

0

ŷ

w5 1 w4 1 w3 1

w5 2w4 2w3 1

w1 0w2 0

δ
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Credit Assignment: Next Layer

5x1 4x2 3 x3

1z1 2z2

0

ŷ

w5 1 w4 1 w3 1

w5 2

w4 2

w3 1

w1 0w2 0

δ

δ1

Local error from 2: δ2 = (δ)(w2 0)(1− tanh2(a2)), local
input from 4: x2

∴
∂L

∂w4 2
= δ2x2 and update w4 2 := w4 2 − ηδ2x2
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Let’s Vectorize

Let W (2) =

[
w1 0

w2 0

]
(ignore that W (2) is a vector and hence

more appropriate to use w(2))

Let

W (1) =

w5 1 w5 2

w4 1 w4 2

w3 1 w3 2


Let

Z(1) =

x1x2
x3

 and Z(2) =

[
z1
z2

]
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Feedforward Computation

1 Compute A(1) = Z(1)TW (1)

2 Applying element-wise non-linearity Z(2) = tanhA(1)

3 Compute Output ŷ = Z(2)TW (2)

4 Compute Loss on example (ŷ − y)2
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Flowing Backward

1 Top: Compute δ

2 Gradient w.r.t W (2) = δZ(2)

3 Compute δ1 = (W (2)T δ)� (1− tanh(A(1))2)

Notes: (a): � is Hadamard product. (b) have written W (2)T δ
as δ can be a vector when there are multiple outputs

4 Gradient w.r.t W (1) = δ1Z
(1)

5 Update W (2) :=W (2) − ηδZ(2)

6 Update W (1) :=W (1) − ηδ1Z(1)

7 All the dimensionalities nicely check out!
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So Far

Backpropagation in the context of neural networks is all about
assigning credit (or blame!) for error incurred to the weights

• We follow the path from the output (where we have an
error signal) to the edge we want to consider

• We find the δs from the top to the edge concerned by
using the chain rule

• Once we have the partial derivative, we can write the
update rule for that weight

Lecture 4 Backpropagation CMSC 35246



What did we miss?

Exercise: What if there are multiple outputs? (look at slide
from last class)

Another exercise: Add bias neurons. What changes?

As we go down the network, notice that we need previous δs

If we recompute them each time, it can blow up!

Need to book-keep derivatives as we go down the network and
reuse them
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A General View of Backpropagation
Some redundancy in upcoming slides, but redundancy can be good!
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An Aside

Backpropagation only refers to the method for computing the
gradient

This is used with another algorithm such as SGD for learning
using the gradient

Next: Computing gradient ∇xf(x, y) for arbitrary f

x is the set of variables whose derivatives are desired

Often we require the gradient of the cost J(θ) with respect to
parameters θ i.e ∇θJ(θ)
Note: We restrict to case where f has a single output

First: Move to more precise computational graph language!
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Computational Graphs

Formalize computation as graphs

Nodes indicate variables (scalar, vector, tensor or another
variable)

Operations are simple functions of one or more variables

Our graph language comes with a set of allowable operations

Examples:
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z = xy

x y

z

×

Graph uses × operation for the computation
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Logistic Regression

x w

u1 u2

b

ŷ

dot

+

σ

Computes ŷ = σ(xTw + b)
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H = max{0, XW + b}

X W

U1 U2

b

H

MM
+

Rc

MM is matrix multiplication and Rc is ReLU activation
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Back to backprop: Chain Rule

Backpropagation computes the chain rule, in a manner that is
highly efficient

Let f, g : R→ R
Suppose y = g(x) and z = f(y) = f(g(x))

Chain rule:
dz

dx
=
dz

dy

dy

dx
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x

y

z

dz
dy

dy
dx

Chain rule:
dz

dx
=
dz

dy

dy

dx
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x

y1 y2

z

dy1
dx

dy2
dx

dz
dy1

dz
dy2

Multiple Paths:
dz

dx
=

dz

dy1

dy1
dx

+
dz

dy2

dy2
dx
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x

y1 y2

. . .
yn

z

dy1
dx

dy2
dx

dyn
dx

dz
dy1

dz
dy2

dz
dyn

Multiple Paths:
dz

dx
=
∑
j

dz

dyj

dyj
dx
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Chain Rule

Consider x ∈ Rm,y ∈ Rn

Let g : Rm → Rn and f : Rn → R
Suppose y = g(x) and z = f(y), then

∂z

∂xi
=
∑
j

∂z

∂yj

∂yj
∂xi

In vector notation:
∂z
∂x1

...
∂z
∂xm

 =


∑

j
∂z
∂yj

∂yj
∂x1

...∑
j
∂z
∂yj

∂yj
∂xm

 = ∇xz =

(
∂y

∂x

)T
∇yz
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Chain Rule

∇xz =

(
∂y

∂x

)T
∇yz

(
∂y
∂x

)
is the n×m Jacobian matrix of g

Gradient of x is a multiplication of a Jacobian matrix
(
∂y
∂x

)
with a vector i.e. the gradient ∇yz

Backpropagation consists of applying such Jacobian-gradient
products to each operation in the computational graph

In general this need not only apply to vectors, but can apply
to tensors w.l.o.g
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Chain Rule

We can ofcourse also write this in terms of tensors

Let the gradient of z with respect to a tensor X be ∇Xz

If Y = g(X) and z = f(Y), then:

∇Xz =
∑
j

(∇XYj)
∂z

∂Yj
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Recursive Application in a Computational
Graph

Writing an algebraic expression for the gradient of a scalar
with respect to any node in the computational graph that
produced that scalar is straightforward using the chain-rule

Let for some node x the successors be: {y1, y2, . . . yn}
Node: Computation result

Edge: Computation dependency

dz

dx
=

n∑
i=1

dz

dyi

dyi
dx
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Flow Graph (for previous slide)

. . .

x

y1 y2 . . . yn

. . .

z
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Recursive Application in a Computational
Graph

Fpropagation: Visit nodes in the order after a topological sort

Compute the value of each node given its ancestors

Bpropagation: Output gradient = 1

Now visit nods in reverse order

Compute gradient with respect to each node using gradient
with respect to successors

Successors of x in previous slide {y1, y2, . . . yn}:

dz

dx
=

n∑
i=1

dz

dyi

dyi
dx
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Automatic Differentiation

Computation of the gradient can be automatically inferred
from the symbolic expression of fprop

Every node type needs to know:

• How to compute its output
• How to compute its gradients with respect to its inputs
given the gradient w.r.t its outputs

Makes for rapid prototyping
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Computational Graph for a MLP

Figure: Goodfellow et al.

To train we want to compute ∇W (1)J and ∇W (2)J

Two paths lead backwards from J to weights: Through cross
entropy and through regularization cost
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Computational Graph for a MLP

Figure: Goodfellow et al.

Weight decay cost is relatively simple: Will always contribute
2λW (i) to gradient on W (i)

Two paths lead backwards from J to weights: Through cross
entropy and through regularization cost
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Symbol to Symbol

Figure: Goodfellow et al.

In this approach backpropagation never accesses any
numerical values

Instead it just adds nodes to the graph that describe how to
compute derivatives

A graph evaluation engine will then do the actual computation

Approach taken by Theano and TensorFlow

Lecture 4 Backpropagation CMSC 35246



Next time

Regularization Methods for Deep Neural Networks
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