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Abstract

Recognition of gesture sequences is in general a very dif-
ficult problem, but in certain domains the difficulty may be
mitigated by exploiting the domain’s “grammar”. One such
grammatically constrained gesture sequence domain is sign
language. In this paper we investigate the case of finger-
spelling recognition, which can be very challenging due to
the quick, small motions of the fingers. Most prior work on
this task has assumed a closed vocabulary of fingerspelled
words; here we study the more natural open-vocabulary
case, where the only domain knowledge is the possible fin-
gerspelled letters and statistics of their sequences. We de-
velop a semi-Markov conditional model approach, where
feature functions are defined over segments of video and
their corresponding letter labels. We use classifiers of let-
ters and linguistic handshape features, along with expected
motion profiles, to define segmental feature functions. This
approach improves letter error rate (Levenshtein distance
between hypothesized and correct letter sequences) from
16.3% using a hidden Markov model baseline to 11.6% us-
ing the proposed semi-Markov model.

1. Introduction

Recognition of gesture sequences is in general very chal-
lenging. However, in some cases there may be a domain
“grammar” that can be used to provide a prior on possi-
ble gestures and sequences, as in certain forms of dancing,
sports, and aircraft marshalling. One of the most practi-
cally important of such grammatically constrained gesture
sequence domains is sign language.

In this paper we consider American Sign Language
(ASL), and focus in particular on recognition of finger-
spelled letter sequences. In fingerspelling, signers spell out
a word as a sequence of handshapes or hand trajectories
corresponding to individual letters. The handshapes used
in fingerspelling are also used throughout ASL. In fact, the

fingerspelling handshapes account for about 72% of ASL
handshapes [7], making research on fingerspelling applica-
ble to ASL in general.

Figure 1 shows the ASL fingerspelling alphabet. Fin-
gerspelling is a constrained but important part of ASL, ac-
counting for up to 35% of ASL [22]. Fingerspelling is typi-
cally used for names, borrowings from English or other spo-
ken languages, or new coinages. ASL fingerspelling uses a
single hand and involves relatively small and quick motions
of the hand and fingers, as opposed to the typically larger
arm motions involved in other signs. Therefore, finger-
spelling can be difficult to analyze with standard approaches
for pose estimation and tracking from video.

Most prior work on fingerspelling recognition has as-
sumed a closed vocabulary of fingerspelled words, often
limited to 20-100 words, typically using hidden Markov
models (HMMs) representing letters or letter-to-letter tran-
sitions [14, 20, 26]. In such settings it is common to obtain
letter error rates (Levenshtein distances between hypothe-
sized and true letter sequences, as a proportion of the num-
ber of true letters) of 10% or less. In contrast, we address
the problem of recognizing unconstrained fingerspelling se-
quences. This is a more natural setting, since fingerspelling
is often used for names and other “new” terms, which may
not appear in any closed vocabulary.

We develop a semi-Markov conditional random field
(SCRF) approach to the unconstrained fingerspelling recog-
nition problem. In SCRFs [28, 41], feature functions are de-
fined over segments of observed variables (in our case, any
number of consecutive video frames) and their correspond-
ing labels (in our case, letters). The use of such segmental
feature functions is useful for gesture modeling, where it
is natural to consider the trajectory of some measurement
or the statistics of an entire segment. In this work we de-
fine feature functions based on scores of letter classifiers, as
well as classifiers of handshape features suggested by lin-
guistics research on ASL [6, 19]. Linguistic handshape fea-
tures summarize certain important aspects of a given letter,
such as the “active” fingers or the flexed/non-flexed status
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Figure 1. The ASL fingerspelled alphabet. All of the letters except
for J and Z are static. [From Wikipedia]

of the fingers; these are hopefully the most salient aspects of
each letter, which should be more discriminative for recog-
nition. We also use the statistics of raw visual descriptor
derivatives over entire segments to define basic “expected
motion” feature functions.

In the remaining sections we describe the approach,
its relationship to earlier work, and experimental results
demonstrating that our approach provides an improvement
over HMM baselines similar to those of prior work.

2. Related work
There has been significant work on sign language recog-

nition from video1, but there are still large gaps, especially
for continuous, large-vocabulary signing settings. Much
prior work has involved hidden Markov model (HMM)-
based approaches [30, 35, 15, 11], which serves as a nat-
ural baseline for our work. There have also been a number
of successful approaches using conditional models [40] and
more complex (non-linear-chain) graphical models [32, 38].

Some prior work has used representations of handshape
and motion that are linguistically motivated, e.g., [5, 10, 32,
38, 37, 36, 35, 23, 33]. However, a much finer level of detail
is needed for the sub-articulators of the hand, which moti-
vates our use of linguistic handshape features here.

A subset of ASL recognition work has focused on fin-
gerspelling and/or handshape classification [4, 27, 24] and
fingerspelling sequence recognition [14, 20, 26], where let-
ter error rates of 10% or less have been achieved when the

1A good deal of prior work on sign language recognition has also used
other instrumentation, such as specialized gloves or depth maps [17, 16,
21, 39, 13]. These interfaces are sometimes feasible, but video remains
more practical in many settings, and we restrict our discussion to video
here.

recognition is constrained to a small (up to 100-word) lex-
icon of possible sequences. The only unrestricted finger-
spelling recognition work of which we are aware is [19],
using HMM-based approaches; we consider this work as
the most competitive baseline and compare to it in the ex-
periments section.

The relatively little work on applying segmental (semi-
Markov) models to vision tasks has focused on classifica-
tion and segmentation of action sequences [29, 12] with a
small set of possible activities to choose from, including
recent work on spotting of specific signs in sign language
video [8]. In natural language processing, semi-Markov
CRFs have been used for named entity recognition [28],
where the labeling is binary. Such models have been applied
more widely in speech recognition [41]. One aspect that
our work shares with the speech recognition work is that we
have a relatively large set of labels (26 letters plus non-letter
“N/A” labels), and widely varying lengths of segments cor-
responding to each label (typically 7-10 video frames, but
all lengths from 2-40 frames are seen in our data), which
makes the search space large and the inference task cor-
respondingly difficult. We address this difficulty similarly
to [41], by adopting a two-stage approach of generating a
graph of candidate segmentations and reranking them using
the semi-Markov model.

The work presented in this paper is the largest-scale use
of semi-Markov models in computer vision, as well as the
least constrained fingerspelling recognition experiments, of
which we are aware.

3. A semi-Markov CRF approach
We begin by defining the problem and our notation. Let

the sequence of visual observations for a given video (cor-
responding to a single word) be O = o1, . . . , oT , where
each ot is a multidimensional image descriptor for frame t.
Our goal is to predict the label (letter) sequence. Ideally we
would like to predict the best label sequence, marginaliz-
ing out different possible label start and end times, but in
practice we use the typical approach of predicting the best
sequence of frame labels S = s1, . . . , sT . We predict S
by maximizing its conditional probability under our model,
Ŝ = argmaxSP (S|O). In generative models like HMMs,
we have a joint model P (S,O) and we make a prediction
using Bayes’ rule. In conditional models we directly repre-
sent the conditional distribution P (S|O). For example, in a
typical linear-chain CRF, we have:

p(S|O) =
1

Z(O)
exp

∑
v,k

λkfk(Sv, Ov) +
∑
e,k

µkgk(Se)


where Z(O) is the partition function, fk are the “node” fea-
ture functions that typically correspond to the state in a sin-
gle frame Sv and its corresponding observation Ov , gk are



“edge” feature functions corresponding to inter-state edges,
e ranges over pairs of frames and Se is the pair of states
corresponding to e, and λk and µk are the weights.

It may be more natural to consider feature functions
that span entire segments corresponding to the same la-
bel. Semi-Markov CRFs [28], also referred to as segmental
CRFs [41] or SCRFs, provide this ability.

Figure 2 illustrates the SCRF notation, which we now
describe. In a SCRF, we consider the segmentation to be a
latent variable and sum over all possible segmentations of
the observations corresponding to a given label sequence to
get the conditional probability of the label sequence S =
s1, . . . , sL, where the length of S is now the (unknown)
number of distinct labels L:

p(S|O) =

∑
q s.t. |q|=|S| exp

(∑
e∈q,k λkfk(s

e
l , s

e
r, Oe)

)
∑
S′
∑
q s.t.|q|=|S′| exp

(∑
e∈q,k λkfk(s

e
l , s

e
r, Oe)

)
Here, S′ ranges over all possible state (label) sequences, q
is a segmentation of the observation sequence whose length
(number of segments) must be the same as the number of
states in S (or S′), e ranges over all state pairs in S, sel
is the state which is on the left of an edge, ser is the state
on the right of an edge, and Oe is the multi-frame obser-
vation segment associated with ser. In our work, we use a
baseline frame-based recognizer to generate a set of candi-
date segmentations ofO, and sum only over those candidate
segmentations. In principle the inference over all possible
segmentations can be done, but typically this is only feasi-
ble for much smaller search spaces than ours.

3.1. Feature functions

We define several types of feature functions, some of
which are quite general to sequence recognition tasks and
some of which are tailored to fingerspelling recognition:

3.1.1 Language model feature

The language model feature is a smoothed bigram probabil-
ity of the letter pair corresponding to an edge:

flm(sel , s
e
r, Oe) = pLM (sel , s

e
r).

3.1.2 Baseline consistency feature

To take advantage of the existence of a high-quality base-
line, we use a baseline feature like the one introduced
by [41]. This feature is constructed using the 1-best output
hypothesis from an HMM-based baseline recognizer. The
feature value is 1 when a segment spans exactly one letter
label hypothesized by the baseline and the label matches it:

fb(sel , s
e
r, Oe) =

 +1 if C(t(e), T (e)) = 1,
and B(t(e), T (e)) = w(ser)

−1 otherwise

where t(e) and T (e) are the start and end times correspond-
ing to edge e, C(t, T ) is the number of distinct baseline
labels in the time span from t to T , B(t, T ) is the label cor-
responding to time span (t, T ) when C(t, T ) = 1, and w(s)
is the letter label of state s.

3.1.3 Handshape classifier-based feature functions

The next set of feature functions measure the degree of
match between the intended segment label and the appear-
ance of the frames within the segment. For this purpose
we use a set of frame classifiers, each of which classifies
either letters or linguistic handshape features. As in [19],
we use the linguistic handshape feature set developed by
Brentari [6], who proposed seven features to describe hand-
shape in ASL. Each such linguistic feature (not to be con-
fused with feature functions) has 2-7 possible values. Of
these, we use the six that are contrastive in fingerspelling.
See Table 1 for the details. For each linguistic feature or
letter, we train a classifier that produces a score for each
feature value for each video frame. We also train a separate
letter classifier. We use neural network (NN) classifiers, and
consider several types of NN output-layer functions as the
classifier scores:

NN output layer types

• linear: g(v|x) = wT
vφ(x)

• softmax: g(v|x) = exp(wT
vφ(x))P

i exp(wT
iφ(x))

• sigmoid: g(v|x) = 1
1+exp(−wT

vφ(x))

where x is the input to the NN (in our case, the visual
descriptors concatenated over a window around the current
frame), wv is the weight vector in the last layer of the NN
corresponding to linguistic feature v, and φ(x) is the input
to the last layer. We then use these score functions g(v|x)
to define four types of segment feature functions:

Feature functions Let y be a letter and v be the value of
a linguistic feature or letter, Ne = |Oe| = T (e) + 1 −
t(e) the length of an observation segment corresponding to
edge e, and g(v|oi) the output of a NN classifier at frame i
corresponding to class v. We define

• mean: fyv(sel , s
e
r, Oe) =

δ(w(ser) = y) · 1
Ne

∑T (e)
i=t(e) g(v|oi)

• max: fyv(sel , s
e
r, Oe) =

δ(w(ser) = y) ·maxi∈(t(e),T (e)) g(v|oi)

• divs: a concatenation of three mean feature functions,
each computed over a third of the segment
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Figure 2. Illustration of SCRF notation. For example, edge e2 is associated with the “left state” s
(2)
l , the “right state” s

(2)
r , and the segment

of observations O(2) spanning frames t(2) through T (2).

• divm: a concatenation of three max feature functions,
each computed over a third of the segment

3.1.4 Peak detection features

Fingerspelling a sequence of letters yields a corresponding
sequence of “peaks” of articulation. Intuitively, these are
frames in which the hand reaches the target handshape for
a particular letter. The peak frame and the frames around
it for each letter tend to be characterized by very little mo-
tion as the transition to the current letter has ended while the
transition to the next letter has not yet begun, whereas the
transitional frames between letter peaks have more motion.
To use this information and encourage each predicted let-
ter segment to have a single peak, we define letter-specific
“peak detection features” as follows. We first compute ap-
proximate derivatives of the visual descriptors, consisting
of the l2 norm of the difference between descriptors in ev-
ery pair of consecutive frames, smoothed by averaging over
5-frame windows. We expect there to be a single local min-
imum in this approximate derivative function over the span
of the segment. Then we define the feature function corre-
sponding to each letter y as

f peak
y (sel , s

e
r, Oe) = δ(w(ser) = y) · δpeak(Oe)

where δpeak(Oe) is 1 if there is only one local minimum in
the segment Oe and 0 otherwise.

4. Experiments
Data and annotation We report on experiments using
video recordings of four native ASL signers. The data were
recorded at 60 frames per second in a studio environment.
Each signer signed a list of 300 words as they appeared on
a computer screen in front of the signer. There were two

Feature Definition/Values
SF point of side of the hand where
reference SFs are located
(POR) SIL, radial, ulnar, radial/ulnar
SF joints degree of flexion or

extension of SFs
SIL, flexed:base, flexed:nonbase,
flexed:base & nonbase,
stacked, crossed, spread

SF quantity combinations of SFs
N/A, all, one,
one > all, all > one

SF thumb thumb position
N/A, unopposed, opposed

SF handpart internal parts of the hand
SIL, base, palm, ulnar

UF open/closed
SIL, open, closed

Table 1. Definition and possible values for phonological features
based on [6]. The first five features are properties of the active
fingers (selected fingers, SF); the last feature is the state of the in-
active or unselected fingers (UF). In addition to Brentari’s feature
values, we add a SIL (“silence”) value to the features that do not
have an N/A value. For detailed descriptions, see [6].

non-overlapping lists of 300 words (one for signers 1 and
2, the other for signers 3 and 4). Each word was spelled
twice, yielding 600 word instances signed by each signer.
The lists contained English and foreign words, including
proper names and common English nouns. For comparison
with prior work, we use the same data from signers 1 and
2 as [18, 19], as well as additional data from signers 3 and
4. The recording settings, including differences in environ-



ment and camera placement across recording sessions, are
illustrated in Figure 3.

Figure 3. Example video frames from the four signers.

The signers indicated the start and end of each word
by pressing a button, allowing automatic partition of the
recording into a separate video for every word. Every video
was verified and manually labeled by multiple annotators
with the times and letter identities of the peaks of articula-
tion (see Sec. 3.1.4). The peak annotations are used for the
training portion of the data in each experiment to segment a
word into letters (the boundary between consecutive letters
is defined as the midpoint between their peaks).

Hand localization and segmentation For every signer, we
trained a model for hand detection similar to that used
in [19, 20]. Using manually annotated hand regions, marked
as polygonal regions of interest (ROI) in 30 frames, we fit
a mixture of Gaussians Phand to the color of the hand pix-
els in L*a*b color space. Using the same 30 frames, we
also built a single-Gaussian color model P xbg for every pixel
x in the image excluding pixel values in or near marked
hand ROIs. Then, given a test frame, we label each pixel as
hand or background based on an odds ratio: Given the color
triplet cx = [lx, ax, bx] at pixel x, we assign it to hand if

Phand(cx)πhand > P xbg(cx)(1− πhand), (1)

where the prior πhand for hand size is estimated from the
same 30 training frames.

Since this simple model produces rather noisy output,
we next clean it up by a sequence of filtering steps. We
suppress pixels that fall within regions detected as faces
by the Viola-Jones face detector [34], since these tend to
be false positives. We also suppress pixels that passed the
log-odds test but have a low estimated value of Phand.
These tend to correspond to movements in the scene, e.g.,
a signer changing position and thus revealing previously
occluded portions of the background; for such pixels the
value of Pbg may be low, but so is Phand. Finally, we
suppress pixels outside of a (generous) spatial region where
the signing is expected to occur. The largest surviving

connected component of the resulting binary map is treated
as a mask that defines the detected hand region. Some
examples of resulting hand regions are shown in Figures 6
and 7. Note that while this procedure currently requires
manual annotation for a small number of frames in our
offline recognition setting, it could be fully automated in a
realistic interactive setting, by asking the subject to place
his/her hand in a few defined locations for calibration.

Handshape descriptors The visual descriptor for a given
hand region is obtained by concatenation of histograms
of oriented gradients (HOG [9]) descriptors, computed on
a spatial pyramid of regions over the tight bounding box
of the hand region, resized to canonical size of 128×128
pixels. Pixels outside of the hand mask are ignored in this
computation. The HOG pyramid consists of 4×4, 8×8,
and 16×16 grids, with eight orientation bins per grid cell,
resulting in 2688-dimensional descriptors. To speed up
computation, these descriptors were projected to at most
200 principal dimensions; the exact dimensionality in each
experiment was tuned on a development set (see below).

Letter and linguistic feature classifiers We use feed-
forward neural network classifiers (NNs) (trained with
Quicknet [25]) for letters and linguistic feature labels for
each video frame. The inputs to the NNs are the HOG
descriptors concatenated over a window of several frames
around each frame. The training labels are obtained from
the manually labeled peak frames, as described above. We
tune the window sizes on the development set.

Baselines We compare our approach with two HMM
baselines, which reproduce the work in [19] except for
differences in our hand segmentation and visual de-
scriptors. Both baselines have one 3-state HMM per
letter, plus a separate HMM for the sequence-initial and
sequence-final non-signing portions (referred to as “n/a”),
Gaussian mixture observation densities, and a letter bigram
language model. The basic HMM-based recognizer uses
dimensionality-reduced visual descriptors directly as
observations. The second baseline uses as observations
the linear outputs of the NN linguistic feature classifiers,
reproducing the “tandem” approach of [19]. This was done
to confirm that we can reproduce the result of [19] showing
an advantage for the tandem system over standard HMMs.
Although we reproduce the models of [19] for comparison,
we tune all hyperparameters of each model on held-out data.

Generating candidate segmentations for SCRFs As
described above, we use a two-phase inference approach
where a baseline recognizer produces a set of candidate
segmentations and label sequences, and a SCRF is used
to re-rank the baseline candidates. We produce a list of



N -best candidate segmentations using the tandem baseline
(as it is the better performer of the two baselines). Training
of the SCRFs is done by maximizing the conditional log
likelihood under the model, using the Segmental CRF
(SCARF) toolkit [1]. For those training examples where
the correct letter sequence is not among the baselineN -best
candidates, we have several choices. We can add a correct
candidate by using the baseline recognizer to align the
video to the correct labels (by performing a Viterbi search
constrained to state sequences corresponding to the correct
letters); use ground truth annotation as a correct candidate
segmentation; choose the best possible matching segmen-
tation from the N -best candidates; or finally, discard such
examples from training data. In each experiment, we chose
among these options by tuning on the development set.

Experimental setup For each signer, we use a 10-fold
setup: In each fold, 80% of the data is used as a training
set, 10% as a development set for tuning hyperparameters,
and the remaining 10% as a final test set. We report the av-
erage results over the 10 test sets. We independently tune
the parameters in each fold (that is, we run 10 separate,
complete experiments) and report the average letter error
rate (LER) over the 10 folds. We train the letter bigram
language models from large online dictionaries of varying
sizes that include both English words and names [2]. We
use HTK [3] to implement the baseline HMM-based recog-
nizers and SRILM [31] to train the language models.

The HMM parameters (number of Gaussians per state,
size of language model vocabulary, transition penalty and
language model weight), as well as the dimensionality of
the HOG descriptor input and HOG depth, were tuned to
minimize development set letter error rates for the baseline
HMM system. For the NN classifiers, the input window size
was tuned to minimize frame error rate of the classifiers on
the development set. All of the above parameters were kept
fixed for the SCRF (in this sense the SCRF is slightly disad-
vantaged). The NN output type was tuned separately for the
tandem HMM and the SCRF. Finally, additional parameters
tuned for the SCRF models included the N-best list sizes,
type of feature functions, choice of language models, and
L1 and L2 regularization parameters.

Results The main results are shown in Figure 4. First, we
confirm that the tandem baseline improves over a standard
HMM baseline. Second, we find that the proposed SCRF
improves over the tandem HMM-based system, correcting
about 21% of the errors (or 29% of the errors committed by
the basic HMM baseline). For reference, we also show the
performance of the NN classifiers in Figure 5. Note that in
our experimental setup, there is some overlap of word types
between training and test data. This is a realistic setup,
since in real applications some of the test words will have
been previously seen and some will be new. However, for
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Figure 4. Letter error rate for each signer, and average letter error
rate over all signers, for the two baselines and for the proposed
SCRF. Error bars show the standard deviations over the 10 folds.
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Figure 5. Neural network classifier error rates on letter classifica-
tion (blue) and linguistic feature classification (red) on test data
for each signer. The linguistic feature error rates are averaged over
the six linguistic feature classification tasks; error rates for each
linguistic feature type range between 4% and 10%. Chance error
rates (based on always predicting the most common class) range
from approximately 25% to approximately 55%.

comparison, we have also conducted the same experiments
while keeping the training, development, and test vocabu-
laries disjoint; in this modified setup, letter error rates in-
crease by about 2-3% overall, but the SCRFs still outper-
form the other models.

Figures 6 and 7 illustrate the recognition task, show-
ing examples in which the SCRF corrected mistakes made
by the tandem HMM recognizer. In each of these figures
we show the ground truth segments. The peak frames are
shown on top of each letter’s segment; the hand region
segmentation masks were obtained automatically using the
probabilistic model described in Section 4. We also show
intermediate frames, obtained at midpoints between peaks,
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Figure 6. From top to bottom: frames from the word LORD, with asterisks denoting the peak frame for each letter and n/a denoting periods
before the first letter and after the last letter; ground-truth segmentation based on peak annotations; segmentation produced by the tandem
HMM; and segmentation produced by the proposed SCRF.
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Figure 7. Similar to Figure 6 for the word METHOD.

as well as a frame before the first peak and after the last
peak. Below the ground truth segmentations are the seg-
mentations obtained with the baseline tandem HMM, and
at the bottom are segmentations obtained with the SCRF.

5. Discussion
This paper proposes an approach to automatic recogni-

tion of fingerspelled words in ASL, in a challenging open-
vocabulary scenario. This is a compelling task, due to its
complexity and its practical importance to a large commu-
nity of Deaf persons in the US. Our experiments demon-
strate the performance of a semi-Markov CRF model on
this challenging task. We report results superior to those
obtained with the model of [19], which to our knowledge is
the only published work that has addressed similar uncon-
strained recognition settings. The work has implications for
the larger task of general ASL recognition, where the same
handshapes used in fingerspelling are used throughout.

We believe that our results are promising in a broader
context of recognition of action sequences (and in particular
gesture sequences) with any sort of “grammar” – constraints
that limit a set of configurations, and introduce structure
into statistics of possible transitions. Part of our future work
is to investigate applications of the proposed SCRF model
to other scenarios in which a complex activity of interest

can be parsed into a sequence of identifiable building blocks
(primitives). Examples of such structured activities include
dancing, aircraft marshalling, and others. We also are in-
vestigating more complex segmental feature functions that
would capture additional properties of the data. Finally, al-
though user-dependent sign language recognition could be
useful in practice, as evidenced by the prevalence of such
applications for spoken language recognition (such as dic-
tation systems), we would like to develop methods that are
more signer-independent.
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