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Abstract

Sparse coding has recently become a popular approach in computer vision to learn
dictionaries of natural images. In this paper we extend the sparse coding frame-
work to learn interpretable spatio-temporal primitives. We formulated the prob-
lem as a tensor factorization problem with tensor group norm constraints over the
primitives, diagonal constraints on the activations that provide interpretability as
well as smoothness constraints that are inherent to human motion. We demon-
strate the effectiveness of our approach to learn interpretable representations of
human motion from motion capture data, and show that our approach outperforms
recently developed matching pursuit and sparse coding algorithms.

1 Introduction

In recent years sparse coding has become a popular paradigm to learn dictionaries of natural images
[10, 1, 4]. The learned representations have proven very effective in computer vision tasks such as
image denoising [4], inpainting [10, 8] and object recognition [1]. In these approaches, sparse coding
was formulated as the sum of a data fitting term, typically the Frobenius norm, and a regularization
term that imposes sparsity. The `1 norm is typically used as it is convex instead of other sparsity
penalties such as the `0 pseudo-norm.

However, the sparsity induced by these norms is local; The estimated representations are sparse in
that most of the activations are zero, but the sparsity has no structure, i.e., there is no preference
to which coefficients are active. Mairal et al. [9] extend the sparse coding formulation of natural
images to impose structure by first clustering the set of image patches and then learning a dictionary
where members of the same cluster are encouraged to share sparsity patterns. In particular, they use
group norms so that the sparsity patterns are shared within a group.

Here we are interested in the problem of learning dictionaries of human motion. Learning spatio-
temporal representations of motion has been addressed in the neuroscience and motor control lit-
erature, in the context of motor synergies [13, 5, 14]. However, most approaches have focused on
learning static primitives, such as those obtained by linear subspace models applied to individual
frames of motion [12, 15].

One notable exception to this is the work of diAvella et al. [3] where the goal was to recover primi-
tives from time series of EMG signals recorded from a set of frog muscles. Using matching pursuit
[11] and an `0-type regularization as the underlying mechanism to learn primitives, [3] performed
matrix factorization of the time series. The recovered factors represent the primitive dictionary and
the primitive activations. However, this technique suffers from the inherent limitations of the `0
regularization which is combinatorial in nature and thus difficult to optimize; therefore [3] resorted
to a greedy algorithm that is subject to the inherent limitations of such an approach.

In this paper we propose to extend the sparse coding framework to learn motion dictionaries. In
particular, we cast the problem of learning spatio-temporal primitives as a tensor factorization prob-
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lem and introduce tensor group norms over the primitives that encourage sparsity in order to learn
the number of elements in the dictionary. The introduction of additional diagonal constraints in the
activations, as well as smoothness constraints that are inherent to human motion, will allow us to
learn interpretable representations of human motion from motion capture data. As demonstrated in
our experiments, our approach outperforms state-of-the-art matching pursuit [3], as well as recently
developed sparse coding algorithms [7].

2 Sparse coding for motion dictionary learning

In this section we first review the framework of sparse coding, and then show how to extend this
framework to learn interpretable dictionaries of human motion.

2.1 Traditional sparse coding

Let Y = [y1, · · · ,yN ] be the matrix formed by concatenating the set of training examples drawn
i.i.d. from p(y). Sparse coding is usually formulated as a matrix factorization problem composed
of a data fitting term, typically the Frobenius norm, and a regularizer that encourages sparsity of the
activations

min
W,H

||Y −WH||2F + λψ(H) .

or equivalently

min
W,H

||Y −WH||2F

subject to ψ(H) ≤ δsparse
where λ and δsparse are parameters of the model. Additional bounding constraints on W are typi-
cally employed since there is an ambiguity on the scaling of W and H. In this formulation W is the
dictionary, with wi the dictionary elements, H is the matrix of activations, and ψ(H) is a regularizer
that induces sparsity. Solving this problem involves a non-convex optimization. However, solving
with respect to W and H alone is convex if ψ is a convex function of H. As a consequence, ψ is
usually taken to be the `1 norm, i.e., ψ(H) =

∑
i,j |hi,j |, and an alternate minimization scheme is

typically employed [7].

If the problem has more structure, one would like to use this structure in order to learn non-local
sparsity patterns. Mairal et al. [9] exploit group norm sparsity priors to learn dictionaries of natural
images by first clustering the training image patches, and then learning a dictionary where members
of the same cluster are encouraged to share sparsity patterns. In particular, they use the `2,1 norm
defined as ψ(H) =

∑
k ||hk||2, where hk are the elements of H that are members of the k-th group.

Note that the members of a group do not need to be rows or columns, more complex group structures
can be employed [6].

However, the structure imposed by these group norms is not sufficient for learning interpretable
motion primitives. We now show how in the case of motion, we can consider the activations and
the primitives as tensors and impose group norm sparsity on the tensors. Moreover, we impose
additional constraints such as continuity and differentiability that are inherent of human motion
data, as well as diagonal constraints that ensure interpretability.

2.2 Motion dictionary learning

Let Y ∈ <D×L be a D dimensional signal of temporal length L. We formulate the problem of
learning dictionaries of human motion as a tensor factorization problem where the matrix W is now
a tensor, W ∈ <D×P×Q, encoding temporal and spatial information, with D the dimensionality
of the observations, P the number of primitives, and Q the length of the primitives. H is now also
defined as a tensor, H ∈ <Q×P×L, with L the temporal length of the sequence. For simplicity in
the discussion we assume that the primitives have the same length. This restriction can be easily re-
moved by settingQ to be the maximum length of the primitives and padding the remaining elements
to zero. We thus define the data term to be

`data = ||Y − vec(W)vec(H)||F (2)
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Figure 1: Walking dataset composed of multiple walking cycles performed by the same subject.
(left, center) Projection of the data onto the first two principal components of walking. This is the
data to be recovered. (right) Training error as a function of the number of iterations. Note that our
approach converges after only a few iterations

where vec(W) ∈ <D×PQ and vec(H) ∈ <QP×L are projections of the tensors to be represented
as matrices, i.e., flattening.

When learning dictionaries of human motion, there is additional structure and constraints that one
would like the dictionary elements to satisfy. One important property of human motion is that it is
smooth. We impose continuity and differentiability constraints by adding a regularization term that
encourages smooth curvature, i.e., φ(W) =

∑P
p=1 ||∇2Wp,:,:||F .

One of the main difficulties with learning motion dictionaries is that the dictionary words might
have very different temporal lengths. Note that this problem does not arise in traditional dictionary
learning of natural images, since the size of the dictionary words is manually specified [4, 1, 9]. This
makes the learning problem more complex since one would like to identify not only the number of
elements in the dictionary, but also the size of each dictionary word. We address this problem by
adding a regularization term that prefers dictionaries with small number of primitives, as well as
primitives of short length. In particular, we extend the group norms over matrices to be group norms
over tensors and define

`p,q,r(W) =

 P∑
i=1

 Q∑
j=1

(
D∑

k=1

|Wi,j,k|p
)q/p

r/q


1/r

where Wi,j,k is the k-th dimension at the j-th time frame of the i-th primitive in W.

We will also like to impose additional constraints on the activations H. For interpretability, we
would like to have only positive activations. Moreover, since the problem is under-constrained, i.e.,
H and W can be recovered up to an invertible transformation WH = (WC−1)(CH), we impose
that the elements of the activation tensor should be in the unit interval, i.e., Hi,j,k ∈ [0, 1]. As in
traditional sparse coding, we encourage the activations to be sparse. We impose this by bounding the
L1 norm. Finally, to impose interpretability of the results as spatio-temporal primitives, we impose
that when a spatio-temporal primitive is active, it should be active across all its time-length with
constant activation strength, i.e., ∀i, j, k, Hi,j,k = Hi,j+1,k+1.

We thus formulate the problem of learning motion dictionaries as the one of solving the following
optimization problem

min
W,H

||Y − vec(W)vec(H)||F + λφ(W) + ηLp,q,r(W)

subject to ∀i, j, k 0 ≤ Hi,j,k ≤ 1, Hi,j,k = Hi,j+1,k+1, ∀k
∑
i,j

Hi,j,k ≤ δtrain

where δtrain, λ and η are parameters of our model.

When optimizing over W or H alone the problem is convex. We thus perform alternate minimiza-
tion. Our algorithm converges to a local minimum, the proof is similar to the convergence proof of
block coordinate descent, see Prop. 2.7.1 in [2].
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Figure 2: Estimation of W and H when the number of primitives is unknown, using (top) matching
pursuit without refractory period, (second row) matching pursuit with refractory period [3], (third
row) traditional sparse coding and (bottom) our approach. Note that our approach is able to recover
the primitives, their number and the correct activations. Matching pursuit is able to recover the
number of primitives when using refractory period, however the activations and the primitives are
not correct. When we do not use the refractory period, the recovered primitives are very noisy.
Sparse coding has a low reconstruction error, but neither the number of primitives, nor the primitives
and the activations are correctly recovered.

3 Experimental Evaluation

We compare our algorithm to two state-of-the-art approaches in the task of discovering interpretable
primitives from motion capture data, namely, the sparse coding approach of [7] and matching pursuit
[3]. In the following, we first describe the baselines in detail. We then demonstrate our method’s
ability to estimate the primitives, their number, as well as the activation patterns. We then show that
our approach outperforms matching pursuit and sparse coding when learning dictionaries of walking
and running motions. For all experiments we set δtrain = 1, δtest = 1.3, λ = 1 and η = 0.05 and
use the `2,1,1 norm. Note that similar results where obtained with the `2,2,1 norm. For SC we use
β = 0.01 and c is set to the maximum value of the `2 norm. The threshold for MP with refractory
period is set to 0.1.
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Figure 3: Error as a function of the dimension when adding Gaussian noise of variance 50 and 100.
(Top) Walking, (bottom) running.

Matching pursuit (MP): We follow a similar approach to [3] where an alternate minimization
over W and H is employed. For each iteration in the alternate minimization, W is optimized
by minimizing `data defined in Eq. (2) until convergence. For each iteration in the optimization
of H, an over-complete dictionary D is created by taking the primitives in W, and generating
candidates by shifting each primitive in time. Note that the cardinality of the candidate dictionary
is |D| = P (L + Q − 1) if W has P primitives and the data is composed of L frames. Once the
dictionary is created, a set of primitives is iteratively selected (one at a time) by choosing at each
iteration the primitive with the largest scalar product with respect to the residual signal that cannot
be explained with the already selected primitives. Primitives are chosen until a threshold on the
scalar product is reached. Note that this is an instance of Matching Pursuit [11], a greedy algorithm
to solve an `0-type optimization. Additionally, in the step of choosing elements in the dictionary, [3]
introduced the refractory period, which means that when one element in the dictionary is chosen,
all overlapping elements are removed from the dictionary. This is done to avoid multiple activations
of primitives. In our experiments we compare our approach to matching pursuit with and without
refractory period.

Sparse coding (SC): We use the sparse coding formulation of [7] which minimizes the Frobenius
norm with an L1 regularization penalty on the activations

min
W̄,H̄

||Y − W̄H̄||F + β
∑
i,j

|H̄i,j |

subject to ∀j |W̄:,j | ≤ c

with β a constant trading off the relative influence of the data fitting term and the regularizer, and c
a constant bounding the value of the primitives. Note that now W̄ and H̄ are matrices. Following
[7], we solve this optimization problem alternating between solving with respect to the primitives
W̄ and the activations H̄.

3.1 Estimating the number of primitives

In the first experiment we demonstrate the ability of our approach to infer the number of primitives
as well as the length of the existing primitives. For this purpose we created a simple dataset which is
composed of a single sequence of multiple walking cycles performed by the same subject from the
CMU mocap dataset 1. We apply PCA to the data reducing the dimensionality of the observations

1The data was obtained from mocap.cs.cmu.edu
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Figure 4: Error as a function of the Gaussian noise variance for 4D and 10D spaces learned from a
dataset composed of a single subject. (Top) walking, (bottom) running.

from 59D to 2D for each time instant. Fig. 1 depicts the projections of the data onto the first two
principal components as a function of time. In this case it is easy to see that since the motion is
periodic, the signal could be represented by a single 2D primitive whose length is equal to the length
of the period.

To perform the experiments we initialize our approach and the baselines with a sum of random
smooth functions (sinusoids) whose frequencies are different from the principal frequency of the
periodic training data, and set the number of primitives to P = 2. One primitive is set to have
approximately the same length as a cycle of the periodic motion and the other primitive is set to be
50% larger. Note that a rough estimate of the length of the primitives could be easily obtained by
analyzing the principal frequencies of the signal. Fig. 2 depicts the results obtained by our approach
and the baselines. The first two columns depict the two dimensional primitives recovered (W1 and
W2). Each plot represents vec(Wi,:,:) ∈ <(Q1+Q2)×1. The dotted black line separates the two
primitives. Note that we expect these primitives to be similar to the original signal, i.e., vec(W1,:,:)
similar to a period in Fig. 1 (left) and vec(W2,:,:) to a period in Fig. 1 (right). The third column
depicts the activations vec(H) ∈ <(Q1+Q2)×L recovered. We expect the successful activations to
be diagonal, and to appear only once every cycle.

Note that our approach is able to recover the number of primitives as well as the primitive them-
selves and the correct activations. Matching pursuit without refractory period (first row) is not able
to recover the primitives, their number, or the activations. Moreover, the estimated signal has high
frequencies. Matching pursuit with refractory period (second row) is able to recover the number
of primitives, however the activations are underestimated and the primitives are not very accurate.
Sparse coding has a low reconstruction error, but neither the primitives, their number, nor the acti-
vations are correctly recovered. This confirms the inability of traditional sparse coding to recover
interpretable primitives, and the importance of having interpretability constraints such as the refrac-
tory period of matching pursuit and our diagonal constraints. Note also that as shown in Fig. 1
(right) our approach converges in a few iterations.

3.2 Quantitative analysis and comparisons

We evaluate the capabilities of our approach to reconstruct new sequences, and compare our ap-
proach to the baselines [3, 7] in a denoising scenario as well as when dealing with missing data. We
preprocess the data by applying PCA to reduce the dimensionality of the input space. We measure
error by computing the Frobenius norm between the test sequences and the reconstruction given by

6



0 5 10 15 20 25
20

40

60

80

100

120

140

160

180

200

220

Dimension

R
ec

on
st

ru
ct

io
n 

er
ro

r

 

 

MP w/o RP
MP w/ RP
SC
Ours

0 5 10 15 20 25
150

200

250

300

350

400

450

500

Dimension

R
ec

on
st

ru
ct

io
n 

er
ro

r

 

 

MP w/o RP
MP w/ RP
SC
Ours

0 5 10 15 20 25
0

50

100

150

200

250

300

350

400

Dimension

R
ec

on
st

ru
ct

io
n 

er
ro

r

 

 

MP w/o RP
MP w/ RP
SC
Ours

0 5 10 15 20 25
0

200

400

600

800

1000

1200

Dimension

R
ec

on
st

ru
ct

io
n 

er
ro

r

 

 

MP w/o RP
MP w/ RP
SC
Ours

(run, P=1, ePCA) (run, P=1, e59D) (run, P=2, ePCA) (run, P=2, e59D)

Figure 5: Multiple subject error as a function of the dimension for noisy data with variance 100 and
different numbers of primitives. As expected one primitive is not enough for accurate reconstruction.
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Figure 6: Missing data and influence of initialization: Error in the 59D space when Q/2 and 2Q/3
of the data is missing. The primitives are either initialize randomly or to a smooth set of sinusoids
of random frequencies.

the learned W and the estimated activations Htest

epca =
1

D
||Vtest − vec(W)vec(Htest)||F

as well as the error in the original 59D space which can be computed by projecting back into the
original space using the singular vectors. Note that W is learned at training, and the activations
Htest are estimated at inference time. To evaluate the generalization properties of each algorithm,
we compute both errors in a denoising scenario, where Htest is obtained using V̂test = Vtest + ε,
with ε i.i.d Gaussian noise, and the errors are computed using the ground truth data Vtest. For each
experiment we use P = 1, η = 0.05, δtrain = 1, δtest = 1.3 and a rough estimate of Q, which
can be easily obtained by examining the principal frequencies of the data [16]. The primitives are
initialized to a sum of sinusoids of random frequencies.

We created a walking dataset composed of motions performed by the same subject. In par-
ticular we used motions {02, 03, 04, 05, 06, 07, 08, 09, 10, 11} of subject 35 in the CMU mocap
dataset. We also performed reconstruction experiments for running motions and used motions
{17, 18, 20, 21, 22, 23, 24, 25} from subject 35. In both cases, we use 2 sequences for training and
the rest for testing, and report average results over 10 random splits. Fig. 3 depicts reconstruction
error in PCA space and in the original space as a function of the noise variance. Fig. 4 depicts
reconstruction error as a function of the dimensionality of the PCA space. Our approach outper-
forms matching pursuit with and without refractory period in all scenarios. Note that our method
outperforms sparse coding when the output is noisy. This is due to the fact that, given a big enough
dictionary, sparse coding overfits and can perfectly fit the noise.

We also performed reconstruction experiments for running motions performed by different subjects.
In particular we use motions {03, 04, 05, 06} of subject 9 and motions {21, 23, 24, 25} of subject
35. Fig. 5 depicts reconstruction error for our approach when using different numbers of primitives.
As expected one primitive is not enough for accurate reconstruction. When using two primitives our
approach performs comparable to sparse coding and clearly outperforms the other baselines.

In the next experiment we show the importance of having interpretable primitives. In particular we
compare our approach to the baselines in a missing data scenario, where part of the sequence is miss-
ing. In particular, Q/2 and 2Q/3 frames are missing. We use the single subject walking database.
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Figure 7: Influence of η and P on the single subject walking dataset as well as using soft constraints
instead of hard constraints on the activations. (left) Our method is fairly insensitive to the choice of η.
As expected the reconstruction error of the training data decreases when there is less regularization.
The test error however is very flat, and increases when there is too much or too little regularization.
For missing data, having good primitives is important, and thus regularization is necessary. Note
that the horizontal axis depicts − log η, thus η decreases for larger values of this axis. (center) Error
with (green) and without (red) missing data as a function of P . Our approach is not sensitive to the
value of P ; one primitive is enough for accurate reconstruction in this dataset. (right) Error when
using soft constraints |Hi,j,k −Hi,j+1,k+1| ≤ α as a function of α. The leftmost point corresponds
to α = 0, i.e., Hi,j,k = Hi,j+1,k+1.

As shown in Fig. 6 our approach clearly outperforms all the baselines. This is due to the fact that
sparse coding does not have structure, while the structure imposed by our equality constraints, i.e.,
∀i, j, k Hi,j,k = Hi,j+1,k+1, help ”hallucinate” the missing data. We also investigate the influence
of initialization by using a random non-smooth initialization and the smooth initialization described
above, i.e.,sinusoids of random frequencies. Note that as our approach, sparse coding is not sensitive
to initialization. This is in contrast with MP which is very sensitive due to the `0-type regularization.

We also investigated the influence of the amount of regularization on W. Towards this end we use
the single subject walking dataset, and compute reconstruction error for the training and test data
with and without missing data as a function of η. As shown in Fig. 7 (left) our method is fairly
insensitive to the choice of η. As expected the reconstruction error of the training data decreases
when there is less regularization. The test error in the noiseless case is however very flat, and
increases slightly when there is too much or too little regularization. When dealing with missing
data, having good primitives becomes more important. Note that the horizontal axis depicts− log η,
thus η decreases for larger values of the horizontal axis. The test error is higher than the training
error for large η since we use δtrain = 1 and δtest = 1.3. Thus we are more conservative at learning
since we want to learn interpretable primitives. We also investigate the sensitivity of our approach
to the number of primitives. We use the single subject walking dataset and report errors averaged
over 10 partitions of the data. As shown in Fig. 7 (middle) our approach is very insensitive to P ; in
this example a single primitive is enough for accurate reconstruction.

We finally investigate the influence of replacing the hard constraints on the activations by soft con-
straints |Hi,j,k − Hi,j+1,k+1| ≤ α. Note that our approach is not sensitive to the value of α and
that the hard constraints ( Hi,j,k = Hi,j+1,k+1), depicted in the leftmost point in Fig. 7 (right), are
almost optimal. This justifies our choice since when using hard constraints we do not need to search
for the optimal value of α.

4 Conclusion

We have proposed a sparse coding approach to learn interpretable spatio-temporal primitives of hu-
man motion. We have formulated the problem as a tensor factorization problem with tensor group
norm constraints over the primitives, diagonal constraints on the activations, as well as smooth-
ness constraints that are inherent to human motion. Our approach has proven superior to recently
developed matching pursuit and sparse coding algorithms in the task of learning interpretable spatio-
temporal primitives of human motion from motion capture data. In the future we plan to investigate
applying similar techniques to learn spatio-temporal dictionaries of video data such as dynamic
textures.
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